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SUMMARY
The emerging field of liquid biopsy stands at the forefront of novel diagnostic strategies for cancer and other
diseases. Liquid biopsy allows minimally invasive molecular characterization of cancers for diagnosis,
patient stratification to therapy, and longitudinal monitoring. Liquid biopsy strategies include detection
and monitoring of circulating tumor cells, cell-free DNA, and extracellular vesicles. In this review, we address
the current understanding and the role of existing liquid-biopsy-based modalities in cancer diagnostics and
monitoring. We specifically focus on the technical and clinical challenges associated with liquid biopsy and
biomarker development being addressed by the Liquid Biopsy Consortium, established through the National
Cancer Institute. The Liquid Biopsy Consortium has developed new methods/assays and validated existing
methods/technologies to capture and characterize tumor-derived circulating cargo, as well as addressed
existing challenges and provided recommendations for advancing biomarker assays.
INTRODUCTION

Cancer remains the second leading cause of death in the United

States, with more than 1.8 million new cancer diagnoses and

more than 0.6 million cancer deaths each year.1 With such an

overwhelming burden on society, early cancer diagnosis is

imperative to increasing survival rates and reducing care costs.

For example, to date, as a result of population screening with

invasive modalities such as colonoscopy, mammogram, and
Cell Rep
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pap smear, overall cancer mortality has decreased by more

than 25% from 1990 to 2015 in the United States, with a signifi-

cant decline in mortality rates for colon cancer and breast

cancer.2

Although imaging (breast) and some blood-based screenings

(colorectal, prostate cancer) are available for certain cancers,

these modalities do not provide insights into the genetic profiles

of those cancers. Currently, the mainstay for diagnosis is a tradi-

tional tissue biopsy to confirm the mutational profile and guide
orts Medicine 4, 101198, October 17, 2023 ª 2023 The Authors. 1
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treatment strategies. There remains a great need for minimally

invasive, early detection methods that can provide a molecular

diagnosis to allow timely patient stratification to appropriate

therapies. Emerging evidence over the past two decades has

given rise to the field of liquid biopsy, which involves the study

of a sample of a biofluid (blood, cerebrospinal fluid [CSF], urine,

saliva, amniotic fluid, ascitic fluid), examining cancer-derived

circulating tumor cells (CTCs), circulating nucleic acids including

cell-free DNA (cfDNA), cell-free RNA including mRNA, long non-

coding RNAs (lncRNAs) and microRNA (miRNA), extracellular

vesicles (EVs), tumor-educated platelets, proteins, and metabo-

lites.3 However, most of the literature reports findings from

single-center population studies lacking reproducibility and

robust verification and validation studies.

Therefore, large-scale, multi-institutional collaboration is

essential for the development of reliable and reproducible liquid

biopsy-based assays with clinical utility. The National Cancer

Institute’s (NCI) Division of Cancer Prevention has initiated and

sponsored an academic/industrial partnership program de-

signed to advance and validate liquid biopsy technologies spe-

cifically targeted for early-stage cancer detection. The resulting

Liquid Biopsy Consortium (LBC) has developed, tested, and

cross-validated new methods and assays to capture and char-

acterize tumor-derived circulating cargo for minimally invasive

early diagnosis of cancer. Additionally, the consortium provides

recommendations and best practices for developing liquid

biopsy biomarkers with translational potential. The Precompeti-

tive Collaboration on Liquid Biopsy for Early Cancer Assessment

Consortium also works on non-invasive liquid biopsymethods to

distinguish cancer from benign disease and aggressive from

indolent cancers. Projects from six funded sites, described

below, focus on the development of new tools/methods/assays

and/or validations of existing technologies involving the capture

of DNA, RNA, or EVs in circulating body fluids.

In this commentary, we highlight the need for advanced liquid

biopsy-based tests for the early diagnosis of cancers. We review

the current understanding of existing liquid biopsy-basedmodal-

ities in early cancer diagnosis and monitoring, with a special

focus on technical and clinical challenges associated with the

development of clinically relevant liquid biopsy assays. We also

elaborate on the need for the establishment and adoption of

best practices to bridge these hurdles along the biomarker dis-

covery pipeline to enhance clinical translation. Finally, we outline

the mission, aims, structure, and function of the NCI’s LBC.

The potential of liquid biopsy-based early detection of
cancers
The stimulus for liquid biopsy rests on several key facts.

