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ARTICLE INFO ABSTRACT
Keywords: We describe CounterSynth, a conditional generative model of diffeomorphic deformations that induce label-
Counterfactuals

driven, biologically plausible changes in volumetric brain images. The model is intended to synthesise
counterfactual training data augmentations for downstream discriminative modelling tasks where fidelity
is limited by data imbalance, distributional instability, confounding, or underspecification, and exhibits
inequitable performance across distinct subpopulations.

Focusing on demographic attributes, we evaluate the quality of synthesised counterfactuals with voxel-
based morphometry, classification and regression of the conditioning attributes, and the Fréchet inception
distance. Examining downstream discriminative performance in the context of engineered demographic
imbalance and confounding, we use UK Biobank and OASIS magnetic resonance imaging data to bench-
mark CounterSynth augmentation against current solutions to these problems. We achieve state-of-the-art
improvements, both in overall fidelity and equity. The source code for CounterSynth is available at https:
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//github.com/guilherme-pombo/CounterSynth.

1. Introduction

The manifestations of neurological disease in the imaged brain are
complex, reflecting the intersection of pathological, biological and in-
strumental forms of variation. A signal of interest here must typically be
disentangled from a rich, widely distributed network of interacting fac-
tors: some irrelevant, others modulating. This problem is traditionally
approached by assuming an a priori-defined, simple underlying compo-
sitionality — into discrete anatomical regions or continuous stereotactic
spaces — that enables compact models to be deployed in a regional or
voxel-wise manner (Mechelli et al., 2005; Cuingnet et al., 2012).

So strong a simplifying assumption places a hard limit on the
complexity of the signals that can be modelled, but is inevitable where
the scale of available data is small and the controllable flexibility of the
models fitted to it low.

The revolutionary impact of deep learning on image modelling
(Krizhevsky et al., 2012; He et al.,, 2016; Mnih et al., 2015) may
enable us to relax this assumption (Liu et al., 2018; Li et al., 2014;
Pombo et al., 2019; Havaei et al., 2017). Given sufficiently informative
data, a deep neural network can implicitly find a decomposition of the
image that best supports the task it is deployed to solve — prediction,
prescription, or inference — trained end-to-end, guided by only weak
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inductive bias. Though attainable model expressivity is thereby en-
hanced, it falls on the data to control it. Crucially, any model here must
rely on the data to distinguish between the target, foreground signal,
and incidental, background context in which it is embedded.

Simple forms of context independence, such as invariance to trans-
lations (LeCun et al., 1989) and rotations (Cohen et al., 2018), or
approximate viewpoint invariance (Sabour et al.,, 2017) can be in-
corporated in the model’s design. Equally, approximate invariance to
geometric and intensity transformations can be promoted with on-
the-fly data augmentation: this is how most deep image classifiers
learn invariance to, for example, (small) affine and elastic transfor-
mations (Buslaev et al., 2020; Shorten and Khoshgoftaar, 2019) and
— in the context of medical imaging — bias field and motion arte-
facts (MONAL, 2020). Models can even learn which augmentations to
learn (Benton et al., 2020).

Nonetheless, where the context of a predictive signal is itself com-
plex — for example, the age-related morphology of a brain in which
small vessel disease is the target — no simple remedy is available. Re-
tained sensitivity to context here not only impairs fidelity, it introduces
vulnerability to distributional shifts, and may inject bias through irrel-
evant natural (confounder) (Buolamwini and Gebru, 2018; Hashimoto
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et al., 2018; Larrazabal et al., 2020) or sampling (collider) correla-
tions (Griffith et al., 2020; Watson et al.,, 2019). The class imbal-
ance and inadequate data representation common in the clinical do-
main (Loree et al., 2019; D’Amour et al., 2020) can only amplify the
risks.

These concerns are far from merely hypothetical. Small vessel dis-
ease and age-related involutional change are closely correlated yet
causally distinct (Arntz et al., 2016). A naive model could easily learn
to rely on age (Szegedy et al., 2013; Nalisnick et al., 2018) to support
an inference on small vessel disease, resulting in impaired performance
in the decision space of highest clinical significance: where the two are
unusually decorrelated. Similarly, a model tasked with distinguishing
ischaemic from inflammatory causes of white matter hyperintensity
(WMH) will be drawn into favouring the former in elderly men and the
latter in young women (Spychala et al., 2017; Bonkhoff et al., 2021),
reflecting the marked interactions of age and sex in the underlying
patterns of disease prevalence. Many other examples are easy to ad-
duce (Rao et al., 2017; Adeli et al., 2018; Yang et al., 2020; Larrazabal
et al., 2020): the entanglement of pathological signals of interest with
background, contextual factors is here not the exception, but the norm.

These concerns are also ethical. Amongst the many contextual fac-
tors in play are those — such as age, sex and ethnicity — that define
demographic subpopulations. The performance of any model used in
clinical care ought to be as close to invariant across all subpopulations
as the available data allow. Such model equity may be defined as
the extent of departure from the maximum achievable fidelity across
identifiable subpopulations. An equitable model approaches the maxi-
mum achievable fidelity equally closely across all patients, regardless
of their subpopulation identity (Carruthers et al., 2022). This broader
notion of fidelity, extending beyond performance metrics drawn from
the population as a whole, is inherent in the fundamental nature
of medicine. Contextual invariance here must not only be implicitly
promoted but explicitly demonstrated.

The space of possible solutions to this cardinal problem is domi-
nated by two distinct approaches. One is to redistribute the model’s
attention in training, through targeted data weighting or resampling
(Khosla et al., 2012; Byrd and Lipton, 2019), context-dependent mod-
ulation of the objective (Sagawa et al., 2020), or adversarial mecha-
nisms (Zhao et al., 2020). The redistributive nature of these approaches
tends to incur a penalty on model fidelity, even if generalisation or
equity may be improved (Goel et al., 2020), and the improvement seen
in the context of the distribution shifts commonly present in clinical
datasets is minor (Taori et al., 2020).

The alternative is to augment the training data with samples from
a generative model expressive enough to capture the interactions be-
tween the target signal and its context (Choi et al., 2018, 2020; Zhu
et al.,, 2017), in direct evolution of the use of generative models to
expand minority classes synthetically (Goel et al., 2020; Mullick et al.,
2019; Shamsolmoali et al., 2020). Though this approach is theoretically
superior, its success is premised precisely on the disentanglement we
are using it to promote, for the quality of the conditioned samples de-
pends on the model’s knowledge of the conditioning feature. Moreover,
a generative model ignorant of a target feature will tend to reproduce
it poorly when tasked with generating a contextually modified counter-
factual, often substituting non-pathological signal within areas outside,
or in the tails of, the learnt distribution (Baur et al., 2021).

Here we propose to use conditional generative models of diffeo-
morphic spatial deformations (Ashburner, 2007; Blaiotta et al., 2018;
Krebs et al., 2018; Dalca et al., 2018; Dorta et al., 2020), exploiting
the expressive power of generative models to replicate contextual
factors while limiting their propensity to interfere with target signals.
Constraining the synthesis of an image to the spatial deformation of
another provides the flexibility to capture common background mor-
phological patterns of contextual modulation (Brickman et al., 2007;
Baldinger-Melich et al., 2020), while leaving the brain identity and
target pathological signals comparatively intact. This is so because a
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heavily regularised deformation field does not directly change signal
intensities but displaces them, typically minimally. Deformation fields
can be synthesised and re-sampled quickly, enabling on-the-fly aug-
mentation even at very high image resolutions. Moreover, a model of
deformations alone can have fewer parameters, and can therefore be
easier to fit in the limited data regimes common in brain imaging. The
limited availability of labelled data has inhibited development of fully
volumetric unpaired image-to-image translation. Here we present the
first framework for volumetric unpaired image-to-image translation in
brain imaging.

Our general solution to the problem of promoting contextual invari-
ance in models of brain imaging, improving both model fidelity and equity,
is summarised as follows:

» We describe CounterSynth, the first 3D generative model capable
of volumetric unpaired image-to-image translation. The model
learns to synthesise counterfactual volumetric brain imaging for
targeted, biologically informed augmentation of downstream dis-
criminative models. Synthesis involves sampling a diffeomor-
phic deformation field conditioned on an original image and a
contextual variable of interest, such as age or sex.

The deformations modify only select morphological features of
the source volume, presenting the target pathological signal
against alternative, prescribed, counterfactually defined back-
grounds. The deformations are easily regularised to promote
minimal, biologically plausible deformations, even when condi-
tioning on abnormal images. Modelling shape, but not signal, fur-
ther enhances the robustness of the generative model to natural
variations in signal intensity.

CounterSynth is fast and memory efficient: it can generate train-
ing augmentations at sub-millimeter resolutions on-the-fly, even
on consumer-grade hardware. The deformations can be resampled
with negligible cost for fast synthesis at multiple resolutions.

We use synthesised counterfactuals to mitigate the impact of
demographic imbalance, spurious correlations, and collider bias
on a range of brain imaging classification and regression tasks.
We quantify the value — to both overall fidelity and equity — of
augmenting data with synthesised counterfactuals. We compare
with other GAN data augmentation methods (see Section 2.8),
with confounder-free networks (see Section 1.1.4) and in com-
parison and combination with group distributionally robust opti-
misation (see Section 1.1.1), demonstrating superiority to current
practice on all counts. In the course of this evaluation we in-
troduce novel indices of equitable model performance and its
cost.

Our code is available at https://github.com/guilherme-pombo/
CounterSynth.

1.1. Related work

An image classifier is a function that assigns each observation in
image-space, X, a label in label-space, Y. Suppose we are given a
family, O, of image classifiers, a loss (risk) function # : © x (X x Y) —
R, and N image-label pairs (x;,y,),...,(xy,¥y) € X X Y. The usual
approach to model selection, which is based on empirical risk minimi-
sation (ERM), is to find a classifier # € © that minimises the empirical
loss (risk), % ZkN=1 £(0, (xy. y)). If the observations are not sufficiently
homogeneous, however, then prioritising average performance can lead
to important subgroups being underserved (Buolamwini and Gebru,
2018; Sagawa et al., 2020).

