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SUMMARY
The increasing prevalence of diabetes, high avoidable morbidity and mortality due to diabetes and diabetic
complications, and related substantial economic burdenmake diabetes a significant health challenge world-
wide. A shortage of diabetes specialists, uneven distribution of medical resources, low adherence to medi-
cations, and improper self-management contribute to poor glycemic control in patients with diabetes.
Recent advancements in digital health technologies, especially artificial intelligence (AI), provide a significant
opportunity to achieve better efficiency in diabetes care, whichmay diminish the increase in diabetes-related
health-care expenditures. Here, we review the recent progress in the application of AI in the management of
diabetes and then discuss the opportunities and challenges of AI application in clinical practice. Furthermore,
we explore the possibility of combining and expanding upon existing digital health technologies to develop
an AI-assisted digital health-care ecosystem that includes the prevention and management of diabetes.
INTRODUCTION

The increasing prevalence of diabetes has become a global pub-

lic health concern in the 21st century. Previously, diabetes was

prevalent in affluent ‘‘Western’’ countries; however, currently,

diabetes occurs worldwide, catalyzed by the consumption of

nutrient-poor and calorie-rich foods and an increasingly seden-

tary lifestyle.1 Diabetes has already become a critical public

health concern in China, with a rapid increase in prevalence

from 0.67% in 1980 to 9.7% in 2007 and then slightly increasing

to 11.2% in 2017.2 According to the 2021 IDF Diabetes Atlas, the

prevalence of diabetes in adults 20–79 years of age (95% confi-

dence interval [CI]) has reached 13.0% (11.3%–14.7%) in China,

with an estimate of 72,839.5 (95%CI 62,926.1–81,980.7; in thou-

sands) adults undiagnosed.3 In 2019, approximately 824,000

adults were estimated to die due to diabetes and related compli-

cations, with the estimated diabetes-related health expenditures

ranking second to that of the United States.2 The increasing

prevalence of diabetes, high avoidable morbidity and mortality

due to diabetes and diabetic complications, and related sub-

stantial economic burden make diabetes a significant health

challenge.4
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Several challenges exist in preventing and managing dia-

betes in traditional face-to-face medical practices. First, pre-

vention and early diagnosis of diabetes remain significant ob-

stacles since many cases of diabetes remain undiagnosed for

many years.5 Second, the management of patients with dia-

betes involves regular follow-up of thorough examinations

of blood glucose control and diabetic complications. In addi-

tion, integrated diabetes management requires collaboration

among endocrinology, podiatry, nutrition, nephrology, and

ophthalmology. These factors result in an uneven distribution

of medical resources, with a lack of high-quality human re-

sources and an insufficient capacity of primary health care.

Third, diabetes is perhaps the most prominent example of a

highly prevalent chronic disease that demands a patient’s

active continuous role in its management due to its depen-

dence on diet and exercise, its wide array of complications

across the body’s physiological systems, and its need for

self-monitoring.6,7

The emergence of digital health technologies (DHTs), especially

artificial intelligence (AI), may help address these obstacles and

alleviate the disease burden of diabetes in the future, because

AI-based DHTs in diabetes care could help implement better
orts Medicine 4, 101213, October 17, 2023 ª 2023 The Authors. 1
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prevention strategies for high-risk populations, manage diabetic

patients who are unable to attend physician appointments in per-

son, deliver real-time health and metabolic information, promote

better self-management of patients, and save time and money

by reducing travel to in-person appointments.8 First introduced

in 2000 by Seth Frank,9 digital health broadly encompasses

internet-focused applications andmedia to improve medical con-

tent, commerce, and connectivity. The term ‘‘digital health’’ has

expanded to encompass a much broader set of scientific con-

cepts and technologies, including genomics, AI, analytics, wear-

ables, mobile applications, and telemedicine.10 AI is a broad

branch of computer science that develops theories, methods,

technologies, and application systems to simulate, extend, and

expand human intelligence in machines.11 Machine learning

(ML)12 is a subcategory of AI that uses statistical techniques to

build intelligent systems. Using a supervised or unsupervised

approach, an intelligent system can automatically learn and

improve its performance, such as accuracy, without being explic-

itly programmed. Deep learning (DL),13 which uses advanced ML

techniques, has achieved significant success in computer vision

and natural language processing tasks, primarily attributed to its

excellent feature extraction and pattern recognition capabilities,

which use multiple processing layers (artificial neurons) to learn

representations of data with different levels of abstraction such

that it associates the input with a diagnostic output.

Since the mid-20th century, researchers have proposed and

developed AI-based clinical decision-support systems. Rule-

based approaches were shown to diagnose diabetes, choose

appropriate treatments, and provide interpretations of clinical

reasoning in the 1970s.14 However, rule-based systems are

expensive to build and brittle. Furthermore, it is challenging to

encode higher-order interactions between different pieces of

knowledge provided by different specialists, with system effec-

tiveness restricted by the comprehensiveness of pre-existing

medical knowledge.12 Hence, recent AI research has leveraged

ML methods, which can account for complex interactions, to

identify patterns from data.15

The application of ML in diabetes care and research has

been widely explored in basic biomedical research,16 transla-

tional research,14 and clinical practice17 (Figure 1). Basic ML

algorithms can be roughly classified into two categories ac-

cording to the type of tasks to be solved: supervised and unsu-

pervised.18 Supervised ML methods involve collecting several

‘‘training’’ cases, which contain inputs (e.g., fundus photo-

graphs) and the desired output labels (e.g., the presence or

absence of diabetic retinopathy). By analyzing the patterns in

all the labeled input-output pairs, the algorithm learns to pro-

duce the correct output for a given input in new cases.19 Unsu-

pervised ML methods infer the underlying patterns in unlabeled

data to find subclusters of the original data (e.g., subclusters of

diabetes20,21), identify outliers in the data, produce low-dimen-

sional representations of the data, or represent images and

videos. In addition, there are other types of ML, such as

semi-supervised learning22 and reinforcement learning.23,24

Semi-supervised learning is a branch of ML that uses labeled

and unlabeled data to perform certain learning tasks22 and per-

mits the harnessing of large amounts of unlabeled data avail-

able in combination with typically smaller sets of labeled
2 Cell Reports Medicine 4, 101213, October 17, 2023
data. Considering that a large body of health-care data in dia-

betes management lacks supervised information (e.g., annota-

tions of retinal lesions in fundus photographs), which requires

expensive human effort in labeling or scoring, semi-supervised

learning could utilize unlabeled or unscored data together with

only a small amount of supervised data to improve the perfor-

mance of AI models.25,26 Reinforcement learning is a process

that can be used to learn optimal actions from data and is de-

signed to learn an optimal strategy that maximizes the overall

rewards.24 It has been utilized to develop dynamic treatment

regimens and provide a precise insulin dosage to react to the

immediate needs of patients with diabetes.23 Despite the

rapid progress of ML methods, there are several potential

flaws, including data bias,27 overfitting,28 resource-intensive

training,29 and limited transfer learning.30

In summary, ML methods enable the development of AI appli-

cations that facilitate the discovery of previously unrecognized

patterns in the data without the need to specify decision rules

for each specific task or to account for complex interactions

among input features. Therefore, ML has become the preferred

framework for building AI utilities.34 Based on the present back-

ground, we review the recent advancements in the application of

AI in the clinical practice of diabetes management and then

discuss the opportunities and challenges of AI applications.

Furthermore, we explore the possibility of combining and ex-

panding upon existing DHTs to develop an AI-assisted digital

health-care ecosystem that includes the prevention and man-

agement of diabetes as a promising vision for the future of dia-

betes care.