Although imaging and blood test screening for cancer detection

are available for cancers of breast, cervix, colorectal, lung, and

prostate, screening is not uniformly applied.4 Compliance re-

flects the availability, tolerance, and morbidity of the screening

tool.5,6

For oncologists, the characterization of tumor-derived analy-

tes within biofluids has emerged as a powerful method to identify

tumor-specific genetic amplifications and aberrations. The aim is

to achieve a rapid, non-invasive, and cost-efficient diagnosis of

cancer, monitoring of disease status, and treatment response.
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Biofluid-based assays have been developed for diagnostics of

large populations screened for cancer ‘‘in general’’ without

speciation of organ type, early detection of cancer in asymptom-

atic individuals who are ‘‘at risk,’’ stratification of treatment co-

horts in clinical trials, provision of molecular-based tumor

stages, measurement of post-treatment minimal residual dis-

ease, and as indicators of response to therapy or post-treatment

disease recurrence.

Tissue biopsy only provides a single snapshot of the tumor,

rather than providing insights into its complex genomic land-

scape and intratumoral heterogeneity. This lack of information

limits the clinician’s ability to determine an optimal therapeutic

course. Although multiple biopsies from the tumor are some-

times performed, this procedure is limited by inaccessibility,

potential surgical complications, morbidity, mortality, and eco-

nomic considerations.7 Liquid biopsy-based assessment of

mutations can overcome this challenge, as has been shown for

clinically available BCR-ABL testing for chronic myelogenous

leukemia8 and potentially for EGFRvIII9 and TERT10 testing in

gliomas.

Liquid biopsy has the potential to offer advantages over tissue

biopsies and imaging approaches. It provides profound cost and

morbidity reductions when compared with surgical excision of

tissues and costly computed tomographic (CT), positron emis-

sion, andmagnetic resonance (MRI) studies. The analysis is rela-

tively rapid compared with histologic examinations, providing re-

sults in minutes to hours. These analyses also provide mutation

assessment across the histologically heterogeneous tumor tis-

sues. Furthermore, it serves as a potential platform to address

the common deficiencies and challenges in early detection

modalities for cancers.

Challenges with current screening modalities
Cancer is a diverse condition that can originate from essentially

all cell types and organs of a human body and has over a hun-

dred distinct entities with diverse risk factors and epidemiologic

features. Breast, prostate, lung, bronchus, and colorectal

cancers are the most high-incident cancers in the United States

(Figure S1A). Coincidentally, they contribute to the highest mor-

tality as well (Figure S1B). The current screening programs are

focused on identifying precursor lesions or malignancies when

cancer is most treatable to plan the most effective treatment

regimens.11 However, these screening modalities are often

associated with certain challenges. Liquid biopsy has the poten-

tial to mitigate these deficiencies and supplement the screening

tests to provide a more efficient diagnostic platform. The LBC

comprises different groups working on detection of common

cancers using novel platforms (Figure 1).

Liquid biopsy approach to mitigating deficiencies in

early detection for cancers addressed by the consortium

Breast cancer is the most common cancer and the second most

common cause of death from cancer in women. Currently,

mammography is used in early-stage screening5 with definitive

diagnosis made by pathology assessment. Technologies that

isolate and analyze CTCs can be used for early detection of

breast cancer. One example is the microfilter technology

CyteCatch developed by Dr. Cote (Washington University in St.

Louis) in collaboration with Circulogix to collect, quantify, and



Figure 1. Overview of the Liquid Biopsy Consortium and the different technologies investigated

(A) A summary of the academic-industrial partnership collaborations is provided, highlighting the leading principal investigators, target analytes, various liquid

biopsy technologies used, and cancers of interest.
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analyze CTCs and tumor microenvironment cells such as can-

cer-associated fibroblasts in early-stage breast cancer patients

from blood.

Lung cancer manifests as 2 million new cases and 1.7 million

deaths annually. Currently, low-dose spiral computed tomogra-

phy is used for early detection of lung cancer.12 This, however, is

associated with high false-positive rates, radiation exposure,

and patient distress during ambiguous follow-ups. There is po-

tential to harness the utility of circulating tumor DNA (ctDNA)

for detection of common biomarkers. For instance, a research

team led by Dr. Wong (University of California Los Angeles) has

developed the electric field-induced release and measurement

(EFIRM) liquid biopsy technology to detect the 10 most common

DNA mutations in ctDNA and miRNA in the plasma and saliva of

non-small cell lung carcinoma patients. The EFIRM technology

allows for rapid and non-invasive detection of molecular targets

directly in body fluids without prior extraction. Additionally, the

Wong group has investigated the utility of this technology to

detect an ultrashort (<60 bp) fragment of ctDNA. The group

has partnered with the Liquid Diagnostics biotech company to

develop and validate this technology and transition it to clinical

application.