1.1.1. Group distributionally robust optimisation

In distributionally robust optimisation (DRO) (Ben-Tal et al., 2013;
Rahimian and Mehrotra, 2019), one aims to minimise the worst-case
expected loss over an ‘uncertainty set’ of distributions. In the group
DRO setting (Hu et al., 2018; Oren et al., 2019; Sagawa et al., 2020),
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this minimisation is simply over the (instantaneous) worst-performing
group of examples. In the context of neural network optimisation, given
training data already divided into groups, Sagawa et al. (2020) min-
imise this empirical worst-group risk while demonstrating the impor-
tance of simultaneously enhancing generalisability through greater reg-
ularisation. They achieve markedly improved worst-group test set accu-
racy over ERM-based approaches, with minimal reductions in average
test set performance. We benchmark CounterSynth against, and in con-
junction with, group DRO. In particular we show that we can improve
worst-group performance without harming average performance.

1.1.2. Data augmentation with generative models

It is well-established that augmenting training data with images
synthesised by generative models, such as generative adversarial net-
works (GANs) (Goodfellow et al., 2014) and variational auto-encoders
(Kingma and Welling, 2013), can improve the performance of discrim-
inative models (Ganesan et al., 2019; Sandfort et al., 2019; Han et al.,
2019). In the domain of brain imaging, Han et al. (2019) demonstrate
that augmenting the training data of neural tumour detection models
with synthesised 2D slices of brains with tumours improves perfor-
mance. Augmentation with synthetic data has also been used to address
imbalance in the representation of heterogeneous subgroups, resulting
in more equitable predictive performance (Goel et al., 2020; Mullick
et al., 2019; Shamsolmoali et al., 2020). Subgroup data augmentation
results in more equitable model performances than those obtained
with group DRO (Goel et al., 2020). However, these results require a
generative model capable of realistic synthesis of the underrepresented
subgroups. Our model, CounterSynth, uses diffeomorphic deformations
to achieve this using minimal compute resources, minimal training
data, and a framework designed to promote biological plausibility.

1.1.3. Unpaired image-to-image translation and GANs

Generating a set of diverse and realistic counterfactual images in
order to expand an under-represented subgroup requires image-to-
image translation. The paucity of paired data, means that we focus on
unpaired translation, whereby a given image is transferred to a new
‘domain’ by a conditional generative model.

The state of the art here, StarGAN (vl Choi et al., 2018; v2 Choi
et al., 2020), is a type of generative adversarial network (GAN), Good-
fellow et al. (2014) and Zhu et al. (2017), Choi et al. (2018). These
two-part neural networks comprise a ‘generator’, G - a neural network
that maps a random vector to image space - and a ‘discriminator’, D
- a neural binary classifier that distinguishes between training data
and the generator’s output. Given the data distribution p(X) and a
latent distribution p(Z), the models train simultaneously by playing the
two-player minimax game

mGin mngXNP(X) log D(x) + E. 7 log(l — D(G(2))). (€8]

Under various technical conditions (Goodfellow et al., 2014; Kodali
et al., 2017; Mescheder et al., 2018) the distribution G(z), z ~ p(Z),
converges to p(X).

StarGAN is a conditional GAN in the sense that, instead of noise,
the generator takes as input an image and one or more domain labels.
Multiple domain labels enables simultaneous transfer between multiple
domains (e.g. when modelling portraits, changing hair colour and facial
expression). Training on multiple domains simultaneously also ensures
feature disentanglement. For example, again when modelling portraits,
adding spectacles while keeping age constant. Entangled features in the
context of brain imaging are features that appear to change together
given a particular dataset. Features that are otherwise disentangled,
might appear strongly correlated on smaller datasets or in particular
clinical settings — for example, a longitudinal study of small vessel
disease will have elements of the pathology entangled with features
associated with ageing.

At StarGAN’s core is a type of ‘cycle consistency loss’ (Zhu et al.,
2017), an L1 penalty on the reconstruction error accumulated by
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transferring an image to a domain and back again. In terms of the
joint distributions of images and labels, p(X,Y), and the marginal label
distribution p(Y), their cycle loss is

E(x,y)Np(x,y),yneWNP(y) [Ix = G(G(x, ypew)s M- (2)

This loss encourages approximately invertible domain transfers that,
when regularised, should be no more complex than necessary. Domain
transfers are thereby encouraged to preserve the visual content of the
original image.

1.1.4. Confounder-free neural network

The confounder-free neural network (CF-Net) learning scheme
(Zhao et al., 2020) is designed to discourage medical image predic-
tion models from acquiring biases in the presence of confounders. A
minimax-type adversarial objective (1) is used to promote approximate
invariance of the predictor’s featurisation of the image data to the pres-
ence of a given confounder in the input. The method has been validated
on several challenging real-world diagnosis prediction tasks, including
prediction of human immunodeficiency virus status from brain imaging
data. We compare CF-Net to models trained on CounterSynth synthetic
counterfactuals in Section 3.2.

1.1.5. Paired brain-to-brain translation

Brain imaging is often replicated across multiple acquisition types
(Miller et al., 2016; LaMontagne et al., 2019; Petersen et al., 2010),
time periods, and stages of disease progression (LaMontagne et al.,
2019; Petersen et al., 2010). This permits modelling the same brain
under different conditions, learning to predict the characteristics of
unseen test data from within-subject commonalities. Conditional GAN
frameworks have been shown to be well suited for this task. For
example, 4D-DANI-Net (Ravi et al., 2021) learns from matched pairs
of volumes to perform domain transfer and ageing on Alzheimer’s
disease imaging. Work done in Jung et al. (2021) achieves very similar
results by modelling the disease progression with residual masks in-
stead. Yurt et al. (2022) has demonstrated high-quality MRI volumetric
recovery from undersampled acquisitions at 1 mm resolution with
a 3D GAN that decomposes volumetric mappings into task-optimally
ordered cross-sectional mappings. Similarly, Lan et al. (2021) uses
spectral normalisation and feature matching to obtain state-of-the-
art contrast synthesis. Dalmaz et al. (2021) instead uses Transformer
architectures (Vaswani et al., 2017) to tackle the task of paired contrast
synthesis. Li et al. (2022) show that paired-imaging translation GANs
can facilitate MRI denoising, an application of great potential clinical
value. In Korkmaz et al. (2022) instead use Transformer architectures
for the task of MRI denoising. Rusak et al. (2020) found that given
paired Partial Volume maps and corresponding MRI scans, GANs can
learn to synthesise brain imaging with accurate tissue borders from any
given partial volume map. It is critical to observe that all these methods
require paired imaging. Learning synthesis from unpaired imaging is a
far more difficult task (Zhu et al., 2017).

1.1.6. Unpaired brain synthesis

StarGAN v2 is trained and tested on images of 256 x 256 resolution;
our (volumetric) imaging dimensionality is greater by a factor of 32
(see Section 2.6). Though 3D-StyleGAN (Hong et al., 2021) shows
that GANs are capable of generating realistic volumetric data uncon-
ditionally at 4 times the dimensionality of the original, 64 x 64 x 64,
its sampling failures (see p8 of Hong et al. (2021)) suggest a more
structured approach to prediction, such as one based on diffeomorphic
displacements, is appropriate.

One successful example of structured prediction is described by Xia
et al. (2021), who simulate progressive ageing and evolving Alzheimer’s
changes in 2D brain slices in terms of additive masks. By avoiding
modelling the full slice they reduce the parameterisation of the model
and thereby avoid overfitting in smaller-scale data regimes.
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To overcome the computational burden of full volumetric synthe-
sis, distant spatial correlations can be sacrificed by modelling only
patches/subvolumes of the original image. A conditional super-
resolution model that operates on 64 x 40 x 64 subvolumes is described
in Wang et al. (2020). Similarly, the conditional model described in Lin
et al. (2021) operates on 96 x 96 x 48 regions of interest.

Note that despite the vast amount of literature on the task of
paired brain-to-brain translation presented in Section 1.1.5, there is no
current literature tackling unpaired volumetric modelling of tasks such
as contrast synthesis/transfer and age and disease progression. One of
the main contributions of our work is to propose a framework that
enables unpaired image-to-image translation in the style of Choi et al.
(2018) and Zhu et al. (2017) to be performed fully volumetrically and
in an accurate fashion given the label limitations commonly present in
the domain of brain imaging.

1.1.7. Equitable model performance

Medicine is concerned with minimising the difference, at the indi-
vidual level, between ideal and achieved clinical outcomes. Since the
optimal management of an individual patient is typically unknown, it
must be inferred from the population. In the setting of population het-
erogeneity, the fidelity of such inference will tend to be systematically
biased in proportion to the representation of any given subpopula-
tion (Larrazabal et al., 2020; Buolamwini and Gebru, 2018; D’Amour
et al., 2020). The problem of equity then arises as consistent variation
in model performance across different subpopulations.

Equity can be promoted by data manipulation prior to modelling
(Johnson and Khoshgoftaar, 2019), or by directly incorporating ap-
propriate metrics into training objectives (Oren et al., 2019; Sagawa
et al., 2020; Barocas et al., 2017). In rebalancing the model’s attention
across the population, any benefit to a given subpopulation may incur
an undesirable cost elsewhere (Sagawa et al., 2020).

In this paper, we therefore consider variations in model perfor-
mance at both the local (subpopulation) level and global level, quanti-
fying the improvements at a local level with regards to the changes to
global performance (see Section 2.3).

2. Methods

We use StarGAN-based unpaired image-to-image style transfer to
synthesise realistic counterfactual brain imaging in terms of diffeomor-
phic deformations. These are infinitely differentiable, invertible coordi-
nate transformations with infinitely differentiable inverses (Ashburner,
2007; Ashburner and Ridgway, 2013; Blaiotta et al., 2018).

