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ABSTRACT: Unactivated olefins are converted to alkyl azides with bench-stable NaN3 in the presence of FeCl3·6H2O under blue-
light irradiation. The products are obtained with anti-Markovnikov selectivity, and the reaction can be performed under mild
ambient conditions in the presence of air and moisture. The transformation displays broad functional group tolerance, which renders
it suitable for functionalization of complex molecules. Mechanistic investigations are conducted to provide insight into the
hydroazidation reaction and reveal the role of water from the iron hydrate as the H atom source.

Organic azides are an integral part of an array of drug
molecules, energetic materials, and chemical probes.1

They also are valuable building blocks in the synthesis of
natural products, pharmaceuticals, and agrochemicals.2 As
synthetic handles, azides have found widespread application in
classic methods such as Staudinger reduction and ligation,3

Huisgen cycloaddition4 and click chemistry,5 as well as
Schmidt6 and aza-Wittig reactions.7 More recently, azides
have been utilized as nitrene precursors in transition-metal-
catalyzed C−H bond aminations.8 Especially in the context of
multistep synthesis, R−N3 can serve as a protected amine.9

Herein, we report the first iron- and light-mediated anti-
Markovnikov hydroazidation of unactivated olefins (Figure 1).
The transformation employs NaN3 as a bench-stable10 azide
source, tolerates air and moisture, and proceeds under mild
conditions allowing for a wide functional group compatibility.

The widespread application of organic azides in synthetic
chemistry and biology necessitates methodologies to access
them directly from readily available starting materials.
Traditionally, organic azides have been synthesized via
nucleophilic substitution as well as diazo- and azido-transfer
reactions.11 In a complementary approach, direct trans-
formations of olefins to alkyl azides have been explored.
Early studies by Hassner and Kropp focused on the addition of
HN3 to alkenes, affording the corresponding Markovnikov
products (Figure 2A).12

Milder and more broadly applicable conditions for the
Markovnikov hydroazidation of unactivated olefins were
developed in our group which employ a cobalt catalyst, silane,
and TsN3.

13 Boger later disclosed a Markovnikov hydro-
azidation that is presumed to proceed via an iron hydride
species.14 To obtain anti-Markovnikov addition products,
multistep sequences were required. Only recently has the
direct anti-Markovnikov azidation of double bonds been
reported (Figure 2B). Chiba and Gagosz have investigated a
hypervalent iodine reagent (azidobenziodoxolone, ABX) for
the hydroazidation of homoallylic benzyl ethers with the latter
serving as intramolecular H atom donor in the reaction.15 Yu
and co-workers have documented a hydroazidation reaction of
unsaturated aryl amides using an Ir photocatalyst and
TMSN3.

16 Most recently, Xu and Liu independently generated
the active hypervalent iodine reagent ABX in situ from TMSN3
and a benziodoxolone to achieve anti-Markovnikov hydro-
azidation.17 Despite these important advances, convenient
procedures using NaN3 as an off-the-shelf, inexpensive azide
source are lacking.
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Figure 1. Iron-mediated photochemical anti-Markovnikov hydro-
azidation of unactivated olefins.
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Our interest in metal-mediated olefin hydroazidation
reactions and, more recently, alkene functionalization and
photochemical methods has led us to examine approaches to
alkyl azides.13,18 Applications of transition-metal salts (e.g.,
CuII, TiIV, and FeIII) under visible-light irradiation caught our
attention.19 The excitation of these salts with visible light
induces ligand-to-metal charge transfer (LMCT), resulting in,
for example, dichlorination, diazidation, or Giese reac-
tion.19c−g,20 We focused on the most abundant transition
metal and hypothesized that the use of radicals generated from
an iron complex under blue-light irradiation may be suitable to
effect hydroazidation in a mild and selective manner. To this
end, 4-phenylbutene (1a) was subjected to NaN3 (3.0 equiv)
and Fe(NO3)3·9H2O (1.0 equiv) in dichloromethane (0.2 M)
and irradiated (λmax = 446 nm, 350 W blue LED photoreactor;
for technical details see the Supporting Information) for 16 h
at room temperature. In this experiment, primary azide 2a was
observed in 36% yield (Table 1, entry 1). Further studies
revealed that FeCl3·6H2O in CH2Cl2 afforded the highest yield

among all investigated iron salts (for details see the Supporting
Information). As azides are known to displace the chlorides in
CH2Cl2, subsequently generating highly explosive intermedi-
ates,21 solvent alternatives were investigated. The use of polar
solvents such as acetone, ethyl acetate, and MeCN did not
yield any hydroazidation, instead giving the diazide in a range
of yields (for details see the Supporting Information).19c,d In
contrast, employing less polar solvents such as haloarenes
yielded monoazide in a good yield. Of the alternatives
investigated, α,α,α-trifluorotoluene (PhCF3) performed best.
Under optimized conditions (1.5 equiv of FeCl3·6H2O, 3.0
equiv of NaN3, PhCF3 (0.2 M), 0 °C for 16 h, blue LEDs,
entry 2), 2a was formed in 83% yield.
Control experiments were performed to gain further insights