Ovarian cancer is the second-most diagnosed gynecological

malignancy in women. Currently, there are no recommended
screening tests for early detection of ovarian cancer.13 The cur-

rent serum biomarker (CA-125) has low predictive value (5%)

and high false-positive rates. Liquid biopsy-based assessment

of EVs can be a new approach to early detection and treatment

monitoring of this tumor, improving overall survival. An example

of this effort is the Ovarian Cancer Exosomal Analysis with Nano-

plasmonics project (led by Dr. Lee), which focuses on standard-

ization of EV isolation methods (e.g., ExoLution,14 dual mode

chromatography14) and proteomic analysis of EVs via a high-

throughput nanoplasmonic platform (nPLEX).14

Liquid biopsymay also be beneficial in the diagnostics of inac-

cessible cancers, such as brain tumors. Globally, 3.7 and 2.6 out

of 100,000 males and females, respectively, are annually diag-

nosed with primary malignant brain tumors.15 CT and MRI scans

are used to detect cancerous lesions, while needle biopsies are

used to detect tumor tissue in sensitive or hard-to-reach areas.16

Non-blood-based liquid biopsies have been recently developed

as a useful tool for detecting and monitoring brain tumors.17 In

the presence of inconclusive findings on imaging, the presence

ofmutant DNA/RNA in the CSF or bloodmay support a diagnosis

of neoplasia or identify residual disease post-surgery. Targeted

sequencing of CSF or blood analytes (EV RNA/DNA, CTCs,

cfDNA)may also circumvent the need for craniotomy procedures

to obtain a tissue biopsy to identify actionable genetic
Cell Reports Medicine 4, 101198, October 17, 2023 3



Review
ll

OPEN ACCESS
alterations. Finally, the minimally invasive nature of biofluid sam-

pling can allow longitudinal monitoring and surveillance.18 Two

leading investigators, Dr. Balaj and Dr. Carter, have developed

assays for the detection of tumor-specific mutations in patients

with glioma using blood and CSF.19

Other efforts within the consortium include sensitive detection

of ctDNA via analysis of copy number variations using next-gen-

eration sequencing (NGS) led by Dr. Papadopoulos (Johns Hop-

kins University) for detection of colorectal, head and neck, and

brain cancers. Additionally, computational models have been

developed to integrate epigenomic and molecular signatures

of ctDNA to differentiate benign lung nodules from malignant le-

sions in a work led by Dr. Patel (Yale University).

Liquid biopsy analytes
A range of biomarkers have been investigated for liquid biopsy.

Each marker provides varying levels of information about the

genetic landscape of a tumor. Disease-specific biomarkers can

be detected at varying sensitivity and specificity in different

biofluids (i.e., blood, plasma, saliva, urine, CSF).20 Frequently

investigated biomarkers include ctDNA, EVs, and CTCs.

ctDNA represents fragments of tumor DNA released into bio-

fluids.21 They are attractive analytes to study tumor-specific

mutations, CNVs, methylation changes, or integrated viral

sequences.22 CtDNA can be isolated from any biofluid, and

certain biofluids are ideal for a given cancer due to anatomic

proximity. Emerging evidence suggests that ctDNA was detect-

able in >75% of patients with advanced pancreatic, ovarian,

colorectal, bladder, gastroesophageal, breast, melanoma, he-

patocellular, and head and neck cancers but in less than 50%

of primary brain, renal, prostate, or thyroid cancers.23 This

potentially indicates the variability in overall ctDNA yield from

different tumor lesions.

The concentration of isolated ctDNA from biofluids is low, and

detection of rare mutant events is even more challenging.24 The

concentration of ctDNA is negligible in healthy people. Higher

sample volumes are sometimes used to isolate sufficient abso-

lute quantities of ctDNA for detection of tumor-specific variants.

The choice of biofluid is also an important variable. Use of alter-

native biofluids can potentially allow for earlier detection of

premalignant lesions that are otherwise difficult to detect in the

blood. This is especially true for CNS tumors that are separated

from the systemic circulation via a blood-brain barrier. Addition-

ally, ctDNA is highly fragmented, sometimes as low as 50 bp in

length, requiring highly sensitive technologies to detect and

quantify tumor-specific genomic alterations amid the back-

ground of cfDNA released by non-cancerous cells.

CTCsare intact cancer cells, sometimes foundas clusters, that

release the primary tumors into biofluids and are considered to

have metastatic potential.25 It is not known whether CTCs are

only detached subpopulations of the tumor or rather pulled

randomly to represent the entire tumor. CTCs are exceedingly

rare, occurring at a frequency of 1 per 106 to 107 leukocytes

and are challenging to isolate. The yield may also vary as the

tumor evolves, with low sensitivity in early-stage disease and

more abundant CTCs isolated in late-stage disease.26 One po-

tential way to overcome this is use of large volumes of biofluids

to achieve optimal yield. Positive selection by antibody-based
4 Cell Reports Medicine 4, 101198, October 17, 2023
separation techniques is used to capture CTCs. These include

flow cytometry, immunomagnetic, or adhesion-based methods.