APPLICATION OF AI IN THE PREDICTION AND
PREVENTION OF DIABETES

Prediction of diabetes onset
The prediction of diabetes onset is a part of pre-emptive med-

icine, accurately identifying individuals highly likely to develop

diabetes at the pre-illness stage. Thus, this technology could

eventually decrease the incidence of diabetes by implementing

medical interventions for these people at a very early stage.

Predicting the onset of diabetes did not occur with the advent

of ML technology. Abbasi et al. reported the usefulness of sta-

tistical models, such as logistic regression, Cox proportional

hazard model, or Weibull distribution analysis, to predict the

onset of diabetes in non-diabetic individuals within 5 to 10

years, with concordance index (C index) ranging from 0.74 to

0.94.35

However, ML is a promising tool that can maximize predictive

performance compared with conventional statistical models.

Choi et al. reported that the area under the curve (AUC) of pre-

dicting new-onset diabetes within 5 years for hospitalized pa-

tients was 0.78, derived from ML-based logistic regression.36

Ravaut et al. recently reported that an ML model using adminis-

trative health data could predict diabetes onset within 5 years

with an AUC of 0.80.37 Similarly, Nomura et al. developed an

ML-based prediction model to identify diabetes signatures

before the onset of diabetes using the gradient-boosting deci-

sion tree method, with an AUC and overall accuracy of 0.71

and 94.9%, respectively.38 Recently, a DL system developed



Figure 1. Current applications of machine intelligence in diabetes care and research

Common algorithms used in supervised learning include31 (1) artificial neural networks, such as Boltzmannmachines, restricted Boltzmannmachines, multi-layer

perceptron, radial basis function networks, recurrent neural networks, Hopfield networks, convolutional neural networks, and spiking neural networks; (2)

Bayesian learning, such as naive Bayes, Gaussian naive Bayes, multiple naive Bayes, average one-dependence estimators, Bayesian belief networks, and

Bayesian networks; (3) decision trees, such as classification and regression tree, Iterative Dichotomiser 3, C4.5 algorithm, C5tree.0 algorithm, chi-squared

automatic interaction detection, decision stump, and supervised learning in quest; (4) ensemble methods, such as random forest, bagging, boosting, AdaBoost,

and XGBoost; and (5) linear models, such as linear regression, logistic regression, generalized linear models, Fisher linear discriminant analysis, quadratic

discriminant analysis, least absolute shrinkage and selection operator regression, multi-modal logistic regression, naive Bayes classifier, and perceptron and

linear support vector machine. Common algorithms used in unsupervised learning include32,33 (1) transformation equivariant representations, such as group

equivariant convolutions and autoencoding transformations; (2) generative models, such as flow-based generative models, generative adversarial networks,

autoencoders, and disentangled representations; and (3) self-supervised methods, such as autoregressive and self-attention models.
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by Zhang et al. could predict disease development and perform

risk stratification for type 2 diabetes (T2D) using retinal images

and clinical risk factors.39

Management of modifiable risk factors for diabetes
AI could be employed in understanding risk factors for diabetes

onset owing to human limitations and biases when dealing with

large spaces of risk factors. Based on these recognizablemodifi-

able risk factors, precise interventions for preventing diabetes

can be implemented in different individuals. Genetic, clinical,

anthropometric, demographic, and behavioral risk factors have

been recognized in previous research on normal glucose hemo-

stasis (NGH)-type 1 diabetes (T1D), NGH-T2D, NGH-gestational

diabetes (GD), and GD-T2D progression.40–43 Modifiable factors

identified using the AI method increase the risk of developing

diabetes, including high blood pressure, high blood cholesterol,
tobacco smoking, insufficient physical activity, poor diet, and

overweight or obesity.44–46

APPLICATION OF AI IN THE SCREENING AND
CLASSIFICATION OF DIABETES

Screening of diabetes
Current diagnostic guidelines for diabetes47 are driven by invasive

measurements in clinics, possibly influenced by behavioral and

ethnic factors. Considering that the early stages of T2D are often

asymptomatic, individuals can carry the disease for years undiag-

nosed.48 Unfortunately, late-stage diagnosis can lead to health

complications and lower life expectancy. To prevent this pattern,

researchers have prioritized T2D diagnosis, attempting to

develop accurate diagnostic methods from readily available

data and non-invasive, inexpensive tests.49 These limitations
Cell Reports Medicine 4, 101213, October 17, 2023 3
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have motivated the use of AI-based diagnostics that have high

classification accuracy and leverage large datasets (including

data from wearable and continuous monitoring devices) that are

not easily interpreted. These AI-based models are less invasive

and highly accessible, which could effectively improve the willing-

ness of the general population to screen and provide personalized

screening plans for high-risk populations.

AI-based screening for diabetes primarily focuses on the

following two aspects. First, AI has been broadly utilized for

screening purposes because it enables the identification and

use of predictors that lack apparent relationships with diabetes.

Tapak et al. implemented artificial neural networks, support vec-

tor machine, fuzzy c-means, random forest, logistic regression,

and linear discriminant analysis for a dataset of 6,500 subjects

in Iran.50 Ten risk factors were used as predictors (blood

glucose-related information was not included). The study

demonstrated that support vector machine had a superior AUC

compared with logistic regression and linear discriminant anal-

ysis. Similarly, Maniruzzaman et al. compared Gaussian pro-

cess-based techniques with different kernels (linear polynomial

and radial basis) against linear discriminant analysis, quadratic

discriminant analysis, and naive Bayes.51 The highest accuracy

was achieved using the Gaussian process method with a radial

kernel. Second, the development of wide-ranging sensing tech-

nologies and the generation of associated novel datasets are

opening increasing avenues for AI screening for diabetes. Shu

et al. extensively studied the effects of texture features extracted

from facial-specific regions on diabetes detection using eight

texture extractors.52 The best texture feature extractor for dia-

betes mellitus detection could achieve an accuracy of 99.02%,

a sensitivity of 99.64%, and a specificity of 98.26% using sup-

port vector machine. Li et al. established a non-invasive diabetes

risk prediction model based on tongue feature fusion and pre-

dicted the risk of pre-diabetes and diabetes using ML tech-

niques.53 The best performance of their model had an average

accuracy of 0.821 and an average area under the receiver oper-

ating characteristic curve (AUROC) of 0.924. Zhang et al.

demonstrated that DLmodels could be used to detect T2D solely

from fundus images or in combination with clinical metadata with

AUROCs of 0.85–0.93.39

General classification of diabetes based on existing
clinical guidelines
AI can predict the risk of diabetes onset and classify diabetes.

Linear discriminant analysis, quadratic discriminant analysis,

naive Bayesian method, Gaussian process classification, and

other technologies can help classify the four types of diabetes

and guide the selection of follow-up treatment plans for different

types of diabetes. This is helpful to primary medical institutes

that cannot conduct islet function or other antibody tests.

Although AI can classify different types of diabetes more accu-

rately,51,54,55 further algorithm upgrading is required to meet

the clinical treatment needs.