into the transformation (for details including oxygen
sensitivity, see the Supporting Information). When the
reaction was conducted with TMSN3 under otherwise identical
conditions, 2a was produced in 17% yield (entry 3). The
reaction did not provide the product in the absence of iron salt
or light, and 1a was fully recovered (entries 4 and 5). If
anhydrous FeCl3 was used in oven-dried glassware under
otherwise identical conditions, merely traces of the product
were formed, indicating the necessity of water (entry 6). When
using a 40 W blue LED Kessil light at 25% intensity, the best
results were obtained at room temperature (entry 7; for details
see the Supporting Information).
With the optimized conditions in hand, we set out to

investigate the functional group tolerance of the hydro-
azidation reaction (Figure 3). To this end, a variety of alkyl
azides were accessed in moderate to high yields from the
corresponding alkenes.22 When vinyl silane 1b was subjected
to the reaction conditions, β-silyl azide 2b was obtained in 80%
yield. Alkyl azides 2c and 2d were isolated in yields of 73 and
80% from primary haloalkenes 1c and 1d. Notably, no
substitution of either chloride or bromide was observed
under the reaction conditions. 1-Dodecene yielded 2e in 86%
yield. A variety of electron-poor and -rich arenes were
tolerated, furnishing 2f−2h in 81−90% yield. Substrates
containing protic groups, such as alcohol 1i, tosyl amide 1j,
carbamate 1k, and N-tosyl imide 1l, were converted to the
corresponding azides in 65−82% yield. Acid-labile t-BuMe2Si-
protected alcohol 1m afforded 2m in 61% yield. Methyl
carbonate 1n and thioether 1o were competent under reaction
conditions, resulting in 2n and 2o in 85 and 43% yield,
respectively. Azides 2p−2s were accessed in 62−75% yield.
Markedly, alkenes bearing a heterocycle, such as thiophene,
furan, phthalimide, oxetane, and pyridine, were also well
tolerated and gave rise to products 2t−2x in 44−86% yield.
The practical aspects of the method were demonstrated by the
synthesis of 2a on a larger scale (2.0 mmol) in 75% yield. All
terminal olefins underwent anti-Markovnikov hydroazidation
in excellent selectivity (rr =12:1 to >20:1; for details see the
Supporting Information).
Next, the effects of the alkene substitution patterns were

examined. The reaction was amenable to di-, tri-, and
tetrasubstituted olefins. 1,1-Disubstituted olefins 1y to 1aa
afforded primary azides in 73−78% yield. Substrates bearing a
tosylate, malonate, acetal, or carbamate were successfully
converted to products 2ab−2ae in 40−75% yield. β-Adamantyl
azide 2af was accessed in 77% yield. Acyclic and cyclic 1,2-
disubstituted alkenes were subjected to the reaction con-
ditions, furnishing the corresponding azides 2ag−2aj in 51−
83% yield. Strained olefins, in particular norbornene and

Figure 2. Approaches toward (A) Markovnikov and (B) anti-
Markovnikov hydroazidation of unactivated olefins and (C) desired
transformation.

Table 1. Optimization of the Reaction Conditions

entry deviation from standard conditions 2aa (%)

1 Fe(NO3)3·9H2O (1.0 equiv), CH2Cl2, rt 36
2 none 83
3 TMSN3 instead of NaN3 17
4 no iron salt 0
5 no light 0
6 FeCl3 instead of FeCl3·6H2O <5
7 40 W blue LED Kessil light, rt 80

aYield obtained by 1H NMR with mesitylene as internal standard.
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dicyclopentadiene, were hydroazidated in high yield (80 and
85%, respectively).23 Trisubstituted olefins were well tolerated,
giving rise to secondary azides with 2am and 2an isolated in 63
and 52% yield. All di- and trisubstituted olefins employed
underwent anti-Markovnikov azidation in good regioselectivity
(for details see the Supporting Information). Finally,
tetrasubstituted alkenes 1ao and 1ap yielded 2ao and 2ap in
66 and 45% yield, respectively.
Encouraged by the broad functional group tolerance of the

hydroazidation reaction, we set out to explore the generality of
the protocol in a more complex setting. An array of alkenes
derived from active pharmaceutical ingredients and natural
products was subjected to the reaction conditions (Figure 4).
To our delight, these substrates led to the formation of desired
azides 4a−4u in good yields (40−86%). In particular,
molecules featuring diversely substituted arenes and hetero-
cycles, such as oxazoles, indoles, thiazoles, β-lactams, and
diazoles were well tolerated, indicating the potential of this
method for late-stage application.