However, the captured CTC population only represents the sub-

population with a particular membrane protein. Other methods

such as negative selection by depletion of unwanted compo-

nents of whole blood using erythrocyte lysis, density gradient

stratification, and magnetic bead-based removal of leukocytes

have been explored.24 Advanced methodologies such as dielec-

tric mobility and photoacoustic and microfluidic separation have

been studied.27 Washington University in St. Louis (principal

investigator, Dr. Cote), University of Miami School of Medicine,

and Caltech are developing platforms to collect, quantify, and

analyze CTCs and tumor microenvironment cells such as can-

cer-associated fibroblasts from early-stage breast cancer pa-

tients. The microfilter technology (CyteCatch), along with the

automated fluidic platform faCTChecker, captures and isolates

these rare cells of interest from blood and other biofluids. The

captured cells are analyzed on-chip through image analysis

where these images arebeingused initially as training sets to train

deep learning algorithms that later will be used to automate the

process. This group’s industry partners are Circulogix for the mi-

crofilter technology and Google for the deep-learning algorithm.

EVs are membranous structures released from the cells,

including tumor cells, and contain nucleic acids (DNA, mRNA,

miRNA, non-coding RNA), proteins, lipids, or other metabolites.

The enclosed cargo closely reflects the cell of origin. The term

‘‘EV’’ covers a wide array of secreted vesicles, including micro-

vesicles, exosomes, ectosomes, and oncosomes.28 EVs are

actively released by cells and can interact with surrounding cells,

and depending on their molecular content, they can exacerbate

or ameliorate a cancerous phenotype. They have also been

shown to modulate tumor proliferation, reprogram metabolic

activity, induce angiogenesis, escape immune surveillance, ac-

quire drug resistance, and undergo invasion.29 The disease-spe-

cific cargo, long half-life, and physical stability in collected bio-

fluids advocates for their role as promising diagnostic and

prognostic biomarkers for multiple diseases including tumor.

Use of blood-derived EVs as a diagnostic tool has been

explored in multiple cancers including non-small-cell lung can-

cer, breast cancer, pancreatic cancer, colorectal cancer, ovarian

cancer, and nasopharyngeal carcinoma.30 While EVs can be

isolated from multiple biofluids, plasma and serum are most

frequently utilized for EV detection and analysis. The heteroge-

neity of luminal content in different biofluids is closely linked to

the site of disease. A study reported unique mRNA profiles of

EVs isolated from serum and urine in patients with cholangiocar-

cinoma.31 Significantly higher diagnostic accuracy was achieved

with EVs isolated from urine.31 Similar differences have also been

reported for EVmembrane analysis with differences in proteome

profiling (saliva vs. serum) in patients with lung cancer.32 Further

work is required to determine whether the heterogeneity in

membranous and luminal contents of EVs isolated from different

biofluids is significant and linked to the disease of interest.

Current methods and technologies reported to date have mostly

utilized a bulk EV approach. This provides information about the

ensemble of the heterogeneous EV populations. However,

analysis at the single-EV level would be of tremendous value in

identifying disease-derived potential biomarkers that are
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uniquely enriched relative to the background host cell-derived

biomarkers. There is a need for development of sensitive and

robust technologies to reliably investigate the low-input nucleic

acid (RNA, DNA) extracted from purified EVs.

Overall, the main utility of EVs is their role in disease diagnosis

and monitoring. A vast majority of literature has utilized this ana-

lyte to develop sensitive and specific mutation detection assays.

In addition, more work is now focused on developing a multiana-

lyte approach. Studies have compared and investigated the

feasibility of EVs versus other analytes individually and in combi-

nation (ctDNA, CTCs, tumor-educated platelets) in liquid biopsy

(Table S1).

Liquid pathology
A new generation of targeted therapeutics and the advent of

personalized oncology practice has transformed many types of

cancer from diseases associated with acute mortality to more

chronic conditions that require continuous monitoring to opti-

mize disease remission and extend the quality of life for cancer

patients. As such, cancer diagnostics will require approaches

and testing platforms similar to those used to screen for and

manage other chronic diseases such as diabetes and cardiovas-

cular disease (i.e., low-cost, minimally invasive, point-of-care

testing that is sufficiently accurate to guide reflexive testing using

more extensive diagnostics).