Refined, precise classification of diabetes
Existing treatment strategies for diabetes cannot stop the pro-

gressive course of the disease and prevent the development

of chronic diabetic complications. One explanation for these
4 Cell Reports Medicine 4, 101213, October 17, 2023
shortcomings is that the diagnosis of diabetes is based on

the measurement of only one metabolite, glucose; however,

the disease is heterogeneous in terms of clinical presentation

and progression. A refined classification system could provide

a powerful tool to individualize treatment regimens and iden-

tify individuals with an increased risk of complications at diag-

nosis. Using data-driven cluster analysis (k-means and hierar-

chical clustering) in European patients with newly diagnosed

diabetes (n = 8,980), Ahlqvist et al. identified five replicable

clusters of patients with diabetes with significantly different

patient characteristics and risk of diabetic complications.20

Clusters were based on six variables (glutamate decarboxy-

lase antibodies, age at diagnosis, body mass index, HbA1c,

and homeostatic model assessment of two estimates of b

cell function and insulin resistance). Zou et al. tested whether

this novel diabetes clustering applies to Chinese and US par-

ticipants in two cross-sectional population-based datasets21

and confirmed the novel diabetes subgroups proposed by

Ahlqvist et al., suggesting possible generalizability of this Eu-

ropean-oriented diabetes classification in different ethnicities

and populations.
APPLICATION OF AI IN THE COMPREHENSIVE
MANAGEMENT OF DIABETES

Health education
Health education aims to empower diabetic patients with

increased knowledge and awareness of diabetes, which can

further facilitate better disease self-management. Alotaibi et al.

designed an intelligent mobile diabetes management system

(SAED),56 whose pilot study showed that it could significantly

decrease HbA1c levels and enhance the awareness of basic

knowledge regarding diabetes among participants. Hamon and

Gagnayre applied natural language processing methods to

web forms to identify patients’ knowledge gaps and recommend

tailored educational strategies.57 Recently, Chen et al. evaluated

the effect of an intelligent mobile health technology-based dia-

betes education program on glucose control in patients with

T2D initiating a pre-mixed insulin.58 The 12-week education pro-

gram and the initiation of insulin therapy significantly decreased

the HbA1c levels in patients with T2D.
Medical nutrition therapy
AI-based automatic diet monitoring

Dietary monitoring is critical in patients with diabetes, especially

as self-reporting of food intake is inaccurate and often imprac-

tical59; therefore, it is necessary to develop an automated solu-

tion for dietary monitoring. A diet-monitoring system can be

divided into two categories based on the degree of automation.

The semi-automatic system requires users to mark the approxi-

mate position of the food in the picture. In automated dietary

monitoring systems, users send food pictures to the server,

which analyzes the images and estimates the nutritional charac-

teristics of the food.60 Thus, a food image analysis system must

solve several problems, including image segmentation, food

recognition and classification, food volume estimation, and cal-

orie intake conversion.
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Recent research has shown increasing accuracy in estimating

energy intake based on food images. Vasiloglou et al. designed a

smartphone system (GoCARB), which is specially designed for

patients with T1D and can estimate the carbohydrate content

in meals.61 No differences were found between the estimations

of dietitians and those of GoCARB, regardless of the meal size.

Zhang et al. developed a mobile food identification system that

automatically identifies food and estimates its caloric and nutri-

tional content without user intervention.62 In this experiment, the

accuracy of detecting 15 different foods was greater than 85%.

To model the characteristics of food energy distribution in an

eating scene, Fang et al. introduced the new concept of ‘‘food

energy distribution.’’63 Themapping of a food image to its energy

distribution is learned using a generative adversarial network ar-

chitecture. The food energy was estimated from the image

based on the energy distribution image predicted by the gener-

ative adversarial network. The average error in the estimated en-

ergy consumption was 209 kcal per eating occasion.

AI-based diet recommendations

A proper diet is indispensable in managing diabetic patients by

maintaining normal blood sugar levels and reducing the burden

of pancreatic islet b cells.64 A targeted and reasonable diet can

control blood sugar and lipids and supplement protein and other

nutrients.65 The diet recommendation system for patients with

diabetes should be based on their knowledge of medical nutri-

tion, considering their eating patterns and helping them develop

good dietary habits. Several diet recommendation systems for

patients with diabetes have been developed with an accuracy

comparable to that of dietitians. Chen et al. built a diet recom-

mendation system for chronic diseases with expert knowledge

and provided chronic diseases with more convenient and pre-

cise dietary recommendations.66 The dietary recommendations

result from the assessment of dietitians, and the verification ac-

curacy is 100%. Zeevi et al. discovered that people eating iden-

tical meals showed high variability in the post-meal blood

glucose response. Based on ML algorithms, personalized

diets created with the help of an accurate predictor of blood

glucose response that integrates parameters, such as dietary

habits, physical activity, and gut microbiota, may successfully

lower post-meal blood glucose and its long-term metabolic

consequences.67

Physical therapy
A scientific, personalized, and quantitative exercise prescription

that can potentially be an essential therapeutic agent for patients

with diabetes is highly recommended. However, it is often poorly

implemented, as clinicians lack the necessary knowledge and

skills, while participants have low adherence due to design de-

fects (e.g., prescriptions fail to take individual willingness, the ap-

peal of exercise, and complex physical conditions into account).

Thus, intelligent, personalized prescriptions are worth investi-

gating. Everett et al. presented a coaching application that de-

livers specific physical activity advice to contextual information

gathered in real time (e.g., if location data indicate that the pa-

tient is in a park, then suggest an activity to perform there).68

Sun et al. investigatedwhether a year-long cloud platform-based

and intelligent, personalized exercise prescription intervention

could improve the health outcomes of Chinese middle-aged
and older adult community dwellers.69 These observations sug-

gest that this exercise prescription intervention program might

promote certain health outcomes, such as cardiovascular func-

tion and body composition, in middle-aged and older adult Chi-

nese community dwellers.

Blood glucose (BG) monitoring
BG prediction

It is usual for people with diabetes to experience BG variation

throughout the day owing to carbohydrate ingestion and insulin

action. The ability to anticipate BG excursions could provide

an early warning regarding ineffective or poor treatment. Thus,

information collected from new technologies for diabetes man-

agement, such as continuous glucose monitoring (CGM) de-

vices, could lead to the real-time prediction of future glucose

levels. Predicting near-future BG on a minute, hour, or overnight

timescale enables better diabetes management and therefore

remains an active research topic. However, the prediction of

BG levels is challenging, because of the number of physiological

factors involved, such as delays associated with the absorption

of food and insulin and the lag associated with measurements in

the interstitial tissue. Errors in CGM also increase the difficulty of

predicting BG values (approximately 9% of the mean absolute

relative difference for the best sensors70). The prediction horizon

range previously explored ranged between 5 and 180min. Short-

term predictions were the most frequently explored, as most

studies used prediction horizons below 60 min.71 Artificial neural

network approaches are the most widely applied methodology,

but other MLmethodologies, such as random forest and support

vector machine, are being adopted with increasing frequency.