Our restriction to deformations has the benefits itemised in the in-
troduction; regularised diffeomorphic displacements naturally produce
simpler, invertible domain transfers, so the cycle loss (2) is no longer
needed. This considerably reduces model run time,' as well as the
complexity of the training objective. We also forego the ‘style vectors’
that were introduced in StarGAN v2 Choi et al. (2020) to further
simplify the training objective; hence our model is closest to StarGAN
vl.

Brain atrophy has been modelled in terms of spatial deforma-
tions (da Silva et al., 2020) using paired brain images and their
associated atrophy maps. Population-level — as opposed to individual-
level — ageing in longitudinal data has also be modelled with spatial
deformations (Sivera et al., 2019; Huizinga et al., 2018).

1 Each evaluation of the cycle loss (2) requires two forward passes through
the generator, one of which is required to evaluate (1) the other we now avoid.
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2.1. Learning diffeomorphic deformations

Methods for predicting diffeomorphic deformations with neural
networks by using ‘spatial transformer layers’ (Jaderberg et al., 2007)
are described independently by Krebs et al. (2018) and Dalca et al.
(2018). In both cases a convolutional neural network (CNN) predicts
a coordinate transformation ¢ : R — R3 that registers a given source
volume onto a given target volume. The deformation ¢ is represented
in terms of a stationary velocity field, v, a real parameter ¢ € [0, 1] and
the identity transformation Id, defined such that
a¢(f) B o
o v(¢"),
Integrating ¢ over [0,1] or, equivalently, exponentiating v recovers
the deformation: ¢ = ¢’ = exp(v). Their CNNs predict v from
the source and target images, and then integrate v by scaling and
squaring (Arsigny et al., 2006; Ashburner, 2007; Moler and Loan, 2003)
before finally applying ¢ to the source image.

Crucially, all of the spatial transformations in this network are
implemented in terms of (sub)differentiable ‘spatial transformer lay-
ers’ (Jaderberg et al.,, 2007), so the entire model can be optimised
end-to-end, simply using (sub)gradient descent.

In the following section we describe how we use this technique to
predict deformations for counterfactual synthesis.

0 =1d. (3)

2.2. Counterfactual synthesis with deformations

Our training objective is based on that of StarGAN (Choi et al.,
2018). Suppose we have a set of domain labels {0,..., N} and let U
denote the discrete uniform distribution over this set.

Using the notation from Choi et al. (2018), we use a discriminator
Dy, to classify images as training data or not training data. The main
component of our objective is the ‘non-saturating’ (Goodfellow et al.,
2014) alternative to (1), which is used to encourage all deformations

to be realistic:

adv = ]Ex~p(X) [IOg Dsrc(x) - ]Ec~7f 10g D:rc(x°¢(x’ C))] .

We use a second discriminator D, to predict the domain of an image,
and we let D, (c | x) represent the probability distribution over domain
labels predicted by D,;,. In terms of the joint distribution of images and
(true) domain labels, p(X,Y), we minimise the following with respect
to D

L

cls>

creel = —E c)~px,y)10g Dy (€ | X).

cls
Given an image x, let U, denote the uniform distribution over its

counterfactual domain labels. To learn to generate counterfactuals, we
minimise the following with respect to ¢,

£ = "By et 108 Diyl€ | xo(x, 0)). @

We smooth the velocity field v in ¢(x,¢) = expv as in Dalca et al.

(2018), by using a diffusion regulariser on its spatial gradients: for each

voxel (i, j, k),

Lomooth = Exomrxr) 2 IVOX, 0, DI (5)
ijk

Finally, for more stable training we use R; regularisation (Choi et al.

(2020); see also Section 4.1 of Mescheder et al. (2018)),

Ry = Ey_p(x, IVD®)|1*. (6

In summary, our objective is to minimise L ,;,. with respect to D,,. and

D,,,, while minimising £,,, with respect to ¢, where

src

gen

!
Lyise = —Logy + LT + Ry,

adv

_ fake
[’gen = ‘Cadu + [’cls + [’srnooth .

When our domain label is given by a continuous variable, for example
when conditioning on age, the training details are the same except that
U denotes the continuous uniform distribution and D, is a regression
model.
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Fig. 1. Top: The U-Net, plus scaling and squaring layers, for predicting and applying the deformation ¢, via the velocity v. The input is the real image together with the
counterfactual label added as a second image channel. Each block in both pyramids of U-Net layers is a convolutional layer that produces a feature map with 16, and thereafter 32,
channels. Next to each block is its spatial resolution. These resolutions are decreased with max pooling and increased with nearest neighbour resampling. Dotted arrows represent
skip connections. The scaling and squaring block is composed of spatial transformer layers. Bottom: The fully-convolutional discriminator for classifying real and synthesised
images. Each upright block is a convolutional layer, producing feature maps with 16, ...,256 channels. Above each block is the spatial resolution. Max pooling is used to reduce
this resolution. Two probability distributions are predicted: real vs fake, and a distribution over domain labels.

2.3. Quantifying equity of performance

To quantify the impact of augmentation with counterfactual syn-
thetic data on the relative equity of two classifiers (see Section 1.1.7),
we would like a principled method of indexing variations in per-
formance across the population. Econometrics provides an array of
equality indices, such as the Gini index (Dorfman, 1979), the Theil in-
dex (Conceicao and Ferreira, 2000) and the concentration index (Clarke
and Van Ourti, 2010), largely based on statistical measures of disper-
sion.

In the context of model fidelity, equity can be trivially achieved by
lowering global performance to that of the worst-performing subpop-
ulation, but we typically wish to improve local performance without
harming global performance. To capture the global impact of any local
intervention, we need to measure both local and global effects.

First, we divide the population into the subpopulations A, ..., Ay,
and denote by a, the mean performance of a given classifier on subpop-
ulation A,. Here we model global performance as the mean of these
means: % >« a.- Of course, if each A, is equal in size this simplifies
to the population mean. This approach weights every subpopulation
equally, ensuring that its contribution does not depend on its size.

We use the individual a; to monitor local performance, paying par-
ticular attention to the worst-performing subgroup. Let a?ew, ,a'ji,ew
denote the subpopulation means based on the given model’s perfor-
mance, and let a‘l’ase, ,at]’\,ase denote the subpopulation means based
on the base model’s performance. We define the (normalised) global
change in performance as

Zk (aZew _ aiase)

Zk azase
Let a;*" be the subpopulation mean for the given classifier over its
worst-performing subpopulation, and let al;ase be the subpopulation
mean for the baseline classifier over its worst-performing subpopula-
tion. Note the worst performing subpopulations can be different in

the ‘base’ and ‘new’ cases. We define the (normalised) local change in
performance as

AG =

new base
a —a
P q

AL =
qbase
q

We form a simple, summary measure of the relative equity of a
given model with respect to a baseline model from the mean of these
two differentials. Since quantification of equity of performance is the
aim of this index, we only invoke it when AL > 0, for in the absence of
any local improvement the global effects are moot. We refer to this as
the Holistic Equity Index (HEI):

AG + AL
—

The HEI indexes the impact on the lowest performing subpopulation
while taking into account the global cost across all subpopulations.
Whenever we tabulate HEI in Section 3.2 the base model uses empirical
risk minimisation (ERM); see Section 1.1.

HEI = @)

2.4. CounterSynth training details

Our deformation generator is based on the architecture that was
adapted by Dalca et al. (2018) for diffeomorphic registration from
the U-Net (Cicek et al., 2016); see Fig. 1. Our discriminators use the
fully-convolutional model described in Isola et al. (2017), with the 2D
convolutions replaced with 3D convolutions; see Fig. 1.

Whether conditioning on a discrete target domain label (e.g. self-
reported male/female Biobank sex labels), or a continuous parameter-
isation of age, we replace the expectation over target domain labels in
(4) with a single-sample Monte Carlo approximation, as in the original
StarGAN framework.

For our experiments we shuffle the data then divide it into 80:10:10
training, validation and test splits. We train each model for 300 epochs,
after which the model with the best performance on the validation set
is selected. All tabulated metrics are computed on the test set.

The batch size was 128. We used the Adam optimiser (Kingma
et al., 2014) with learning rate 10~3 for the generator and 2 x 10~* for
the discriminator (determined based on prior experience). L?> weight
regularisation was applied to all the non-bias parameters, with coeffi-
cient 10~*. The models were trained on an 8-card P100-based NVIDIA
DGX-1.

We used stochastic discriminator augmentation (SDA) (Karras et al.,
2020), which improves GAN performance in the absence of over-
whelming amounts of training data. The augmentation functions were
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imported from MONAI v0.6 (MONAI, 2020) and applied to each train-
ing example independently with a probability of 0.8 (as recommended
in Karras et al. (2020)). We used random affine and elastic defor-
mations, nonlinear histogram transformations, contrast changes and
additive Gaussian noise.

2.5. Predictive model training details

For the predictive tasks we use the official implementation of the
current state of the art age and sex prediction model (Peng et al.,
2021), which is implemented in PyTorch (Paszke et al., 2019). We used
the Kingma et al. (2014) optimiser, with default settings, and a batch
size of 128. We use the training data augmentation functions listed
in Section 2.4, but with a lower probability of 0.2 (outside the SDA
framework, high probabilities are not required).

All models are trained five times, for 200 epochs each, with different
80:7:13 training, validation and test splits (we increased the size of
the test set at the expense of the validation set until it reached 2000
participants, to boost the numbers of under-represented demographics).
To reiterate, the data used here does not overlap with the data used
to train CounterSynth. All models are trained with oversampling of
the minority classes and demographics. The model with the highest
validation set balanced accuracy is then evaluated on the test set. All
models were trained on an 8-card P100-based NVIDIA DGX-1.