In order to deal with the volatility and inherent risk of low-
molecular-weight azides, we examined several transformations
subsequent to hydroazidation. One-pot procedures would
avoid work-up, solvent evaporation, purification, isolation, and
handling of the azide intermediates (Scheme 1). First, attempts
to perform a Cu(I)-catalyzed azide−alkyne click reaction in
situ were unsuccessful. We observed that the addition of NEt3
was crucial for the formation of triazole 7a in 76% yield. When
cyclooctyne was employed as a reaction partner, triazole 7b
was isolated in 54% yield from volatile azide 2ao. Primary
amine 7c was accessed in 72% yield through Pd-catalyzed
hydrogenation, and Staudinger reduction of cyclohexyl azide
2ah with subsequent Boc-protection furnished the correspond-
ing carbamate 7d in 62% yield.
To gain mechanistic insights into the hydroazidation, a

series of experiments was conducted (Figure 5). Initial
investigations focused on determining whether radical species
are involved in the reaction. The addition of 2.0 equiv TEMPO
as radical scavenger24 under standard conditions suppressed

Figure 3. Substrate scope. Reaction conditions: olefin (0.20 mmol), NaN3 (0.60 mmol), FeCl3·6H2O (0.30 mmol) in PhCF3 (1.0 mL), irradiation
in 350 W photoreactor at 0 °C for 16 h. dr determined by 1H NMR of the unpurified reaction mixture. aCarried out on 2.0 mmol scale with a 40 W
blue LED Kessil light at rt. bYield obtained by 1H NMR with mesitylene as internal standard. c8 h reaction time.
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the reaction, and no hydroazidation product could be detected
by either 1H NMR or HRMS. Instead, alkene starting material
was recovered.
In the context of our examination of the substrate scope,

when aldehyde 8 was subjected to the standard reaction
conditions, we observed 1-azido-4-methylpentane (9) as the

sole product (Figure 5B). This is consistent with the formation
of a secondary carbon-centered radical from the olefin followed
by a 1,5-radical hydrogen atom abstraction from the aldehyde.
Decarbonylation affords the more stable tertiary radical which
is quenched.25

This result prompted us to examine substrates 10a and 10b
which could undergo 5-exo-trig cyclization reactions (Figure
5C). N-Tosyl diallyl amine furnished pyrrolidine 11a in 55%
yield, and diethyl diallylmalonate delivered the corresponding
cyclopentyl product 11b in 79% yield. For both substrates,
only cyclization products were isolated, suggesting that
quenching is slower than cyclization for 10a and 10b.26

It has been proposed in the literature that under visible-light
irradiation Fe(III) azides generate Fe(II) salts along with
azidyl radicals.19c,d Based on these reports, in the system we
describe the azidyl radical can then add (anti-Markovnikov) to
the olefin to provide a reactive carbon-centered radical.27 This
intermediate is ultimately quenched by an H atom donor.
Accordingly, we set out to identify the origin of the hydrogen
atom involved in the quenching.
It has previously been observed that hydrates of boron

(Me3B·OH2) and titanium (Cp2ClTi·OH2) serve as H atom
donors in radical reactions.28 Consequently, we hypothesized
that the iron-bound water in FeCl3·6H2O might be involved as
an H atom source. In an experiment in oven-dried glassware

Figure 4. Substrate scope for olefins derived from natural products and drugs. dr determined by 1H NMR of the unpurified reaction mixture.

Scheme 1. Sequential One-Pot Transformations
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under a nitrogen atmosphere, D2O was added to anhydrous
FeCl3 followed by addition of PhCF3/NaN3/4-phenylbutene
(Figure 5D). After being stirred for 16 h under blue-light
irradiation, azidodeuterated product 2a-D1 was isolated in 18%
yield. In parallel experiments using H2O under otherwise
identical conditions, product 2a was obtained in 77% yield.
The difference in yield between the two experiments suggests a
strong primary kinetic isotope effect (kH/kD ≫ 1; for details
see the Supporting Information). These data support water as
the terminal H atom source and indicate that the H atom
transfer to the secondary carbon-centered radical likely is the
rate-limiting step of the transformation.17a,29 Although free
water is not known to be an H atom source (HBDE(HO−H) =
118 kcal/mol), its coordination to iron dramatically decreases
the bond-dissociation energy (HBDE(FeII(H2O)5(HO−H)) =
77 kcal/mol).30,31 Our observation of solvent effects described
in the optimization reactions suggests that the nature of the
solvent affects speciation of Fe(III) complexes in the presence
of azide and chloride counterions as well as water. Further
mechanistic studies to understand the nature of Fe complexes
formed, including μ2-bridged dimers, are clearly necessary as
they may provide additional avenues for the development of
new transformations.32

In conclusion, we have developed a photochemical anti-
Markovnikov hydroazidation of unactivated alkenes with
FeCl3·6H2O. The transformation shows broad functional
group tolerance and was amenable to terminal as well as
highly substituted olefins. Salient features of the reaction are its
tolerance to air and moisture and the successful use of NaN3 as
a bench-stable, low-cost, and easy-to-handle azide source. We
demonstrated that the simplicity and generality of this method
make it ideally positioned for late-stage applications, allowing
for the efficient and versatile synthesis of diverse organic azides
featuring biologically active motifs.
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