Kodama et al. performed a meta-analysis to assess the current

ability of ML algorithms to predict hypoglycemia (i.e., alert hypo-

glycemia possibility before its symptoms occur),72 revealing that

the pooled estimates were 0.80 for sensitivity, 0.92 for speci-

ficity, 10.42 for positive likelihood ratio, and 0.22 for negative

likelihood ratio. Particularly, it is worth highlighting that AI algo-

rithms could be quite useful in times when it is difficult to manage

diabetes. For example, Elhadd et al. developed a machine-

based algorithm from clinical and demographic data, physical

activity, and glucose variability to predict hyperglycemic and hy-

poglycemic excursions in patients with T2D on multiple glucose-

lowering therapies who fast during Ramadan. This model accu-

rately estimated normal glucose levels in 95.2% readings and

hyperglycemic events in 82.6% readings, but fewer hypoglyce-

mic events (27.9%).73

Detection of adverse glycemic events

As with BG prediction, glycemic episode detection encom-

passes a set of tools that address the complexity of effective

BG control. These tools enable us to detect the occurrence of

glycemic episodes and provide us with the opportunity to

respond promptly to their effects. In contrast to BG prediction,

most of the reviewed studies on this topic focus on detecting hy-

perglycemia or hypoglycemia in situations where it is not

possible to monitor BG effectively. Therefore, most of these

studies dealt with real-time approaches rather than predictions

of future events. These studies utilized various types of

input data, including electroencephalogram, electrocardiogram,

self-monitoring BG (SMBG), and electronic health records
Cell Reports Medicine 4, 101213, October 17, 2023 5
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(EHRs).74–78 For detecting hypoglycemia, Kodama et al. summa-

rized that the pooled estimates of sensitivity, specificity, positive

likelihood ratio, and negative likelihood ratio were 0.79, 0.80,

8.05, and 0.18, respectively.72 In particular, the clinical applica-

bility of these AI algorithms should be evaluated according to pa-

tients’ risk profiles, such as for hypoglycemia and its associated

complications (e.g., arrhythmia and neuroglycopenia), as well as

the average ability of the AI algorithms. Continued research is

required to develop more accurate AI algorithms than those

currently available and to enhance the feasibility of applying AI

in clinical settings.

Drug therapy
Optimal dosing strategies of insulins for patients and

clinicians

Unlike many other medications, insulin must be titrated, which

means that the dose will change in response to real-time indica-

tors such as current BG or based on what the patient has

recently eaten. This process complicates insulin dosing and re-

quires providers to perform complex calculations to determine

the best dose. Errors in insulin dosing can be dangerous, as

incorrect dosages can lead to serious adverse effects, such as

hypoglycemia, which can cause death. Previous studies have

focused on optimizing the insulin dose for both patients and cli-

nicians. For patients with T1D, Tyler et al. utilized k-nearest-

neighbor methods to generate recommendations for optimal in-

sulin dosing in the context of a quality control algorithm.79 Pesl

et al. used case-based reasoning in the ABC4D (short for

Advanced Bolus Calculator for Diabetes) bolus calculator for

meal-time dosing advice.80 For patients with T2D, Bergenstal

et al. demonstrated that the combination of automated insulin

titration guidance with support from health-care professionals

offers superior glycemic control compared with support from

health-care professionals alone in a multi-center randomized

controlled trial.81 For clinicians, early AI-enabled decision sup-

port systems were generally designed to assist clinicians who

were authoritative in the insulin dosing strategies for their pa-

tients. This treatment model is still worth discussing today, since

most patients with diabetes do not utilize automated insulin de-

livery systems on account of personal preferences or relatively

high costs. In the context of T1D, Fong et al. predicted future

BG as lying within pre-defined ranges (rather than exact values)

and generated advice based on the prediction.82 With the inputs

of SMBG and non-rapid insulin, this work is worth discussing

today because SMBG and non-rapid insulin formulations are still

used in many parts of the world. In the context of T2D, Wang

et al. developed insulin dosing guidance for insulin therapy as

a constrained optimization problem.83 For both T1D and T2D,

Nguyen et al. leveraged tree-based methods to predict whether

patients would require more than 6 units of total daily dosing,

which achieved an AUROC of 0.85.84 A challenging aspect of

measuring the agreement between human expert- and AI-gener-

ated recommendations is that, even when they disagree, both

can be correct, because humans (including AI developers) often

express a wide variety of priorities and risk preferences. Thus, it

may be helpful to frame AI recommendation tools as a support

for human decision-making rather than as a replacement for hu-

man decision-making.
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Optimal dosing strategies for insulin in the closed-loop

automated insulin-delivery system

The closed-loop automated insulin-delivery system for dia-

betes treatment consists of a CGM system, insulin pump, and

control algorithm.85 The control algorithm acts as a "brain" in

the closed-loop system, analyzing the data fed back by the

CGM system and automatically adjusting the insulin infusion

rate accordingly. Therefore, an accurate control algorithm is

crucial for a closed-loop system. The algorithms used in

closed-loop systems primarily include model predictive con-

trol, proportional-integral-derivative, fuzzy logic, and learning

algorithms.86 MD Logic is a wireless, fully automated, closed-

loop system that uses an algorithm based on fuzzy-logic theory

(a form of probabilistic logic), a learning algorithm,16 and an

alert module and personalized system setting.87 Phillip et al.

found that patients with T1D at a diabetes camp treated with

an artificial pancreas system based on MD Logic had less

nocturnal hypoglycemia and tighter glucose control than those

treated with a sensor-augmented insulin pump.87 Nimri et al.

showed that the MD Logic system demonstrated a safe and

efficient profile during overnight use by children, adolescents,

and adults with T1D and provides an effective means of miti-

gating the risk of nocturnal hypoglycemia.88

Optimal strategy for anti-diabetic drug therapy

Clinicians provide therapeutic advice beyond insulin dosing

guidance (particularly T2D), as diabetes is often associated

with multiple comorbidities, leading to complex guidelines for

personalized treatment, with gaps often present in which no rec-

ommendations are available. Toussi et al. designed a decision

tree model from an EHR to identify gaps in T2D guidelines and

generated therapeutic rules based on clinicians’ past actions.89

Wright et al. discovered that sequential patternmining effectively

identifies temporal relationships between medications and

accurately predicts the following medication likely to be pre-

scribed for a patient with diabetes.90 Treatment escalation of

diabetes is another critical aspect of drug therapy strategies,

which is required as a patient’s disease progresses, andmultiple

studies have aimed to identify optimal escalation points as an aid

to clinicians. Murphree et al. employed several AI methods to

identify and predict patients with T2D for whom metformin

monotherapy is likely to fail, requiring therapy escalation.91

They leveraged data regarding HbA1c, demographics, and co-

morbidities to train their models. Similarly, Fiorini et al. trained

an artificial neural network to predict when patients would

need to escalate from metformin monotherapy, using health-

care visit records.92 Recently, Tarumi et al. deployed an EHR-in-

tegrated system for predicting changes in HbA1c associated

with alternative treatment options in T2D, demonstrating the

feasibility of AI-based tools in clinical practice.93

APPLICATION OF AI IN THE PREDICTION, SCREENING,
AND MANAGEMENT OF DIABETIC COMPLICATIONS

Regarding the management of diabetic complications, the pri-

mary task of endocrinologists is to control modifiable risk factors

for developing these complications and identify referable pa-

tients with severe complications as early as possible. Thus, the

optimization of the management algorithms could be based on
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the prediction of diabetic complications and more convenient

screening methods (Table 1).

In the prediction of diabetic complications, several studies

tried to utilize risk factors (mainly from EHRs) to develop AI algo-

rithms to predict various types of diabetes-related complications

with favorable predictive performance.94–100 This precise predic-

tion could enable health-care professionals to implement inten-

sive management for patients at high risk. Recently, retinal im-

ages were used to predict the incidence and progression of

chronic kidney disease (CKD)39 and diabetic retinopathy

(DR).101,102 Since retinal examinations are routinely performed

for patients with diabetes and the retina is a convenient window

into the homeostasis of the body, it is feasible for the integration

of such algorithms into DR screening programs.