Our experiments with DRO are based on empirical worst-group risk
optimisation, see Section 1.1. The most effective version of this method
requires large amounts of data set-specific L? regularisation (see Sec-
tion 3.2 of Sagawa et al. (2020)). To find these values we performed
a cross-validated grid-search using the training and validation sets. An
L? regularisation coefficient of 0.01 provided the best results for all
tasks, a finding which is consistent with the values used in Sagawa et al.
(2020).

2.6. The data

We use two publicly available sets of brain magnetic resonance
imaging (MRI) data: UK Biobank (Miller et al., 2016) and OASIS-
3 (LaMontagne et al., 2019).

2.6.1. UK Biobank

The UK Biobank (Miller et al., 2016) biomedical database contains a
variety of brain magnetic resonance imaging (MRI) plus metadata (age,
sex, etc.) from UK resident volunteers. From the T1-weighted brain
imaging we randomly selected 30 K unique participants (ratio of men to
women 54:46, mean age 52.7 years, standard deviation 7.5 years, range
38-80 years). We shuffled and then split the data into 15 K participants
for training and testing CounterSynth, and a different 15 K participants
for the remaining down-stream tasks.

To prevent our models relying only on linear differences in head
volume and shape, all volumes were affine registered’> to MNI152
standard space (Collins et al., 1994) using SPM (Ashburner et al., 2005)
and then cropped and down-sampled to 128 x 128 x 128 resolution. For
the experiments in Section 3.2 we down-sampled the imaging further
to 64 X 64 X 64 to facilitate multiple training runs.

For the counterfactual synthesis task (Section 3.1) we model age and
sex, both of which are self-reported. They can be predicted with very
high accuracy from brain imaging (Peng et al., 2021). For the predictive
tasks (Section 3.2) we use age, sex and the total volume of white matter

2 The extent to which this necessitates affine as opposed to just rigid
registration of test data depends on how much spatial augmentation is applied
during training; see Section 2.4. Affine registration is not a necessary part of
our method: it simply discourages CounterSynth from learning trivial defor-
mations, such as the shrinking brain size associated with ageing. Alternatively
this can be achieved through more aggressive spatial augmentations during
training, but naturally this slows convergence.
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hyperintensities (WMH). The WMH data was derived automatically by
using (Griffanti et al., 2016) with subsequent quality control by the
UK Biobank team (Alfaro-Almagro et al., 2018).

Wherever we use discrete domain labels, we bin age into ‘younger’
(age € [0,50]), ‘middle-aged’ (age € (51,55]) and ‘older’ (age € (55, 80])
(these intervals are chosen to be roughly equal in size) and WMH
volume into top quartile versus bottom three quartiles. Biobank’s sex
variable is binary.

2.6.2. OASIS-3

To evaluate the quality of our age counterfactual synthetics we
use the OASIS-3 dataset (LaMontagne et al., 2019) as a ground truth.
OASIS-3 is a longitudinal compilation of brain imaging data spanning
42 to 95 years of age. Participants include 609 cognitively normal
adults, and 489 individuals at various stages of cognitive decline. For
the purpose of evaluating only healthy ageing, we removed cogni-
tively impaired individuals. We employ T1-weighted imaging only, and
identically to UK Biobank, all data were affine registered to MNI152
standard space (Collins et al., 1994) using SPM (Ashburner et al., 2005)
and then cropped and down-sampled to 128 x 128 x 128 resolution.

We use the first available scan of each participant as the brain
volume from which the models predict the age counterfactual. The last
available scan is used as the ground truth on which we evaluate the
quality of the counterfactuals. The average elapsed time between image
pairs is 4.3 years.

2.7. Evaluating quality of counterfactual synthesis

For small age increments, one can use longitudinal datasets such
as OASIS-3 (LaMontagne et al., 2019) to evaluate objectively the ac-
curacy of a model’s ageing process. We use this helpful evaluation
benchmark in section Section 3.1.3, comparing the Structural Similarity
Index (SSIM) (Wang et al., 2004; Renieblas et al., 2017), as well the
mean average error (MAE), between the actual aged brain and the
predicted counterfactual aged brain. For large age intervals, however,
there exists no ground truth, and for other demographic attributes such
as sex, counterfactual synthesis cannot be evaluated by a simple image
comparison, for the synthetic image is definitionally inexistent.

We therefore quantify the fidelity of the conditioning biological
signals — here age and sex — in three complementary ways. First, we use
voxel-based brain morphometry (VBM) (Good et al., 2001) to compare
their regional correlates across real and synthetic images. Second, we
use a discriminative model trained exclusively on real data to compare
their relative predictability. The former provides an index of the spatial
fidelity of the counterfactual anatomy, the latter of its predictability
from real data. Third, in the absence of likelihoods we use the Fréchet
inception distance (FID) (Heusel et al., 2017), the current standard for
quantifying the overall quality of GAN-generated image.

2.7.1. Voxel-based morphometry (VBM)

VBM is conventionally used to infer the population-level anatomical
correlates of a set of biological factors of interest (Mechelli et al., 2005;
Ashburner and Friston, 2001). This is done via a mass-univariate voxel-
wise comparison of tissue concentrations across homologous regions,
enabled by prior non-linear registration to a common stereotactic space.
Here we implemented this within SPM’s well-established pre-processing
and statistical framework. This allows us to compare demographic-
associated structural changes in real brain volumes with the structural
changes obtained from counterfactual synthetics.
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2.7.2. Fréchet inception distance (FID)

To enable comparison with other likelihood-free generative models,
we compute the Fréchet inception distance (FID) (Heusel et al., 2017)
between our original data and the synthesised counterfactuals.

FID is computed from the hidden activations produced when these
two sets of data are passed through an image model. We use the official
FID implementation provided in Heusel et al. (2017), which we adapted
to PyTorch. This is based on the widely-used Inception v3 model trained
on Imagenet. In terms of the sample means p,,;, , M., and covariances
Zrigs Zgen, Of these sets of hidden activations, and in terms of the L2
norm || - ||, and trace operator tr, the FID is defined as

||I'lorig4 - :ugen, “% + tr(zorigA + denA -2 \/ Z‘arig.z'gem)' (8)

Since FID applies only to 2D images, we extracted a 128 x 128
slice along each axis in turn. We chose the slice with the maximum
voxel-wise t-statistic for the relevant attribute (see Section 3.1.1).

2.8. Baseline methods for unpaired counterfactual synthesis

There are no unpaired methods in the literature for comparison
with ours: we were therefore compelled to adapt other work to provide
suitable baselines. The most promising candidate (Xia et al., 2021), uses
a GAN and seeks to age a brain while preserving its identity. To achieve
this, the authors use an ‘identity-preservation’ loss that encourages the
image changes to be positively correlated with age change, as well as a
self-reconstruction loss, which is designed to encourage smoother age-
related changes. Furthermore, rather than synthesising a whole image,
the framework synthesises only a mask, which is then added to the
original brain image to simulate the process of ageing. The original
implementation published by the authors operates only in 2D. We ex-
tend to 3D by replacing 2D convolutions in the latent feature extractor
with 3D convolutions, as well as adding one extra layer to the Encoders
and Decoders to make the increased dimensionality more manageable.
We forego modelling the health state vector as it is not relevant in the
context of our work. For the resolution of our experiments, in 2D, the
final convolutional layer’s output dimensionality is 8 x 8 x 32 = 2048.
In 3D, due to the extra layer of convolutions, it is 4 x 4 x4 x 64 =
4096, so we increase the dimensionality of the fully-connected layers to
accommodate this extra information. The age vectors are the same both
in 2D and 3D. For simplicity we denote this method with the acronym
LGAN throughout the rest of the paper.

For our second baseline, we adapt unconditional volumetric brain
generation with StyleGANs (Hong et al.,, 2021) to enable image-to-
image translation using (Richardson et al., 2021). This allows us to
exploit the pretrained StyleGAN networks provided by the authors
of Hong et al. (2021), specifically network ‘2 mm-fd64’. We need
only train an encoder network that directly generates a series of style
vectors which are then fed into the provided StyleGAN network. Unlike
CounterSynth and Xia et al. (2021), this method does not operate with
attribute vectors, and instead requires a target volume from which
the style vectors are to be extracted. To evaluate it at test time, we
therefore randomly select a brain image from the test set with the
desired attribute we want to synthesise while keeping all the other
attributes static. Note that the optimal manner of conducting such
transfer is a research topic on its own, and is outside the scope of this
paper. We denote this method SGAN throughout the rest of the text.

2.9. Summary of methods for equity improvement

We compare the following approaches based on ERM, group DRO
(Section 1.1.1), confounder-free networks (Section 1.1.4) and Counter-
Synth training augmentation (Section 2.4). To avoid information leaks,
whenever we use GAN-based augmentations we use two models, one
trained exclusively to produce age counterfactuals, and one to produce
sex counterfactuals. This ensures that the age counterfactuals do not
carry over any sex information and vice-versa. The methods we baseline
for correction of downstream predictive inequity in experiments section
Section 3.2 are as follows:
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» ERM: In line with empirical risk minimisation (see Section 1.1),
we simply use online stochastic gradient descent (SGD) to opti-
mise the predictive models.