Pathology has a long history of analysis of blood and other body

fluids. Traditionally, this focused on chemical (pre-1980) and

immunochemical (post-1980) analysis.33 Thedevelopment ofmul-

tiplexed (multi-marker) but single-analyte-type platforms has

improved sensitivity, specificity, and throughput of assays.34 Ma-

lignantprogression isamultifacetedprocess,and therefore,simul-

taneous and integrative analyses of biomarkers that contribute to

thatprocess (hostgenome,cancergenome,methylationprogram-

ming,protein,EVs,andcirculating tumorcell populations)are likely

to create themost specific and sensitive assays for cancer predis-

position, initiation, progression, and response to therapy.35

Recently, analyses that once were restricted to tissues have

been increasingly performed from minimally invasive peripheral

blood sampling, taking advantage of enormous advances in

NGS technology,36 sophisticated proteomics, and the recognition

thatexosomesshed intobloodmaybeexploited fordiagnosticap-

plications.37 Outstanding examples of this include tumor typing to

determine possible therapeutic targets.38 These advances have

led to a burgeoning field of liquid-based diagnoses, in what we

have come to call ‘‘liquid biopsy.’’ This includes the detection of

therapeutic efficacy based on blood tests that can report results

much earlier than standard clinical methods, detection of early

recurrence/minimal residual disease, and most recently, exciting

work that may allow us to detect lethal cancers that currently

have screening methods at an earlier, curable stage.39

A summary of the major analytes investigated in different can-

cers is provided in Table 1. In parallel with these analytic

methods to evaluate shed components of cells have come

new ways to evaluate cancer cells themselves that are in circu-

lation (CTCs). While the original focus was restricted to the

detection and quantification of CTCs, new technologies have

allowed us to perform much deeper analysis of the cells,

including their cellular and molecular compositions.10 We are
also entering a new age of morphologic analysis of cells, where

sophisticated advances in microscopy, image acquisition, and

image analysis using deep learning/artificial intelligence provide

ways of analyzing cells that extend far beyond our eyes and

comprehension that could only be dreamed of a few years

ago. These methods have created a paradigm shift in how we

evaluate cancer, as well as a host of inherited diseases. While

liquid pathology has long been an essential component of mod-

ernmedical diagnosis, we are clearly entering a new and exciting

era, where we can do and learnmore, intervene sooner andmore

effectively, less invasively, and with greater safety, with a small

blood sample.

Multianalyte and multi-cancer early detection (MCED)
Despite the utility of single-analyte detection via liquid biopsy,

barriers to high sensitivity and specificity remain challenging to

the efficacy of these tests. As such, development of multianalyte

early detection tests in this context has gained significant popu-

larity over the last decade. By concurrently identifying multiple

biomarkers, studies have presented an improved assay sensi-

tivity for the detection of mutations as well as the potential to

unveil therapy-resistant genes.48,111

Clinical inclusion of MCED blood-based tests will allow the

detection of multiple cancers originating from different tissues.

This promising, one-step testing has the potential to diagnose

tumors at an early and more treatable stage. Examples of clini-

cally applicable tests include Galleri, CancerSEEK, and

OneTest. Galleri is a multi-cancer screening test for anyone

over the age of 50 years when the risk of cancer is higher. It is

based on cell-free DNA and detects tumor-specific methylation

patterns to predict the tissue of origin. It can use the signal to

potentially screen for more than 50 cancer types originating in

multiple organ systems (kidney, lung, adrenal glands, gastroin-

testinal tract, oral cavity, etc.). Another platform, CancerSEEK,

has been developed to detect eight unique proteins and onco-

genic mutations using circulating DNA isolated from blood and

screens up to nine cancers. Lastly, OneTest uses an integrated

algorithm of machine learning and proteomics to screen for up

to six cancers using well-established biomarkers. Importantly,

these screening tests have been validated in large-scale, multi-

institutional cohorts across countries, comprising different pop-

ulation types, and they represent an important milestone in

achieving screening of cancers at an early, treatable stage.

A combination of these platforms may provide a more compre-

hensive window into the status of the tumors. As these diagnostic

tests are developed, however, there remains a gap for inconsis-

tencies to arise. Minimizing false positives is important to differen-

tiate between low-prevalencemarker signals and noise. Addition-

ally, analysis and interpretation of the results need to be

standardized and reproducible. Advances in machine learning

andartificial intelligencewill aid furtherdevelopment andadvance-

ment of multianalyte blood tests to predict progression.112

Addressing the challenges of biomarker-based liquid
biopsy
Although a plethora of potential biomarkers to be used in clinical

diagnostics is regularly published, fewer than 1% of these bio-

markers successfully reach clinical practice.113 This can be
Cell Reports Medicine 4, 101198, October 17, 2023 5



Table 1. Summary of reported liquid biopsy-based analytical techniques in brain, breast, lung, colon, and ovarian cancers