In the screening and evaluation of diabetic complications, the

screening of DR using retinal images was studied well in multi-

ethnic cohorts, with comparable accuracy compared with pro-

fessional graders (discussed in detail in the conclusion and

perspective).103–109 For CKD39,110,111 and diabetic nephropa-

thy112,113 screening, studies utilized clinical data, metabolic bio-

markers, genotyping data, and/or retinal images to achieve

AUCs generally over 0.8. For evaluation of diabetic foot, one

study classified thermogram images based on the severity of

diabetic foot complications (95.08% accuracy)114 and the other

study used smartphone images to estimate the likelihood of

healing of diabetes-related foot ulcers (AUC = 0.73).115 For neu-

ropathy screening, previous studies explored the development

of AI systems to identify diabetic neuropathy based on

EHRs116 or corneal confocal microscopy images,117–119 with

AUCs ranging from 0.83 to 0.95.

OPPORTUNITIES AND CHALLENGES OF AI
APPLICATIONS IN THE CLINICAL PRACTICE OF
DIABETES CARE

Opportunities for AI application in the clinical practice of
diabetes care
Precision

As described by the National Institutes of Health, precision med-

icine is an emerging disease treatment and prevention approach

that considers individual variability in genes, environment, and

lifestyle for each person. This approach allows doctors and re-

searchers to more accurately predict treatment and prevention

strategies for a specific disease and target them toward partic-

ular groups of people.120 It requires significant computing power

(supercomputers), algorithms that can learn by themselves at an

unprecedented rate (DL), and, generally, an approach that uses

the cognitive capabilities of physicians on a new scale (AI). AI-

based diabetes management has the potential to precisely pre-

dict, classify, and treat diabetes and diabetes-related complica-

tions for a specific patient based on individual variability.

Penetration

Many people in remote or low-income settings are not well sup-

ported by conventional health care.121 These individuals often

have the poorest understanding of the disease, low use of main-

tenance medications, and poor health outcomes.122 The reach

of AI-based DHTs, coupled with the relative reduction in cost

and increased capability of mobile communications, has led to
its greater penetration into traditionally difficult-to-reach com-

munities compared with robust conventional health care.121

For example, with the growing burden of DR, AI technology

can increase the productivity of existing DR tele-ophthalmology

screening programs and lower unit economic costs within the

community.123 This will enable providers to project expertise to

geographically remote locations, improve the productivity of ex-

isting resources, and optimize the flow of patients within entire

health systems.124

Prediction

Two important mechanisms of the AI domain can be used to

develop decisional systems for medical predictions: a knowl-

edge-based system that involves logic and a system based on

probabilistic reasoning.125 The benefits of these systems are sig-

nificant. They can simplify the physicians’ work, saving their time

and energy (which otherwise would be wasted on too many

things they have to do). However, an automated system can

detect imperceptible things (things hardly noticed or resulting

from complex computation and reasoning, things not evident,

or the effects of too many factors involved). In diabetes manage-

ment, the prediction of the onset of diabetes and diabetic com-

plications would eventually decrease the incidence of diabetes

and diabetic complications by implementing appropriate medi-

cal interventions for those at high risk at a very early stage.

Personalization

The essence of practicing medicine is to obtain as much data as

possible regarding the patient’s health or disease and make de-

cisions based on the data. Instead of making the same medical

decisions based on a few similar physical characteristics, med-

icine has shifted toward personalization and precision. In addi-

tion tomany disruptive technologies, AI has the biggest potential

to support this transition by analyzing the vast amounts of data

patients and health-care institutions record at every moment.

Removing the repetitive parts of a physician’s job might lead to

them spending more precious time with patients with diabetes,

improving the human touch and promoting personalized dia-

betes care.120

Furthermore, patients with diabetes have an increasing need

for personalized management as medical technology advances.

AI could potentially provide personalized health education, diet

recommendations, physical therapy, BG monitoring, and treat-

ment regimens for individual patients based on their unique char-

acteristics, needs, and preferences.

Challenges of AI application in the clinical practice of
diabetes care
Data quality control

Since clinical AI systems are developed on a considerable

amount of real-world health data, the corresponding labels and

data quality will directly determine model performance. Data

quality may have the following problems: (1) poor quality of the

data themselves, such as unfair and blurred images; (2) poor

quality of the data labels, such as incorrect labels; and (3) insuf-

ficient data, where only a small portion of the data has been

labeled. Moreover, AI-enabled DHTs can amplify implicit bias

and discrimination if trained on data that reflect the health-care

disparities experienced by groups defined by race, ethnicity,

gender, sexual orientation, socioeconomic status, or geographic
Cell Reports Medicine 4, 101213, October 17, 2023 7



Table 1. Application of AI in predicting and screening diabetic complications

Reference AI method Inputs Description Performance

Objective: Predict the development of diabetic complications

Lagani et al.94 ANN risk factors predicts development

of diabetes-related

complications

the results of the internal validation (T1D)

reported a C index between 0.66 and 0.833,

all statistically significantly different from 0.5

(p % 0.0001); these results were further

corroborated by the external validation (49

patients with T1D), where all models

obtained similarly high and statistically

significant C indexes (p < 0.05 except for

the hypoglycemia and CVD model, with

p = 0.0584 and 0.0932, respectively);

quite surprisingly, the models obtained

good performance also on the T2D external

cohorts, with only the neuropathy and

retinopathy models achieving close to

uninformative results

Marini et al.95 BN risk factors estimates long-term

development and

progression of

complications (T1D)

the population predicted in the wrong state

was below 10% on both DDO-DBN

and EI-DBN

Armengol et al.96 case-based reasoning risk factors estimates risk of

complications

the results were 100% correct in

determining the kind of risk (progression or

development) and the risk of stroke, 90%

correct in determining amputation risk, and

72.45% correct in determining the global

risk and the risk of infarct

Dagliati et al.97 RF, SVM, and LR risk factors predicts development

of diabetes-related

complications

final models, tailored in accordance with the

complications, provided an accuracy

up to 0.838

Khan et al.98 network analysis longitudinal data quantifies progression

of comorbidities

they presented a research framework

based on network theory to understand

chronic disease progression along with

associated comorbidities that manifest

over time

Ljubic et al.99 RNN hospitalization

longitudinal data

predicts development

of 10 selected

complications (T2D)

the prediction accuracy was between 73%

(myocardial infarction) and 83% (chronic

ischemic heart disease), while the accuracy

of traditional models was between 66%

and 76%

Yang et al.100 LASSO regression risk factors estimates the risk of

amputation in

patients treated

with canagliflozin

LASSO produced the best prediction,

yielding a C index of 0.81

(Continued on next page)
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Table 1. Continued

Reference AI method Inputs Description Performance

Zhang et al.39 CNN retinal images

and risk factors

predicts development

of chronic kidney

disease (CKD)

the combined model could achieve a C

index of 0.845 on the internal test set and

0.719 on the external test set

Arcadu et al.101 CNN retinal images predicts the future

threat of significant

diabetic retinopathy

(DR) worsening at a

patient level within

2 years

the proposed DL models were designed to

predict future DR progression and were

trained against DR severity scores

assessed after 6, 12, and 24 months from

the baseline visit; the performance of one of

these models (prediction at month 12)

resulted in an AUC equal to 0.79

Bora et al.102 CNN retinal images

and risk factors

predicts the risk of

developing DR

within 2 years

the three-field DL system had an AUC of

0.79 in the internal validation set;

assessment of the external validation set,

which contained only one-field color fundus

photographs, with the one-field DL system

gave an AUC of 0.70

Objective: Screen and evaluate diabetic complications

Dai et al.103 DeepDR (CNN) retinal images presents AI systems

for DR screening

the grading of DR as mild, moderate,

severe, and proliferative achieves AUCs of

0.943, 0.955, 0.960, and 0.972, respectively

(internal validation); in external validations,

AUCs for grading range from 0.916 to 0.970

Abramoff et al.104 IDx-DR (CNN) retinal images presents AI systems

for DR screening

the AI system exceeded all pre-specified

superiority endpoints at sensitivity of 87.2%

(>85%), specificity of 90.7% (>82.5%), and

imageability rate of 96.1% for detecting the

presence of more than mild DR

Bhaskaranand et al.105 EyeArt (CNN) retinal images presents AI systems

for DR screening

the system could achieve 91.3% sensitivity

and 91.1% specificity for detecting

referral-warranted DR (more than mild

non-proliferative DR)