DRO: We use the official implementation of the group DRO opti-
miser (Algorithm 1 in Sagawa et al. (2020), which has a similar
run time to SGD) with an L2 regularisation coefficient determined
by grid-searching (Section 3.2 of Sagawa et al. (2020)). In the
group DRO setting one selects demographic attributes believed
to be spuriously correlated with the target variable; see Sec-
tion 2.1 of Sagawa et al. (2020). In the case of sex classification
(Section 3.2.1) we choose age, in the case of WMH volume
classification (Sections 3.2.3- 3.2.4) we choose age and sex.
ERM with counterfactuals (ERM + CSYNTH): We use the
ERM approach above, but we augment the training (validation)
set with counterfactuals synthesised by CounterSynth (CSYNTH
for short) from the training (validation) set until the under-
represented demographic is as numerous as the others. A new set
of counterfactuals is synthesised at each epoch from equal num-
bers of the majority demographic. We adopt the same strategy
with SGAN and LGAN augmentations as baselines, denoted (ERM
+ SGAN) and (ERM + LGAN) respectively

DRO + CSYNTH, DRO + SGAN, DRO + LGAN : As above, but
with the ERM approach replaced with the DRO approach.
CF-Net: We use the official implementation of the Confounder-
Free network (CF-Net), Zhao et al. (2020); see Section 1.1.4.
CF-Net learns a featurisation of the data that is approximately
invariant to a chosen demographic attribute. In the case of sex
classification (Section 3.2.1) and WMH volume classification (Sec-
tion 3.2.3) we choose age. The official implementation does not
support regression objectives (Section 3.2.2) or tasks with mul-
tiple confounders (Section 3.2.4), so we omit comparisons with
CF-Net in these cases. CF-Net also takes significantly longer to
converge than the other baseline models: we therefore leave
training it in conjunction with GAN data augmentation for future
work.

3. Experiments and results
3.1. Counterfactual synthesis

In order to appropriately assess the quality of the synthesised coun-
terfactual data we train and evaluate our CounterSynth and baseline
models in two different scenarios:

1. We use the ‘younger’, ‘middle-aged’ and ‘older’ age bins defined
in Section 2.6, and separately we use Biobank’s self-reported
(binary) sex metadata. The models trained under this regime will
be used for the data augmentation in the downstream predictive
equity experiments in 3.2, as well for the evaluation of counter-
factual quality when there are no ground truths Sections 3.1.1,
3.1.2 and 3.1.4.

2. We train the models with continuous age values, so that we can
evaluate them on longitudinal ground truths using the dataset
defined in Section 2.6.2.

In Figs. 3 and 4 we present some example counterfactual synthesis
for Biobank brains.

3.1.1. Experiment: voxel-based morphometry

We used SPM’s unified tissue segmentation and normalisation al-
gorithm (Ashburner et al., 2005) to generate non-linearly registered
grey matter segmentations of 1000 real and 1000 counterfactual images
conditioned on age or sex, all drawn from the test set. At each voxel,
grey matter concentration, the dependent variable, was entered into a
multiple regression with age, sex, origin, and total intracranial volume
as independent variables. After model estimation, two one-tailed t-
tests were performed on the regression coefficients (slopes) of the age
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2-way t-test:
Real Counterfactual Real vs. Counterfactual
A A A
r N # N N

‘Younger' > 'Older'
Age <

‘Older' > 'Younger'

Men > Women

Sex <

Women > Men

Fig. 2. SPM’s VBM t-statistics for grey matter changes induced by the CounterSynth age and sex deformations. Leftmost, the grey matter changes associated with age and sex in the
original data. Middle, those same changes but in the synthesised counterfactuals. Rightmost, the two one-tailed post-loc t-tests that show voxels where the real and counterfactual
regression coefficients differ, the differences being negligible. There are two T-value thresholds to consider, the uncorrected estimation threshold for p < 0.01 (UNC) and the

family-wise estimation threshold for p < 0.05 (FWE).

and sex variables, with the resulting SPMs thresholded at p < 0.05
FWE (cluster-based family-wise correction), and p < 0.01 (uncorrected
cluster forming threshold). An unusually lenient uncorrected threshold
was deliberately chosen to reveal inferred areas to their maximum
extent. Two-tailed t-tests were performed on the coefficients of the
origin variable — real or counterfactual — separately for the age and
sex contrasts, with identical thresholding. Anatomical labels based on
the AAL3 atlas (Rolls et al., 2020) were assigned to the peak of each
cluster, and the top 10 regions were compared.

Inspection of the resultant maps (Fig. 2) shows similar anatomical
patterns for all contrasts. For both age and sex, the CounterSynth VBM
t-statistics matched 95% of the anatomical labels identified in the real
data. Few regions in the counterfactual vs real comparison survived the
extremely lenient uncorrected threshold.

Note the fidelity quantified here is of the conditioning, background
signal, not the foreground signal we seek to preserve. This is quantified
by the downstream discriminative model (see Section 3.2).

3.1.2. Experiment: Fréchet inception distance

Employing the FID metric defined in Section 2.7.2 we evaluate the
quality of each method, using 1000 test volumes from the UK Biobank
dataset, and all possible attribute transfer combinations. This produces
three sets of counterfactual examples from the test set:

1. We replace each brain with its sex counterfactual.

2. We use the three discrete age classes defined in Section 2.6.1
and for each brain we replace it with the corresponding two age
counterfactuals (e.g. if it is a ‘younger’ brain we replace it with
‘middle-aged’ and ‘older’ counterfactuals).

3. We apply an image transformation twice in succession: first
replacing each brain with its sex counterfactual, then replacing
this counterfactual with its two age counterfactuals.

The resulting FID scores are presented in Table 1. Lower values
correspond to greater visual (metrical and perceptual) similarity. Coun-
terSynth’s low FIDs reflect the propensity of regularised deformations
to leave much of the original image essentially unchanged: a key part
of our motivation for using them. Since LGAN produces only a mask
added to the original brain volume, its FID scores are also low, though
four times higher than CounterSynth’s. SGAN, which must generate the
entire brain volume and is therefore faced with the hardest task has the
highest FID scores (consistent with the values presented in the original
paper for unconditional brain generation Hong et al., 2021). For all
methods, the more attributes are transferred, the higher the FID scores,
as the modelling task inevitably involves more extensive modification.

Table 1

Average Fréchet inception distances between original data and synthetic data.
Model Axial Coronal Sagittal
CounterSynth (age) 11.9 10.7 9.5
CounterSynth (sex) 9.8 9.9 9.1
CounterSynth (age & sex) 12.4 11.1 9.8
SGAN (age) 71.3 88.5 106.9
SGAN (sex) 78.4 84.2 98.7
SGAN (age & sex) 82.3 89.8 111.3
LGAN (age) 46.7 47.3 39.6
LGAN (sex) 42,5 43.8 33.9
LGAN (age & sex) 51.7 52.4 47.6

3.1.3. Experiment: age prediction

Using the dataset described in 2.6.2 we evaluate each model’s
ability to predict the ageing process for a particular input brain volume.
An example brain ageing prediction for each model is shown in Fig. 5.
As the OASIS-3 dataset was unseen by any of our models, we perform
a dataset-wide evaluation of the quality of the counterfactuals and
present the results in Fig. 6.

Inspection of Fig. 5 and the results presented in Fig. 6 shows that the
SGAN method is unsuited to counterfactual synthesis. The images look
qualitatively similar to those in the published paper (Hong et al., 2021),
and though they capture some of the desired attributes of the target
image, their quality is too low to conclude whether or not the brain
has been accurately aged. Furthermore, SGAN produces undesirable
artefact intensities (white blur), outside of the area of the brain, which
can be seen in Fig. 5, further increasing the error of its predictions. This
is reflected in low SSIM and high MSE scores. LGAN counterfactuals
closely resemble the ground truth, and exhibit some of the qualitative
morphological changes associated with natural ageing. However, image
artefacts corrupt important features such as sulcal configurations, re-
sulting in comparatively low SSIMs. LGAN consistently produces blurry
images which was reflected in a stubbornly high self-reconstruction
loss. We hypothesise this is due to lack of either model capacity or data.
We experimented with increasing LGAN’s model capacity revealed,
which did result in higher fidelity reconstructions, but counterfactual
sample quality deteriorated markedly. CounterSynth produces quali-
tatively the best images, yielding the highest SSIM scores across all
three methods. Both in Figs. 5 and 6 it is shown that the error of
predictions goes up, as the amount of ageing to synthesise increases.
This is to be expected as the number of external factors that effect
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Original Difference

Counterfactual 10)

Fig. 3. Example synthesis of volumetric counterfactuals for sex and discrete age bins tested on four different participants Age: The first four columns (from left to right) are age
counterfactuals. The first three rows show a ‘middle-aged’ brain and its ‘younger’ counterfactual. The last three rows show the ‘older’ counterfactual for a ‘middle-aged’ brain; Sex:
Columns five to eight show sex counterfactuals. The first three rows show a ‘female’ brain and its ‘male’ counterfactual. The second three rows show the ‘female’ counterfactual

for a ‘male’ brain.

the ageing of brain increases the more years pass. Note that OASIS-
3 is entirely different from the data distribution CounterSynth was
trained on: these results therefore demonstrate well the model’s ability
to transfer intelligence from large-data to smaller-data regimes.

3.1.4. Experiment: sex prediction and disentanglement

To quantify the fidelity of sex counterfactual synthesis, as well as
its disentanglement from ageing, we trained sex classifiers, using the
architecture described in Peng et al. (2021), to baseline accuracy on
real data and compared their accuracy on counterfactual data. The
models were trained once using the training participants set aside for
the predictive modelling (see Section 2.6), attaining a test set accuracy
of 99.2%. We then created three sets of counterfactual examples for
each method as described in Section 3.1.2.

The results presented in Table 2 show that SGAN modifies sex-
related characteristics even when designed to change only age. This
may be due to the artefacts generated by this method, as noted in
Section 3.1.3. SGAN struggles to convey sex, perhaps owing to the
subtlety of sex-related dimorphisms in the brain. Both LGAN and Coun-
terSynth show levels of disentanglement of age and sex expected from
the StarGAN framework, with CounterSynth results being superior.
Taken together with the VBM maps presented in Fig. 2 this indicates
that CounterSynth is preserving biological signals well during attribute
transfer. To give a sense of the spread of counterfactual ages when
using categorical buckets as opposed to continuous age differentials,
we predicted the continuous ages of the counterfactuals in set (2)
produced by CounterSynth. The histogram of predictions is shown
in Fig. 7. It shows that range of ages produced for the categorical
age buckets is fairly wide (average 10 years). This could be seen

Table 2
Sex classification accuracy for counterfactual images produced by various methods.