Cancer Biofluid Analyte Potential analytical techniques Reference

Brain plasma

CSF

EVs

ctDNA

CTCs

ddPCR

RT-PCR

methylation-based PCR

chip-based proteomic analysis

CTC-iCHIP

microfluidics

density gradient centrifugation

targeted sequencing

deep sequencing

NGS

mass spectrometry

imaging flow cytometry

flow cytometry

microfluidic nuclear magnetic

resonance (mNMR) assay

ELISA

Figueroa, Lavon, Chen, Batool,

Mouliere, M€uller, Sullivan, Gao, Krol,

Akers et al.6,19,,40–47

Breast plasma ctDNA

CTCs

cfmiRNA

BEAMing ddPCR

qRT-PCR

TEC-seq

personalized and ultra-deep

sequencing

large NGS panels

nanotube-CTC chip

CTC-iChip

microarray

Bettegowda, Phallen, Garcia-

Murillas, Riva, Asaga, Roth,

Coombes, Zhang, Kwan, Matamala,

Hamam et al.9,23,48,49–56

Lung plasma

pleural fluid

EVs

CTCs

ctDNA

miRNA

PCR

qRT-PCR

ARMS-PCR

CAPP-seq

EFIRM

NGS

methylation-specific RT-PCR

ISET

CellSearch

nano-quantum dots microarray

Zhao, Uchida, Wan, Wei, Newman,

Guo, Chen, Ponomaryova,

Powrózek, Konecny, Powrózek,

Ren, Allard, Tanaka, Hofman,

Hofman, Hofman, Ilie, Dorsey,

Heegaard, Sozzi, Shen, Wang,

Montani, Xing, Wang Li, Fan,

Razzak et al.57–85

Colon plasma

serum

saliva

ctDNA

CTCs

EV RNA

EV proteins

TEPs

CellMax biomimetic platform (CMx)

CellSearch

Safe-SeqS

NGS

digital PCR (BEAMing) ddPCR

qPCR

ALU-qPCR

electrochemical sensing

Tsai, Bork, Tsai, Musella, Krebs, Tie,

Sun, Tie, Tie, Grasselli, Khan,

Sun et al.86–97

Ovarian – CTCs

ctDNA

EVs

immunomagnetic bead capture

microfluidic isolation and

immunofluorescent staining

CellSearch

methylation-specific PCR

microarray

reduced representation bisulfite

sequencing

targeted deep sequencing

whole-genome sequencing

pyrosequencing qPCR

nanoparticle tracking analysis

nanoplasmonics

Taylor, Hu, Liu, Nelson, Kim,

Jaiswal, Salvi, Mari, Bronkhorst,

Chen, Yokoi, Elias, Kim et al.98–110

Abbreviations: NGS, next-generation sequencing; cfmiRNA, circulating-free miRNA; TEC-seq, targeted error correction sequencing; ARMS-PCR,

amplification refractory mutation system-based PCR; CAPP-seq, cancer personalized profiling by deep sequencing; EFIRM, electric field-induced

release and management; ISET, isolation by size of epithelial tumor cell; TEP, tumor-educated platelets.
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Table 2. Common preanalytical issues and recommendations

Preanalytical issue Challenges Recommendations

Isolation of disease-specific analytes from

biofluids (CTCs, ctDNA, EVs)

lack of standardized protocols for

processing of biofluids

poor consistency among studies of

reported kits employed for analyte isolation

need to establish standard sample handling

and collection protocols

use of extensively tested and validated

commercially available kits for optimal

analyte isolation

Study population selection convenience sampling commonly used to

validate proposed mutation detection

assays

suboptimal control population

multi-institutional collaborations to design a

comprehensive patient population for

improved generalizability of reported results

selection of appropriate controls (healthy,

benign disease of the same organ)

Confounding biological and

environmental variables

influence of pre-sampling factors on quality

of isolated analytes (circadian rhythm,

fasting, metabolic disorders, hypertension,

pregnancy, lactation)

inclusion of recommendations in sample

collection protocols to improve rigor and

reproducibility

Long-term sample storage conditions

and biobanking

inconsistent data on decay rates reported

with the use of different storage methods

freeze-thaw cycles and thawing procedure

can influence target nucleic acid

concentration and integrity

need to determine optimal storage

conditions (time, temperature) for cell-free

matrices and extracted nucleic acid

evaluation of appropriate thawing

procedure (duration, i.e., fast vs. slow,

temperature) and sample storage volumes

Inclusion of study design

specific controls

limited understanding of biological variation

in individual samples as well as patients’

own biofluids over the course of disease

use of internal synthetic, known standards,

to better account for biological variation in

the biofluids and technical variation in

reported techniques
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attributed to several bottlenecks along different phases of

biomarker discovery to clinical application (Table 2). Common

setbacks include limited reproducibility of published findings,

preanalytical errors, and post-analytical errors.