Gulshan et al.106 CNN retinal images presents AI systems

for DR screening

for detecting referable DR, the algorithm

had an AUC of 0.991 for EyePACS-1 and

0.990 for Messidor-2

Ting et al.107 CNN retinal images presents AI systems

for DR screening

the AUC of the system for referable DR was

0.936, sensitivity was 90.5%, and

specificity was 91.6%; for vision-

threatening DR, AUC was 0.958, sensitivity

was 100%, and specificity was 91.1%

Acharya et al.108 morphological

image processing

and SVM

retinal images presents AI systems

for DR screening

the system could identify different stages of

DR with an average accuracy of more than

85%, a sensitivity of 82%, and a

specificity of 86%

(Continued on next page)
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Table 1. Continued

Reference AI method Inputs Description Performance

Saleh et al.109 fuzzy RF retinal images presents AI systems

for DR screening

the best results yielded an accuracy of

77.32%, sensitivity of 76.89% and

specificity of 77.43% for detecting the

presence of DR

Huang et al.110 ML classifiers metabolic biomarkers presents AI systems

for CKD screening

two metabolites in combination with five

clinical variables were identified as the best

set of predictors, and their predictive

performance yielded a mean AUC of 0.857

Sabanayagam et al.111 CNN retinal images and risk factors presents AI systems

for CKD screening

in participants with diabetes, the system

could achieve an AUC of 0.889 using fundus

images only

Zhang et al.39 CNN retinal images and risk factors presents AI systems

for CKD screening

the system could be used to identify CKD

solely from fundus images or in combination

with clinical metadata with AUCs of

0.85–0.93

Huang et al.112 DT, RF, SVM, BN clinical and genotyping data presents AI systems

for diabetic nephropathy

(DN) screening

the proposed method yielded accuracy,

specificity, and sensitivity of 85.27%, 83.32,

and 85.24%, respectively (internal testing

dataset); on a separate testing dataset, the

classification accuracy, specificity, and

sensitivity were 78.50%, 80.64, and

81.40%, respectively

Zhang et al.113 RF, SVM clinical data predicts and differentiates

DN and non-diabetic

renal disease

the AUCs for the RF and SVM methods

were 0.953 and 0.947, respectively (internal

validation); the AUCs for the external

validation of the RF and SVM methods were

0.920 and 0.911, respectively

Khandakar et al.114 CNN and k-means

clustering technique

thermogram images classifies thermograms

based on the severity

of diabetic foot

complications

it was found that the popular VGG 19 CNN

model showed an accuracy, precision,

sensitivity, F1 score, and specificity of

95.08%, 95.08%, 95.09%, 95.08%, and

97.2%, respectively, in the stratification

of severity

Kim et al.115 ANN, RF, and SVM smartphone images estimates the likelihood

of healing of diabetes-

related foot ulcers

the model could achieve AUC of 0.734,

accuracy of 0.811, precision of 0.828, recall

of 0.923, and F1 score of 0.873

Metsker et al.116 ANN, SVM, DT,

linear regression,

and logistic regression

electronic health

record (EHR)

presents AI systems

for polyneuropathy

screening based

on EHR

it could achieve 0.80 precision, 0.82 recall,

0.81 F1 score, 0.83 accuracy, and 0.90 AUC

(Continued on next page)
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location.126 To mitigate these pitfalls, AI algorithms must be

trained on fair datasets that include and accurately represent so-

cial, environmental, and economic factors that influence

health.127

Poor technology design

AI-based DHTs need to be developed through a constant pro-

cess of refinement and iterative development to address users’

demands. The initial versions of most DHTs are always chal-

lenging to navigate, which requires the adoption of user-

centered design principles. User-centered design principles

involve an iterative procedure of analyzing the possible problems

encountered by users, developing mock-ups of a solution,

testing solutions, and reevaluating whether it tackles the prob-

lem.128 However, a previous study demonstrated that many

EHR vendors did not follow basic usability principles.129 Of 41

vendors assessed, 14 (34%) had not met the ONC certification

requirement of stating their user-centered design process

(ONC is short for the US Department of Health and Human Ser-

vices’ Office of the National Coordinator for Health Information

Technology). Another study chose 11 commercially available

mobile applications (4 for diabetes, 4 for depression, and 3 for

caring for the elderly) through expert review of commercially

available applications, then invited 26 participants (10 with dia-

betes) to investigate their usability. The results showed that par-

ticipants could complete only 43% of the tasks without assis-

tance. Although participants had interest in having technology

to support self-management, they reported a lack of confidence

with technology, as well as frustration with design features and

navigation.130 Thus, improper or user-unfriendly design of AI-

based DHTs will probably give rise to non-adoption or early

abandonment of the technology.

Lack of clinical integration

With the maturation of AI systems, many AI researchers envision

drastic changes in clinical practice as their clinical deployment

increases. Cutting-edge AI systems cannot realize their full po-

tential unless they are integrated into clinical and digital work-

flows. However, while a growing number of AI systems have

been deployed in clinical settings with the promise of improving

patient care, many have struggled to gain adoption and realize

this promise. Application of AI systems in the real world may

lead to many unintended outcomes, including alert fatigue,131

additional burdens for clinicians, disruption of interpersonal

communications, and generation of specific threats requiring

increased vigilance to recognize.132 In addition, two main bar-

riers have been identified that may undermine clinicians’ enthu-

siasm to integrate AI systems into clinical workflows.133 First, ex-

perts may struggle to develop trust with these systems because

of the numerous inputs and complex data integration involved,

which can make it challenging or impossible to convey the spe-

cific logic behind an alert or recommendation. Second, some ev-

idence suggests that AI systems could also be perceived as en-

croaching on clinicians’ professional role bymaking a competing

diagnosis, presenting a ‘‘threat to autonomy’’ that may make cli-

nicians reluctant to use, rely on, and trust them.

Privacy concerns

An overriding issue for the future of AI in medicine is implement-

ing data privacy and security assurances. Due to the pervasive

problems of hacking worldwide, there is no room for algorithms
Cell Reports Medicine 4, 101213, October 17, 2023 11
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that possibly risk revealing the patients’ medical history in clinical

practice.134Moreover, there are potentially fatal risks for patients

if certain types of AI algorithms are hacked, such as overdosing

insulin for diabetic patients in closed-loop automated insulin-de-

livery systems. It is also becoming increasingly possible for an in-

dividual’s identity to be determined by facial recognition or

genomic sequences from massive databases, which further im-

pedes privacy protection.

The development of robust AI systems relies on large training

and validation datasets. However, the volume of local data is

often insufficient, which could be addressed by the centralization

of data. There exist inherent disadvantages in centralized solu-

tions, including increased data traffic and concerns about data

ownership, confidentiality, privacy, and security and creating

data monopolies that favor data aggregators.135 Federated

computing approaches have further been developed, wherein

dedicated parameter servers are responsible for aggregating

and distributing local learning; however, a remainder of a central

structure is kept.136 As an alternative, Warnat-Herresthal et al.

introduced a decentralized ML approach named swarm

learning,136 which dispenses with a dedicated server, shares

the parameters via the swarm network, and builds the models

independently on private data at the individual sites. Swarm

learning provides security measures to support data sover-

eignty, security, and confidentiality by recognizing the network

participants.