Model

Age accuracy Sex accuracy Age & sex accuracy

CounterSynth 97.6% 96.8% 96.4%
SGAN 86.3% 74.9% 71.3%
LGAN 94.2% 85.5% 83.2%

as an indication that smaller age buckets are required to get more
precise age generation. However, in the context of their use for data
augmentation, there is a trade-off between counterfactual age precision
and the total computational budget required to train a model with
counterfactual augmentation. We show in the following sections, that
our age quantisation is sufficient to provide discriminative models with
state-of-the-art performance on underrepresented age groups, despite
the relatively course age ranges.

3.2. Downstream predictive equity

In this section, we demonstrate CounterSynth’s ability to improve
the average performance, and the worst-demographic-subpopulation
performance, of a classifier trained on demographically-imbalanced
data. We also demonstrate CounterSynth’s ability to lessen the extent
to which a classifier learns spurious correlations between demographic
attributes and the target label.

3.2.1. Experiment: sex classification
For this experiment we create training sets with different levels of
missingness of a chosen demographic (older people), and use them to
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+5 years +10 years +15 years

Fig. 4. Example synthesis of continuous age counterfactuals for a single participant. To the left of the original we can see the brain being de-aged in 5 year increments and to
the right the brain being aged in 5 year increments. Under each sagittal, coronal and axial slices we show the absolute difference maps between the counterfactual slice and the
original one, as well as the displacement fields associated with each transformation. Ageing transformations enlarge the lateral ventricles and expand the size of the sulci. Deageing
transformations produce tightened lateral ventricles and sulci. These morphological changes are inline with the ageing deformations described in literature (Sivera et al., 2019;

Huizinga et al., 2018).

train a classifier to predict sex. We use the approaches described in Sec-
tion 2.9 to counter the negative effects of the resultant demographic
imbalance on average performance, and to boost worst-demographic-
subpopulation performance, as measured by balanced accuracy, preci-
sion and recall.

To simulate the missingness we create sets with the maximum
possible equal number of ‘younger’ and ‘middle-aged’ participants (see
Section 2.6 for age ranges), then add ‘older’ participants until they
constitute a given percentage of the total. The percentages are 0, 1, 10

10

and 25. There are equal numbers of men and women in the ‘younger’,
‘middle-aged’ and ‘older’ subpopulations.

For each combination of model and missingness we present in
Fig. 8 balanced accuracy, precision and recall for the best- and worst-
preforming demographics, average balanced accuracy, and our HEI
index (7).

The spider plots presented in Fig. 8 show that ERM’s performance
on the most under-represented subpopulation suffers a severe deterio-
ration when in the setting of marked class imbalance. This is consistent
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Fig. 5. Real and predicted ageing for two participants from the OASIS-3 dataset. We present imaging of the participant’s brain at the first collect time point, followed by that
same participant’s imaged brain at the final time point, along with associated absolute difference between the two images. Then for each method, we show the predicted brain
image for the elapsed time frame (7 and 4 years) alongside with the absolute error between the predicted volume and the ground truth. For easier visual interpretation only the

top 50th percentile of the error is shown.
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Fig. 6. SSIM (higher is better) and MSE (lower is better) between the real aged brain and the predicted synthesised aged brain for varying amounts of ageing.

with the findings presented in Oren et al. (2019), Sagawa et al. (2020)
and Zhao et al. (2020), Buolamwini and Gebru (2018). Only when the
‘older’ patients retained in the dataset reach 25% does the performance
gap between the best and worst performing subpopulations begin to
close. However, it is noticeable that even at this ratio there is a
significant difference between the best performing subpopulation and
the worst.

We find the performance of CF-Net and DRO without the use of
any augmentation to be roughly equivalent. This is likely explained
by their use of training objectives that promote invariance to features
relevant to particular demographics. Compared with ERM, both meth-
ods consistently improve performance on the worst-off subpopulation,
although only marginally when the subpopulation percentages are low
(0% and 1%). One explanation for this failure at low subpopulation
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representations is that both DRO and CF-Net need the relevant under-
represented subpopulation to be present in the data before they can
learn which features to be invariant to.

Training with counterfactuals improves general performance re-
gardless of the model that produces the augmentations. Most noticeable
is the fact that the improvements come from better predictions on
the worst-off population. This is visualised in the spider plots as an
increase in the total area covered by each method relative to ERM.
Larger HEI index are always accompanied with a larger area increase
in the spider plot. Counterfactuals produced with CounterSynth result
in the largest improvements. As shown in Sections 3.1.2 and 3.1.3 the
quality of CounterSynth counterfactuals is the highest, allowing for
the best simulation of the missing subpopulation demographics, and
thereby resulting in the highest improvements to the under-represented
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Fig. 7. The distribution of predicted ages for the CounterSynth synthesised counterfactuals. Red: Distribution of predicted ages for the ‘middle-aged’ & ‘older’ participants transformed
into ‘younger’ participants; Green: Distribution of predicted ages for the ‘younger’ & ‘older’ participants transformed into ‘middle-aged’ participants; black: Distribution of predicted

ages for the ‘younger’ & ‘middle-aged’ participants transformed into ‘older’ participants.

— [HEI: 5.1] DRO + CSYNTH
— [HEI: NJA] DRO
[HEI: NJA] DRO + SGAN

—— [HEI: 18.1] ERM + CSYNTH
—— [HEI: NJA] ERM

[HEI: 6.3] ERM + SGAN M.P.P: 0% —— [HEI: N/A] DRO + LGAN
—— [HEI: 9.3] ERM + LGAN —— [HEI: N/JA] CF-NET

Avg B-Acc) Avg. B-Acc o
P e AT

T Worst B-Acc

e
\

TN Worst B-Acc
X

P

e/,

=)
8
8

/
Best P, //

Best B-Acc (

Best B-Acc

— [HEI:
— [HEI:

[HEI:
— [HEI:
— [HEI:

15.1] DRO + CSYNTH
1.9] DRO

7.6] DRO + SGAN
9.0] DRO + LGAN
3.5] CF-NET

—— [MEI: 14.1] ERM + CSYNTH
—— [HEI: NJA] ERM
[HEI 5.4] ERM + SGAN 1
— [HEL 6.3]ERM + Lean  M-P.P: 1%
Avg. B-Acc
59 ~ Avg. B-Acc
S\ Worst B-Acc o

Best B-Acc

Worst P. Worst P.
\
/ N <
S X ~ 7
" WorstR ~/_ Worst R.
~—— [HEI: 12.6] ERM + CSYNTH - {:E: §‘§ﬂ)z%° * CSYNTH —— [HEI: 8.9] ERM + CSYNTH B 1041 DROHCSYNTH
—— [HEI: NIA] ERM : 3 —— [HEI: NIA] ERM :
] . [HEI: 7.3] DRO + SGAN L NIA ERM £/SGAN . :
—_ E:E: ;g} Egm : fgm M.PP:10%  — per: .11 0RO + LeAN —_— {HEI; 1.3]]ERM ++LGAN MIRRS2S% :
—— [HEI: 6.5] CF-NET —— [HEI: 5.6] CF-NET
Avg. B-Acc Avg. B-Acc
- g8 Avg. B-Acc o X Avg. B-Acc o
P w N\ Worst B-Acc i S Worst B-Ace o .
/ o \\ ) g N\ WorstB-Ace 4 \ S Worst B-Acc
g By lP/
Best P. Best P. Ahk \ es Bestp./
= \
Best B-Acc Best B-Acc Best B-Acc
Worst P. /

Worst P, \

Worst P.

Fig. 8. Spider plots depicting the performance of each model in terms of, on separate axes, average balanced accuracy (Avg B-Acc), best subpopulation balanced accuracy (Best
B-Acc), worst subpopulation balanced accuracy (Worst B-Acc), best subpopulation precision (Best R.), worst subpopulation precision (Worst R), best subpopulation recall (Best R.),
worst subpopulation recall (Worst R.) and, in the legend, the HEI score. The ideal model should be maximal along each axis, yielding an equilateral heptagon shape of maximum
surface area, and should exhibit the largest HEIL Dotted lines indicate 1 standard deviation. The minority population percentage (M.P.P.) is manipulated across panels as indicated
in the legend. Here we present test set results for sex classification with varying representations of ‘older’ participants. The number of ‘young’ and ‘middle-aged’ patients in the
training and validation sets is 5153, 452 respectively. Of the ‘older’ participants in the training and validation sets respectively, 1% amounts to 52, 4 participants, 10% amounts
to 572, 50 participants, and 25% amounts to 1717, 151 participants. Here ‘N/A’ indicates that AL <0 (see Section 2.3), so the HEI does not apply.

demographics. Note that at 25% representation, ERM + CSYNTH’s and
DRO + CSYNTH’s performance plots are essentially equilateral.

3.2.2. Experiment: age regression

For this experiment we create training sets with different sex imbal-
ances, and use them to train an age prediction model.

We test the approaches described at the start of Section 3.2 to
counter the negative effect on average performance and to boost worst-
demographic-subpopulation performance, as measured by mean ab-
solute error (MAE). We do not use group DRO because the official
algorithm was unstable in conjunction with our regression objectives,
and we do not use CF-Net because the official implementation does not
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support a regression objective. To simulate the missingness we create
sets with the maximum possible number of female participants and
equal numbers of ‘younger’, ‘middle-aged’ and ‘older’ participants; see
Section 2.6. Then we add male participants until they constitute a given
percentage of the total. The percentages are 0, 1, 10 and 25.

Table 3 shows that counterfactual augmentation drastically reduces
the model’s error rate on the under-represented subpopulation, while
also consistently improving its performance on the rest of the popu-
lation. Similarly to the results shown in the previous section, Coun-
terSynth augmentation leads to the biggest improvements in overall
accuracy and, most importantly to us, the biggest reductions in error for
the under-represented demographic. In this set of experiments, SGAN
augmentations provide only a very small error attenuation in the male
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Table 3

Mean absolute errors over the test set for age regression with varying representation of
male participants. The number of women in the training and validation sets is 7627,
846 respectively. The number of men in the training and validation sets respectively
for the different percentages are, for 2.5%, 195, 21; for 5%, 404, 44; for 10%, 846
and 94; for 25%, 2542, 282.