Study population selection is an important step in study

design. Deficiencies in initial study design can introduce bias in

reported findings. In addition to extensive cross-validation, the

sensitivity and specificity should be evaluated in certain groups

of patients with varying disease severity. Comorbidities or bias

in the original design or lack of testing in heterogeneous disease

groups can lead to differences in early- vs. late-stage testing re-

sults. Due to the rigorous nature of biobanking, many studies use

‘‘samples of convenience’’ rather than samples representative of

the target population. Controls may vary in demographics and

other biological parameters. These scenarios highlight the

importance of a ‘‘fit-for-purpose’’ approach to biomarker discov-

ery and validation to ensure results and applications are de-

signed to clearly define and meet the intended use of the data.

Next, it is important to determine and evaluate the potential

role of biomarkers in disease diagnosis and management.

Some newly discovered biomarkersmay be specific to the tumor

but lack usefulness in actual clinical practice. This could be due

to a limited role in clinical decision-making or minimal effect on

treatment decisions. Understanding results in the context of dis-

ease is crucial to achieve wider implementation. Even more

important is inclusion of efforts to train the multi-disciplinary

teams involved in patient care to understand the implications

of ‘‘positive’’ versus ‘‘negative’’ results.

The preanalytical phase represents an important stage of the

liquid biopsy workflow. However, lack of standardized protocols

can lead to variable findings. Key preanalytical variables include
specimen collection, isolation methods, sample processing,

downstream detection platforms, and biobanking for short-

and long-term storage.

Finally, it is imperative to address sources of bias in data anal-

ysis, including systemic bias resulting from improper selection of

controls, and statistical error. Inappropriate statistical methods

can lead to incorrect conclusions. Furthermore, multiple com-

parisons using pre-defined training and validation datasets

help to understand and to identify the variations in study popula-

tions. This is especially important when analyzing strong false-

positive signals. These problems tend to arise more frequently

when large data is applied to small cohorts or looking for a

low, true positive signal. One of the most comprehensive study

designs to eliminate bias is the prospective-specimen-collec-

tion, retrospective-blinded-evaluation (ProBe).114 This design fo-

cuses on four steps to reduce variation and bias: clinical applica-

tion, outcome, case-control status, and selection. The

comprehensive nature of ProBe reflects proper standards of

research; it reduces the ‘‘exploratory’’ factor of biomarker study,

effectively targets areas to reduce unintentional false discovery,

and maintains high standards, potentially leading to more appli-

cable biomarker discovery.

To improve theprospectsof liquidbiopsy implementation inclin-

ical practice, more attention needs to be drawn to the numerous

challenges in the study design and testing phase. This approach

incombinationwith rigorousexternal and internal validation testing

is an important next step in future biomarker development.

Partnership with industry
The commercialization of liquid biopsy-based diagnostics has

garnered widespread attention. The market opportunity they
Cell Reports Medicine 4, 101198, October 17, 2023 7
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represent is estimated to range between at least $30B and

$130B in the United States alone. Large players have included

GOOGLE Verily, Roche Holdings, Guardant Health, Illumina,

and FoundationOne. The market remains under-penetrated

particularly for orphan diseases, sensitive novel approaches,

and academic-commercial interactions that emphasize clinically

the benefits of synergistic efforts. These academic-commercial

partnerships have been emphasized by the NCI, Division of Can-

cer Prevention, in the creation of the LBC (RFA CA17-029).

By and large, most companies have developed interrogative

approaches using blood or its plasma: GRAIL, THRIVE, Bio-

prognos, DELPFI, EARLYDx, Helio/LAM, Nucleix, and Volition.

However, academic centers have explored biofluids likely in

close proximity to organs that are afflicted: saliva and sputum

(mouth and pharyngeal cancers),115 sputum (lung and gastroin-

testinal cancers),116 urine (genitourinary),117 CSF (brain tumors

and degenerative neurologic diseases),18,118 and seminal

fluid.119,120 Academic-commercial collaborations have been

more novel and represent the wellspring of the LBC. These

include analyses of tumor-derived EVs, cfDNA, derived from

CTCs, and circulating cell-free RNA. These analyses, combined

with unique attention to specimen collection and study design,

are complemented by a Consortium Biorepository and shared

sample understanding as well as cross-laboratory validations.

Academic-industrial partnership can fuel discovery by vali-

dating promising biomarkers leading to rapid translation to a

clinical setting. Academic labs can drive technological develop-

ment and biomarker discovery, improve their performance, and

define target populations for tests. The industry, in turn, can drive

process development, cost reduction, automation, pre-ana-

lytics, analytical validation, and large trials. Thus, the combina-

tion of knowledge and scientific flexibility of academia with the

organization and capabilities of the industry is aimed at stream-

lining the liquid biopsy-based biomarker development pipeline.