Non-adherence

Non-adherence has been proposed as one of the leading causes

of delays in adopting DHTs in clinical practice.137 User adher-

ence is crucial to the effectiveness of DHT applications in the

real world, which can be affected by convenience, user experi-

ence, and true benefits brought by this technology (for example,

helping them decide when to contact their provider, being more

aware of their symptoms, and feeling more connected to their

provider).138,139 Thus, the potential ways to promote user adher-

ence include smart design, visible EHRs, integration of electronic

patient-reported outcomes in clinics, and voice enablement.140

Imperfection of laws and regulations

AI in medicine inevitably results in legal challenges regarding

medical negligence attributed to complex decision-support sys-

tems. When malpractice cases involving medical AI applications

arise, the legal systemmust provide clear guidance on which en-

tity holds liability.141 Medical professional malpractice insurance

must be clear about coverage when health-care decisions are

made in part by an AI system.With the deployment of automated

AI for specific clinical tasks, the credentials needed for diag-

nostic, therapeutic, supportive, and paramedical tasks need to

be updated, and the roles of health-care professionals will

continue to evolve as various AI modules are incorporated into

the standard of care.14

CONCLUSION AND PERSPECTIVE

The increasing prevalence of diabetes has become a global pub-

lic health concern in the 21st century, fueled by the increasing

consumption of calorie-rich foods and sedentary lifestyles.

Several challenges exist in managing diabetes in traditional

face-to-face medical practices, such as ineffective prevention
12 Cell Reports Medicine 4, 101213, October 17, 2023
systems, uneven distribution of medical resources, and

improper self-management. The emergence of novel DHTs,

especially AI, may help address these obstacles and alleviate

the disease burden of diabetes in the future. Previous studies

have shown that applying AI in diabetes management involves

all aspects of disease control, including prediction, prevention,

screening, diagnosis, and treatment. Integrating AI into clinical

practice care could shift diabetes care toward precision, pene-

tration, prediction, and personalization. However, several obsta-

cles remain in the research and application of AI in diabetesman-

agement, including data quality control, poor technology design,

privacy concerns, lack of clinical integration, non-adherence,

and the establishment of laws and regulations (Figure 2).

Good examples of AI applications in clinical practice
AI-based detection of diabetic retinopathy

Automatic retinal screening, an AI technology that automatically

interprets the presence of DR from fundus images, has been

widely integrated into diabetes care worldwide. The first well-es-

tablished device was IDx-DR, approved by the FDA in 2018 for

its high diagnostic performance in clinical trials.104,142 This de-

vice facilitates DR screening, especially in rural communities

where patients have difficulty accessing an ophthalmologist.143

Several DL algorithms with high sensitivity have recently been

developed for DR screening, predominantly focusing on identi-

fying referable DR or vision-threatening DR. However, the impor-

tance of identifying early-stage DR should not be neglected. Ev-

idence suggests that proper intervention at an early stage could

significantly delay the progression of DR and even reverse mild

non-proliferative DR to a DR-free stage. To overcome this issue,

Dai et al. developed an automated, interpretable, and validated

system (named DeepDR) that performs real-time image quality

feedback, retinal lesion detection, and early- to late-stage DR

grading with high sensitivity and specificity.103

Self-management tools for blood glucose monitoring

Self-management tools are familiar to some diabetes patients

because they have already self-checked various biomedical

data, such as actively measuring BG levels through SMBG.

With patients’ self-management tools, AI technology interprets

their biomedical data and alerts like a diabetologist to improve

the patient’s BG control. The Guardian Connect System (manu-

factured by Medtronic) is an example of an AI system with this

functionality. This system is based on CGM, has an accompa-

nying smartphone application,144 and was certified by the FDA

in 2018. It is characterized by using AI to predict a hypoglycemic

attack an hour in advance based on the CGM data and alerts the

patient. According to the product data, the accuracy of the alert

was 98.5% only 30 min before the onset of hypoglycemia. AI is-

sues alert patients to hypoglycemia from their biomedical data in

this system, which is sometimes challenging to understand. The

patient can then take glucose tablets to prevent hypoglycemia

and associated complications.

Recommendations for future directions
Although numerous studies have focused on AI applications in

diabetes management, several factors hinder the integration of

AI-based DHTs into clinical practice (Table 2). For future

research, the multiple etiologies of bias in AI decision support



Figure 2. Overview of AI application in diabetes management
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require a comprehensive, multi-faceted approach to ensure al-

gorithm fairness across the phases of algorithm design, training

and development, and assessment and deployment to mitigate

potential harms of algorithm bias.127 Moreover, future studies

should prioritize applications that address the most crucial clin-

ical demands. For the integration of AI-based DHTs into diabetes

care, closer collaboration between AI specialists and endocrinol-

ogists should be encouraged to explore and innovate clinically

significant AI-based systems, which could be incorporated into

daily clinical practice. Hospital administrators would have to

evaluate and mitigate clinical workflow disruption when intro-

ducing innovative AI applications. Companies will have to deter-

mine the appropriate framework within which they can conduct

prospective clinical trials to evaluate the performance of AI sys-

tems in a clinical setting. In addition, insurers should assess the

value created by medical AI systems and revise their reimburse-

ment policy to reduce the cost of health care while improving its

quality.14

Prior AI models in diabetes management offered several

advantages, such as data analysis, pattern recognition, decision

support, and patient education, but faced limitations in natural

language understanding, personalized treatment, accuracy,

and potential biases.71 However, large language models

(LLMs), which could accept image and text inputs and produce

text outputs, have shown promise in various aspects145 of med-

ical care. LLMs are built using natural language processing tech-
niques and designed to recognize and understand the structure

and meaning of human language, classify texts according to

their content or purpose, and generate responses that are

appropriate and coherent.146 The transition from previous AI

technology to the current LLMs in diabetes management repre-

sents a significant leap in the capabilities of AI-driven health-care

solutions. LLMs, with advanced natural language processing

abilities, offer a more comprehensive understanding of the med-

ical literature, patient data, and individualized care require-

ments.146,147 However, LLMs may have risks in terms of incon-

sistency or misleading information.148 Despite these risks,

LLMs have the potential to revolutionize patient monitoring,

treatment personalization, and patient education, leading to

improved outcomes and better quality of life for patients with

diabetes.149,150

Construction of an AI-assisted digital health-care
ecosystem for diabetes management
Integrating AI-based DHTs will probably become increasingly

feasible in the future as technology improves, and such integra-

tion will enable new models of diabetes care. Here, we propose

the construction of an AI-assisted digital health-care ecosystem

for diabetes management (Figure 3). This ecosystem consists of

several essential sessions enabled by AI: (1) Recognize the risk

factors of diabetes and predict the risk of diabetes onset in the

general public. Based on the risk and modifiable risk factors,
Cell Reports Medicine 4, 101213, October 17, 2023 13



Table 2. Challenges for AI application in diabetes care and how they may be overcome with future development

Challenge Description Mitigating strategies

Data quality control data quality may have the following

problems: (1) poor quality of the data

themselves, (2) poor quality of the data

labels, and (3) insufficient data.