Method Men MAE Women MAE
ERM, 0% 5.14 + 0.70 3.15 + 0.44
ERM + CSYNTH, 0% 3.89 + 0.40 3.13 + 0.09
ERM + SGAN, 0% 5.06 + 0.36 3.21 +0.21
ERM + LGAN, 0% 4.82 + 0.28 3.22 + 0.27
ERM, 1% 4.27 + 0.31 3.34 £ 0.25
ERM + CSYNTH, 1% 3.51 + 0.25 3.03 + 0.04
ERM + SGAN, 1% 4.08 + 0.24 3.18 + 0.18
ERM + LGAN, 1% 3.86 + 0.30 3.20 +£ 0.13
ERM, 10% 3.92 + 0.35 3.01 + 0.33
ERM + CSYNTH, 10% 3.43 + 0.31 2.91 + 0.05
ERM + SGAN, 10% 3.81 + 0.27 2.98 + 0.14
ERM + LGAN, 10% 3.72 + 0.34 3.00 + 0.21
ERM, 25% 3.80 + 0.26 2.93 + 0.04
ERM + CSYNTH, 25% 2.92 + 0.11 2.89 + 0.12
ERM + SGAN, 25% 3.74 £ 0.31 2.97 + 0.11
ERM + LGAN, 25% 3.45 + 0.28 291 + 0.13

population, possibly because sex counterfactuals require more fine-
grained volume changes and, as illustrated in Sections 3.1.2, 3.1.3 and
3.1.4, SGAN counterfactuals are too low-resolution to represent the sub-
tleties of sex dimorphism. For similar reasons LGAN’s counterfactuals
provide a smaller attenuation of the imbalance than CounterSynth.

3.2.3. Experiment: confounders

In Sections 3.2.1 and 3.2.2 we demonstrated CounterSynth’s ability
to rectify poor population and worst-subpopulation performance given
a demographically imbalanced training set. In those experiments the
demographic attribute was not correlated with the target label — in
this section we examine what happens when it is.

A correlation between demographic and pathological labels is com-
mon in medical imaging. Many neurological disorders, such as neu-
rovascular and neurodegenerative disorders, exhibit marked correlation
with age (Arntz et al., 2016; Philpot et al.,, 1990); others, such as
neuroinflammatory disorders, with sex (Spychala et al., 2017). A good
example from UK Biobank imaging data is WMH volume: older partic-
ipants tend to have higher WMH volumes (sample Pearson correlation
coefficient of 0.38 with p < 0.0005). Studies have highlighted possible
associations between abnormally high WMH volumes and risks of
stroke, cognitive decline and dementia (DeCarli et al., 1995; Debette
and Markus, 2010).

In this section we simulate various age imbalances while training
a classifier to predict whether a participant’s WHM volume is in the
bottom three quartiles of the population versus the top quartile (see
Section 2.6). We test the six approaches described at the start of
Section 3.2 to counter the negative effects of this imbalance on per-
formance and equity. In the first experiment the population defined by
the demographic attribute most strongly correlated with the target, the
‘older’ participants, is under-represented in the training and validation
data. The population defined by the demographic attribute least cor-
related with the target, the ‘younger’ participants, is over-represented.
In the second experiment the converse is true. In both experiments we
vary the ratio of both demographics. The results are presented in Fig. 9.

Fig. 9 shows that when the underrepresented population is nega-
tively correlated with the target class (right side), ERM suffers a strong
performance deterioration even when the representation percentage is
high. On the other hand, for the positively correlated underrepresented
population (left side), ERM does manage to partially correct the perfor-
mance imbalances at 25% representation. Similarly to the experimental
setup described in Section 3.2.1, both DRO and CF-Net fail to improve
on ERM’s performance on the most underrepresented subpopulation
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when their representation is very low (1%). For higher subpopulation
representations, Fig. 9 illustrates that the directionality of the corre-
lation between the demographic and the target class is an important
consideration to have when using both DRO and CF-Net. When the
population positively correlated with the target is underrepresented
the methods improve on ERM’s performance on the underrepresented
subpopulation. However, in the reverse situation, both methods fail to
lead to improved performance.

We again see across-the-board performance improvements when us-
ing counterfactual augmentation. Similarly to the experimental setups
presented in the previous two sections, SGAN provides the smallest im-
provements, followed by LGAN and CounterSynth. The improvements
obtained are very similar across cases, regardless of the directionality
of correlation.

3.2.4. Experiment: collider bias

Here we evaluate how our six approaches remedy performance
and equity impaired by a collider bias (Griffith et al., 2020; Watson
et al., 2019; Sperrin et al., 2016), where two demographic attributes
are correlated with the target variable. Collider bias occurs when data
collection is incidentally conditioned on a particular attribute, resulting
in a distorted/false correlation between that attribute and a target
variable.

We use the experimental setup from the previous section, where
the target is WMH volume and one of the confounding demographic
attributes is age. We do not evaluate CF-Net because the official imple-
mentation (Zhao et al., 2020) does not support multiple confounders.

Here we simulate a collider bias by conditioning the generation
of two training and validation sets on sex. We begin with all of the
‘older’ males with top quartile WMH volume (see Section 2.6), then
add participants, in equal proportions male, female, ‘younger’, ‘middle-
aged’ and ‘older’, until they make up 1% of the total: this constitutes
the first set. We then repeat the process, but now continuing to add
participants until 10% and 25% of the total is reached. The test sets
are, as always, sampled from the natural distribution.

In the 10% set the sample Pearson correlation coefficient between
sex and the target is 0.84 with p < 0.0005 and between age and the
target it is 0.42 with p < 0.0005. In the 25% set the sample Pearson cor-
relation coefficient between sex and the target is 0.81 with p < 0.0005
and between age and the target it is 0.39 with p < 0.0005. For reference,
the Pearson correlation on the natural UK Biobank distribution between
sex and abnormally high WMH volumes is only 0.04 with p < 0.0005.

For each combination of model and collider bias we present (with
standard deviation): (1) balanced accuracy; (2) precision and recall for
the best- and worst-preforming subpopulation; (3) average balanced
accuracy; and (4) our index, HEI The results are summarised in Fig. 10.

Fig. 10 shows that collider bias leads to the worse overall ERM per-
formances on the WMH task. Especially at lower representations (1%
and 10%) of the natural distribution, the model suffers big performance
hits, not only on the most underrepresented population but also on the
entire test set. We notice that aside from when using counterfactuals,
DRO methods fail to improve on ERMs performance on all cases. Our
experimental setup includes a case not originally studied in Sagawa
et al. (2020) and demonstrates the methods needs some restructuring
in order to successfully operate under the effects of collider bias and
distributional shift. This reported failure case for DRO is consistent with
the findings of Taori et al. (2020).

When using data augmentation, similarly to the experimental setups
presented in previous sections, SGAN provides the smallest improve-
ments, followed by LGAN and CounterSynth. This demonstrates the use-
fulness of counterfactual data augmentation in optimising predictions
obtained in situations such as clinical studies.



G. Pombo et al.

Varying 'older’ participants (Over 55)

—— [HEI: 17.2] ERM + CSYNTH
— [HEI: NJA] ERM

[HEI: 7.3] ERM + SGAN
—— [HEI: 11.9] ERM + LGAN

M.P.P:
1%

Avg. B-Acc

Avg. B-Acc

— [HEI: NJA] DRO + CSYNTH
— [HEI: NJA] DRO

[HEI: NJA] DRO + SGAN
— [HEI: NJA] DRO + LGAN
— [HEI: NIA] CF-NET

5

Medical Image Analysis 84 (2023) 102723

Varying 'younger' participants (Under 50)

—— [HEI: NJA] DRO + CSYNTH
—— [HEI: NJA] DRO

[HEI: NJA] DRO + SGAN
—— [HEI: NJA] DRO + LGAN
—— [HEI: NJA] CF-NET

—— [HEI: 15.9] ERM + CSYNTH
— [HEI: NJA] ERM

[HEI: 7.3] ERM + SGAN
—— [HEI: 11.5] ERM + LGAN

M.P.P:
1%

Avg. B-Acc

Avg. B-Acc

- Lo = \’*-ﬁ\/wovaz B-Acc
e
: 5 \ BestP. i/ 3
\ | \
rBeste-Ace “‘ | | Best B-Acc
/ \ / \ |
\ /
/ Worst P\ Worst P
\
~L ~WorstR ~__ " WorstR i ~ A e
BestR Hesti BestR.
— {:E: :ﬁ)]];gm + CSYNTH _ {:E: i"é]ZLiRoo HESXNIE — [HEI: 13.4] ERM + CSYNTH _ {:E: zﬁz}%ﬁ%‘ CSYNTH
[HEI: 12.2] ERM + SGAN  M.P.P: [HEI: 13.5] DRO + SGAN e M.P.P: [HEI: NJA] DRO + SGAN
: 12. PP: — [HEK: 16.1] DRO + LGAN [HEI: 4.8] ERM + SGAN -P.P: — i N/AIDRO < LCAN
— [HEL 17.0] ERM + LGAN 10% 16 —— [HEI" 8.6] ERM + LGAN 10% [HEI: NIA] +L
— [HEI: 6.6] CF-NET — [HEI: NIA] CF-NET
Avg.B-Ace Avg. B-Acc

Avg. B-Acc

8 Worst B-Acc A i
© ’\"I»’INY B-Acc
e

" WorstR.

BestR.