Other notable efforts in the field
Given the clinical utility of liquid biopsy in disease detection

and surveillance, a number of international societies and consor-

tiums have been initiated to standardize key variables identified

in target analyte isolation and downstream analysis. Targeted

international collaborations are an important step to achieving

standard integrated protocols. European Liquid Biopsy Academy,

funded under the European Commission’s Marie Sklodowska-

Curie Programme, is focused at developing blood-based assays

for thedetectionof stage I–IVnon-small-cell lungcancer. Addition-

ally, it covers the development and validation of technologies for

analysis of four different types of analytes (CTCs, EVs, ctDNA, tu-

mor-educatedplatelets) individually and in combination. These ef-

forts will potentially enable a more robust large-scale validation

and allow patient selection for targeted therapeutics. The Interna-

tional Society of Liquid Biopsy and International Liquid Biopsy

Standardization Alliance Collaborative Community are some of

the earlier organizations to coordinate efforts from multiple part-

ners with the aim of standardizing the liquid biopsy workflow by

addressing and identifying crucial preanalytical and analytical fac-

tors. BLOODPAC represents another effort as part of the White

House Cancer Moonshot program to accelerate the development

and clinical translation of proposed liquid biopsy assays. Early
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Detection Research Network (EDRN), founded by NIH, is a con-

sortium of more than 300 academic and industry partners. There

are four components of the EDRN (biomarker development,

biomarker reference, clinical validation, and data management)

that work synergistically to advance the development of bio-

markers for early-stage cancer detection.

Vision for the future
Liquid biopsy will likely revolutionize how we detect and treat

cancer in the future. As described in this commentary, several

analytes such as DNA, proteins, metabolites in cfDNA, CTCs,

and circulating EVs need to be incorporated into the liquid biopsy

assays. Future research is needed to identify biological ques-

tions as to which cancer type can benefit from liquid biopsy-

based assay on known etiology, type, and extent or foliation of

cfDNA or ctDNA and mechanism behind the foliation. In addition

to previously reported mechanisms (apoptosis, necrosis) of

ctDNA release, active secretion leading to different patterns of

ctDNA fragmentation has also been implicated. Within the nucle-

osome core formed by histone proteins, ctDNA is protected

against cleavage by nucleases. However, the remaining linker

ctDNA sequence located between nucleosomes is highly vulner-

able. This therefore explains why different regions show high vs.

low frequency of biological fragmentation. Such phenomenon

can provide a biased representation of ctDNA sequences and

unbalanced read coverage. We need to explore technologies

that can be added to existing technologies to provide better

sampling, improving the level of detection within a smaller sam-

ple (currently 5- to 10-mL samples are required), and improving

the signal-noise ratio (e.g., chromatin immunoprecipitation con-

tributes to mutational background noise to mutational-based

liquid biopsy assays.

Themajor impediment to the use of liquid biopsy in clinical set-

tings is the lack of prospective longitudinal cohorts for validating

liquid biopsy technologies. We need to survey the existing co-

horts in relation to quality and amount of sample availability

and suitability of sample for genomic, proteomic, and epige-

nomic analysis and to assess quality control in place for these

cohorts for maintaining the sample quality over years and the

relevant acquisition guidelines (e.g., many cohorts have a pro-

cess in place to request samples through their steering commit-

tees, working groups, review groups, etc.). There is a need to

address the multiple preanalytical variables that have a crucial

impact on standardization of reported liquid biopsy modalities

(Table 2). Concurrently, we need to think creatively about a pro-

spective study design(s) that can address the use of liquid biopsy

in improving cancer-stage shift, minimize unnecessary invasive

diagnostic workups, improve detection efficiency, and provide

information comparatively with the standard of care. The objec-

tive of the liquid biopsy technologies should be to produce cost-

effective, rigorous diagnostic tests that are complementary to

the marketplace. Because the liquid biopsy technologies

continue to be developed and refined, it is prudent to work

with health-care professionals, including primary care doctors

and the public to manage expectations.

The LBC is addressing some of the challenges in collaboration

with several stakeholders, including foundations, industry, and

academia. Our intention is not to adhere to a single approach
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but to promote the synergy of multiple circulating biomarkers

with multiple analytes for multiple cancers. Our goal is to identify

the combinations of markers that signal the presence of cancer.

The consortium is considering circulating tumor biomarkers us-

ing a variety of approaches, including those that can be consid-

ered for monitoring tumor microenvironment and immune cells

that could potentially be useful in developing targeted therapies.
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