ensure the quality of data used in the

training process

AI may amplify implicit bias and

discrimination if trained on data reflecting

the health-care disparities

train AI algorithms on fair datasets that

include and accurately represent social,

environmental, and economic factors that

influence health

Poor technology design the initial versions of most AI systems are

always challenging to navigate

understand the needs of the end user (for

example, patients and providers)

many EHR vendors did not follow basic

usability principles

develop software and applications with

input from end users

patients reported lack of confidence with

technology, as well as frustration with

design features and navigation of

commercially available mobile applications

utilize iterative design process

Lack of clinical integration application of AI systems in the real world

may lead to many unintended outcomes

develop AI algorithms that could be

integrated into current clinical and digital

workflows

experts may struggle to develop trust with

AI systems

demonstrate explainability analysis of AI

systems

AI systems could also be perceived as

encroaching on clinicians’ professional role

support the clinical decision-making of

clinicians instead of making solely a

competing diagnosis

Privacy concerns implementing data privacy and security

assurances is an overriding issue for the

future of AI in medicine, since there are

pervasive problems of hacking worldwide

d develop AI algorithms using federated

learning or swarm learning

d protect closed-loop automated insulin-

delivery systems from hacking

d ensure an individual’s identity could not

be determined by facial recognition or

genomic sequences from massive data-

bases

Non-adherence user adherence is crucial to the

effectiveness of AI applications in the real

world, which can be affected by

convenience, user experience, and true

benefits brought by this technology

d use smart design, visible electronic

health records

d integrate electronic patient-reported

outcomes in clinics

d explore voice enablement in AI software

and applications

Imperfection of laws

and regulations

AI in medicine results in legal and regulatory

challenges regarding medical negligence

attributed to complex decision-support

systems

d provide clear guidance on which entity

holds liability when malpractice cases

involving medical AI applications arise

d update the credentials needed for diag-

nostic, therapeutic, supportive, and

paramedical tasks with the deployment

of automated AI for specific clinical tasks

AI, artificial intelligence; EHR, electronic health record.
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the system can provide personalized suggestions and contin-

uous monitoring to control these contributing factors. (2) Imple-

ment diabetes screening in high-risk populations. (3) Assist med-

ical practitioners and patients in the basic management of

diabetes: health education, medical nutrition therapy, physical

therapy, and drug therapy. (4) Provide the prediction, screening,

and management of diabetic complications.

In conclusion, AI has the potential to optimize diabetes care by

providing personalized, precise, and data-driven support to pa-
14 Cell Reports Medicine 4, 101213, October 17, 2023
tients and health-care professionals. By addressing the chal-

lenges and capitalizing on the opportunities, AI could play a

pivotal role in transforming diabetes care and improving the lives

of millions of people worldwide.
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142. Abràmoff, M.D., Lavin, P.T., Birch, M., Shah, N., and Folk, J.C. (2018).

Pivotal trial of an autonomous AI-based diagnostic system for detection

of diabetic retinopathy in primary care offices. NPJ Digit. Med. 1, 39.

https://doi.org/10.1038/s41746-018-0040-6.

143. Nomura, A., Noguchi, M., Kometani, M., Furukawa, K., and Yoneda, T.

(2021). Artificial Intelligence in Current Diabetes Management and Pre-

diction. Curr. Diabetes Rep. 21, 61. https://doi.org/10.1007/s11892-

021-01423-2.

144. Soupal, J., Haskova, A., and Prazny, M. (2021). Real-time CGM Is Supe-

rior to Flash Glucose Monitoring for Glucose Control in Type 1 Diabetes:

The CORRIDA Randomized Controlled Trial. Diabetes Care 43, 2744–

2750. https://doi.org/10.2337/dci20-0078.

145. OpenAI (2023). GPT-4 Technical Report. Preprint at arXiv. https://doi.

org/10.48550/arXiv.2303.08774.

146. Ali, S.R., Dobbs, T.D., Hutchings, H.A., and Whitaker, I.S. (2023). Using

ChatGPT to write patient clinic letters. Lancet. Digit. Health 5, e179–

e181. https://doi.org/10.1016/S2589-7500(23)00048-1.

147. Patel, S.B., and Lam, K. (2023). ChatGPT: the future of discharge sum-

maries? Lancet. Digit. Health 5, e107–e108. https://doi.org/10.1016/

S2589-7500(23)00021-3.

148. Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y.J., Ma-

dotto, A., and Fung, P. (2023). Survey of Hallucination in Natural Lan-

guage Generation. ACM Comput. Surv. 55, 1–38, Article 248. https://

doi.org/10.1145/3571730.

149. Stokel-Walker, C., and Van Noorden, R. (2023). What ChatGPT and

generative AI mean for science. Nature 614, 214–216. https://doi.org/

10.1038/d41586-023-00340-6.

150. Howard, A., Hope,W., andGerada, A. (2023). ChatGPT and antimicrobial

advice: the end of the consulting infection doctor? Lancet Infect. Dis. 23,

405–406. https://doi.org/10.1016/S1473-3099(23)00113-5.

https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.1038/s42256-020-0186-1
https://doi.org/10.1038/s42256-020-0186-1
https://doi.org/10.1038/s41586-021-03583-3
https://doi.org/10.1038/s41586-021-03583-3
https://doi.org/10.1038/s41584-020-0461-x
https://doi.org/10.1183/13993003.01147-2018
https://doi.org/10.1183/13993003.01147-2018
https://doi.org/10.1055/s-0039-1697597
https://doi.org/10.1002/acr.23580
http://refhub.elsevier.com/S2666-3791(23)00380-4/sref138
http://refhub.elsevier.com/S2666-3791(23)00380-4/sref138
https://doi.org/10.1038/s41746-018-0040-6
https://doi.org/10.1007/s11892-021-01423-2
https://doi.org/10.1007/s11892-021-01423-2
https://doi.org/10.2337/dci20-0078
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1016/S2589-7500(23)00048-1
https://doi.org/10.1016/S2589-7500(23)00021-3
https://doi.org/10.1016/S2589-7500(23)00021-3
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1038/d41586-023-00340-6
https://doi.org/10.1038/d41586-023-00340-6
https://doi.org/10.1016/S1473-3099(23)00113-5

	Artificial intelligence in diabetes management: Advancements, opportunities, and challenges
	Introduction
	Application of AI in the prediction and prevention of diabetes
	Prediction of diabetes onset
	Management of modifiable risk factors for diabetes

	Application of AI in the screening and classification of diabetes
	Screening of diabetes
	General classification of diabetes based on existing clinical guidelines
	Refined, precise classification of diabetes

	Application of AI in the comprehensive management of diabetes
	Health education
	Medical nutrition therapy
	AI-based automatic diet monitoring
	AI-based diet recommendations

	Physical therapy
	Blood glucose (BG) monitoring
	BG prediction
	Detection of adverse glycemic events

	Drug therapy
	Optimal dosing strategies of insulins for patients and clinicians
	Optimal dosing strategies for insulin in the closed-loop automated insulin-delivery system
	Optimal strategy for anti-diabetic drug therapy


	Application of AI in the prediction, screening, and management of diabetic complications
	Opportunities and challenges of AI applications in the clinical practice of diabetes care
	Opportunities for AI application in the clinical practice of diabetes care
	Precision
	Penetration
	Prediction
	Personalization

	Challenges of AI application in the clinical practice of diabetes care
	Data quality control
	Poor technology design
	Lack of clinical integration
	Privacy concerns
	Non-adherence
	Imperfection of laws and regulations


	Conclusion and perspective
	Good examples of AI applications in clinical practice
	AI-based detection of diabetic retinopathy
	Self-management tools for blood glucose monitoring

	Recommendations for future directions
	Construction of an AI-assisted digital health-care ecosystem for diabetes management

	Acknowledgments
	Author contributions
	Declaration of interests
	References