. Worst B-Acc
\  Worst B-Acc

—1

65/ 7 75 80 §5

| BestB-Acc
|

" WorstR

BestR

— [HEI: 11.3] ERM + CSYNTH

[HEI: 9.1] DRO + CSYNTH

— [HEI: NJA] ERM M.P.P:
[HEI: 2.9] ERM + SGAN 25%
. : 0
[HEI: 6.9] ERM + LGAN —— [HEI: 6.4] CF-NET
Avg. B-Acc -
T8 Avg. B-Acc ™~
F8 T\ Worst B-Acc A I
= “ - 8 < Worst B-Acc
rie w0
Best \ Best P../ \
\ / \
\ [ \
I Best B-Acc | I Best B-Acc
/ \ /
\ / ‘\ /
Worst P\ // Worst .\
~ i “WorstR ~WorstR

-+
BestR

— [HEI: N/A] DRO + CSYNTH

— [HEI: 14.2] ERM + CSYNTH — [HEI: N/A] DRO

—— [HEI: NJA] ERM

[HEI: 5.0 ERM + SGAN B e
—— [HEI: 10.7] ERM + LGAN 25% P [HE,; NIA] CF-NET
Avg. B""ffb— 8 Avg. B-AcC -~
= . Worst B-Acc o' o A
Lg /\/I rst B-Acc ::?: onvsl B-Acc
Best P. 7,' =

|
I-Best B-Acc
|

~" WorstR

Fig. 9. Spider plots depicting the performance of each model in terms of, on separate axes, average balanced accuracy (Avg B-Acc), best subpopulation balanced accuracy (Best
B-Acc), worst subpopulation balanced accuracy (Worst B-Acc), best subpopulation precision (Best R.), worst subpopulation precision (Worst R), best subpopulation recall (Best R.),
worst subpopulation recall (Worst R.) and, in the legend, the HEI score. The ideal model should be maximal along each axis, yielding an equilateral heptagon shape of maximum
surface area, and should exhibit the largest HEI Dotted lines indicate 1 standard deviation. The minority population percentage (M.P.P.) is manipulated across panels as indicated
in the legend. On the left: Test set results for WMH volume classification with varying levels of imbalance for ‘older’ participants. The number of ‘young’ and ‘middle’ patients
in the training and validation sets is 5153, 452 respectively. Of the ‘older’ participants in the training and validation sets respectively, 1% amounts to 52, 4 participants, 10%
amounts to 572, 50 participants, and 25% amounts to 1717, 151 participants. On the right: Test set results for WMH volume classification with varying levels of imbalance for
‘younger’ participants. The number of ‘older’ patients in the training and validation sets is 6305, 566 respectively. Of the ‘younger’ participants in the training and validation
sets respectively, 1% amounts to 64, 6 participants, 10% amounts to 700, 63 participants, and 25% amounts to 2101, 188 participants. Here ‘N/A’ indicates that AL < 0 (see

Section 2.3), so the HEI does not apply.
4. Discussion

With arguably the greatest strength of complex modelling - its
individuating power — comes a critical vulnerability: differential per-
formance across diverse subpopulations in proportion to their represen-
tation in the training data (Buolamwini and Gebru, 2018; Larrazabal
et al.,, 2020; Hashimoto et al., 2018; Barocas et al., 2017). Where
the sampling of the foreground signal of interest is insufficient to
reveal its structure, to any conceivable model, adding more data is the
only viable solution. But where differential performance arises from
the conflation of foreground and incidentally correlated, irrelevant
background features, systematic manipulation of the background alone
may provide an adequate remedy. Crucially, such manipulation may
be informed by data from another domain, executed by models trained
under large-scale data regimes infeasible in the target domain.

Here we demonstrate for the first time in the realm of brain imaging
a robust method for achieving this by counterfactual synthetic data
augmentation constrained to morphological features of the background.
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We show that this approach can enhance performance on minority sub-
populations defined by multiple interacting factors, promoting equity
without a cost to the rest of the population, indeed with added benefit
(Section 3.2). Whereas a closed framework, reliant on redistributing
model attention within the domain, such as group distributionally
robust optimisation (Sagawa et al., 2020), will generally improve per-
formance in one subpopulation at the cost of degrading it in another,
an open framework that transfers knowledge from another domain has
the potential to improve equity at no overall cost.

Seven points of necessity, optimality, generalisability, and scope
arise.

First, it should be recognised that in medicine the acquisition of
large scale data is often limited by constitution rather than practicality.
Neurology in particular is replete with pathological conditions too rare
to allow the data scales to which contemporary machine vision archi-
tectures are accustomed. Amyotrophic Lateral Sclerosis, for example, is
diagnosed in only 670 new patients across the UK annually. Operating
with comparatively small scale data is, and always will be, the norm
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Fig. 10. Spider plots depicting the performance of each model in terms of, on separate axes, average balanced accuracy (Avg B-Acc), best subpopulation balanced accuracy (Best
B-Acc), worst subpopulation balanced accuracy (Worst B-Acc), best subpopulation precision (Best R.), worst subpopulation precision (Worst R), best subpopulation recall (Best R.),
worst subpopulation recall (Worst R.) and, in the legend, the HEI score. The ideal model should be maximal along each axis, yielding an equilateral heptagon shape of maximum
surface area, and should exhibit the largest HEIL Dotted lines indicate 1 standard deviation. The percentage of the natural distribution (P.N.D.) is manipulated across panels as
indicated in the legend. Test set results for WMH volume classification with sex and age as collider variables. Here ‘N/A’ indicates that AL < 0 (see Section 2.3), so the HEI does

not apply.

here, making data efficiency an essential aspect of complex analytic
methods with real-world ambitions.

Second, if the necessity for conventional data augmentation, such
as geometric transformations, is conceded by its widespread use in
contemporary medical imaging models, then its extension to other fea-
tures to which invariance should be promoted is entirely natural. Note
that the biologically-informed augmentation introduced here cannot

plausibly be replaced by random non-linear transformations that could
superficially mimic it because to achieve adequate disentanglement
from correlated factors we need to replicate biologically structured
patterns of background variation.

Third, though non-linear image registration can be used to ho-
mogenise images morphologically (Klein et al.,, 2010), it does not
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provide a practicable means of reducing background contextual en-
tanglement. The regularisation on which robust non-linear registra-
tion depends inevitably retains substantial morphological signals as
demonstrated by the excellent performance of age regression and
sex-classification models on registered data (Section 3.1). Moreover,
whereas augmentation need only be confined to training, a registration-
dependent analytic framework requires test data to be transformed into
the same space: a task not easily accomplished without interference
from foreground pathology.

Fourth, the proposed augmentation strategy does not assume, but
is inevitably sensitive to, the preservation of the foreground signal in
the act of translation. This is the core rationale for restricting the gen-
erator to diffeomorphic morphological deformations that leave tissue
intensity signals broadly intact (Section 3.1.1). Where the foreground
signal is itself morphologically conveyed, the synthetic mechanism may
conceivably distort it. But whether or not such distortion offsets the
benefits of augmentation is quantifiable at test time, and will depend
on the task and the nature of the pathology. Crucially, the use of a
more expressive synthetic model is not necessarily desirable, for the
risk of distortion or even erasure of the pathological signal is thereby in-
creased. In situations where the background requires an intensity-based
manipulation, an analogous non-morphological generative architecture
would be appropriate.

Fifth, though our method is here applied to the promotion of
equitable model performance, its use has the potential to harden a
model to distributional shift (Kaushik et al., 2020) and reduce the
risk of underspecification (D’Amour et al., 2020; Larrazabal et al.,
2020) by counterfactually exposing it to a wider diversity of plausi-
ble foreground-background combinations than the training data alone
contains. This should not only lessen model dependence on domain-
specific features with poor generalisability, but enable training a model
to become cognisant of specific, directed, counterfactually-defined con-
textualising backgrounds, before they are even encountered in the
wild.

Sixth, the ability to learn, transferrably, a characteristic such as age
or sex from a set of data will be sensitive to other characteristics, such
as the presence of incidental pathology, to the extent to which they
interact with it. While we minimise this sensitivity by constraining the
expressivity of our synthetic mechanism to modulations of morphol-
ogy, its magnitude is an empirical question to be answered in any
specific modelling scenario by quantifying the fidelity of retrieval of
the conditioning characteristic from a separate set of synthesised data.
Performing such quantification on the target set of interest may be
complicated by the presence of pathology, but the value of the overall
augmentation process is in any event ultimately determined by the
fidelity of the downstream task, evaluated on held out data.

Finally, casting light on the equity of model performance across
subpopulations reveals a pressing need for a quantitative ethical frame-
work that allows formal comparison across both architectures and
trained models. Here we build on concepts derived from econometrics
to suggest a novel index (Section 2.3), the Holistic Equity Index, that
addresses the specific needs of the task, with potential utility in other
areas.

5. Conclusion

CounterSynth is a novel conditional generative model of diffeo-
morphic deformations that induces label-driven, biologically plausible
changes in volumetric brain images with potential utility in enabling
biologically structured counterfactual augmentation.

We demonstrate by longitudinal data ageing prediction
(Section 3.1.3), voxel-based morphometry (Section 3.1.1), demographic
classification (Section 3.1.4), and Fréchet inception distance (Sec-
tion 3.1.2) that CounterSynth produces anatomical deformations
closely replicating the actual demographic morphological differences
observed in UK Biobank and OASIS-3 data.

16

Medical Image Analysis 84 (2023) 102723

Extensive comparative evaluation (Section 3.2) on demographically
imbalanced tasks with and without confounders further demonstrates
that the use of counterfactual augmentation results in state-of-the-
art improvements to both overall fidelity and equity of discriminative
models, optionally operating in synergy with other fairness methods
such as DRO.

The enviable power of complex modelling in the realm of medical
imaging has brought increased focus on the necessity to match perfor-
mance with equity across heterogeneous populations. Our model and
associated analyses cast light on the problem of equity in modelling
brain images, and provide theoretical and practical elements of a
framework that will enable researchers and clinicians to tackle it head
on.
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