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Abstract

Background: The opioid epidemic has been ongoing for over 20 years in the United States. As 

opioid misuse has shifted increasingly towards injection of illicitly produced opioids, it has been 

associated with HIV and hepatitis C transmission. These epidemics interact to form the opioid 

syndemic.

Methods: We obtain annual county-level counts of opioid overdose deaths, treatment admissions 

for opioid misuse, and newly diagnosed cases of acute and chronic hepatitis C and newly 

diagnosed HIV from 2014–2019. Aligned with the conceptual framework of syndemics, we 

develop a dynamic spatial factor model to describe the opioid syndemic for counties in Ohio and 

estimate the complex synergies between each of the epidemics.

Results: We estimate three latent factors characterizing variation of the syndemic across space 

and time. The first factor reflects overall burden and is greatest in southern Ohio. The second 
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factor describes harms and is greatest in urban counties. The third factor highlights counties with 

higher than expected hepatitis C rates and lower than expected HIV rates, which suggests elevated 

localized risk for future HIV outbreaks.

Conclusions: Through the estimation of dynamic spatial factors, we are able to estimate the 

complex dependencies and characterize the synergy across outcomes that underlie the syndemic. 

The latent factors summarize shared variation across multiple spatial time series and provide 

new insights into the relationships between the epidemics within the syndemic. Our framework 

provides a coherent approach for synthesizing complex interactions and estimating underlying 

sources of variation that can be applied to other syndemics.
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Background

The opioid epidemic in the United States (U.S.) was declared a public health emergency 

in 2017 but has been ongoing for over 20 years [1]. The epidemic has caused substantial 

morbidity and mortality [2, 3]. In 2021, more than 100,000 people died of overdose in the 

U.S., with most deaths involving opioids [4]. With increases in injection of illicitly produced 

opioids (i.e., heroin and fentanyl), opioid misuse has increasingly been associated with 

HIV and hepatitis C (HCV) transmission. Together, these epidemics – fatal and non-fatal 

overdose, HIV, and HCV – interact synergystically as a syndemic [5] within specific social, 

temporal, and geographic contexts [6, 7]. These synergistic relationships can be used to help 

inform public health responses [5].

In Ohio, the opioid syndemic is particularly severe. Ohio had the fourth highest age-adjusted 

overdose death rate in the U.S. in 2019 at 38.3 per 100,000 residents, almost double the 

national rate [8]. Concurrently from 2014 to 2018, Ohio experienced a four-fold increase 

in acute HCV infections [9] with rates approximately 40% above the national average 

[10]. However, Ohio has yet to see injection drug-related HIV outbreaks on the scale of 

neighboring states Indiana [11, 12], Kentucky [13, 14], and West Virginia [15, 16].

The underlying driver of the syndemic is opioid misuse, but estimating opioid misuse at 

a population level is challenging because no single data source fully captures the problem 

[17, 18]. Instead, we are able to more easily observe the health outcomes related to misuse, 

such as overdose death, treatment admissions, and HIV and HCV cases, which form the 

opioid syndemic and are monitored by ongoing public health surveillance. Each outcome is 

driven by prevalence of opioid misuse in the community and the local drug use environment. 

The phrase drug use environment includes the socio-cultural environment, local drug supply, 

prevalence of infectious diseases, density of the injection networks, and availability of 

treatment and harm reduction resources. As with misuse, it is difficult to fully capture this 

complex environment at the spatio-temporal scales of interest.

While some of aspects of opioid misuse and the drug use environment may be partially 

characterized with observable covariates, it is often challenging to explicitly model the 
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complex and dynamic dependencies between epidemics. To date, methods applied to analyze 

syndemics have been limited in their ability to formally capture such complex dependencies 

[7]. However, these dependencies are of epidemiologic interest to describe the syndemic 

and guide future investigations into the specific conditions that lead to variation in how 

the syndemic is experienced across different places and times. These analytical goals are 

generally applicable to the modeling of syndemics but take on additional importance for 

examining the opioid syndemic because of the inability to observe the set of underlying 

drivers of the syndemic.

One statistical tool for understanding common, unobserved drivers of a set of outcomes in 

communities is the spatial factor model [19, 20]. Spatial factor models were developed for 

multivariate spatial data when the focus is not primarily on the outcomes themselves but, 

instead, on the underlying hidden processes (i.e., latent factors) that drive the observable 

outcomes. Conceptually, factor models are similar to latent trait [21], structural equation 

[22], and shared component models [23] that are used in other applications. When change 

over time is of interest, longitudinal [21] and dynamic [24] factor models may be used. 

Spatio-temporal factor models have typically focused on estimation of dynamic factors and 

spatial loadings [25, 26, 27, 28], which reflect spatially homogeneous longitudinal processes 

that may have heterogeneous spatial effects. More recently, models have been developed 

to estimate location-specific dynamic factors (i.e., latent factors that themselves vary over 

space and time) [29], which more closely align to the assumptions in our setting and will 

serve as our modeling foundation in this paper.

Dynamic factor models are particularly useful for studying syndemics. Implicit in the 

definition of syndemic is the belief that there is synergy, or underlying dependence, 

between multiple epidemics. Factor models provide a statistical machinery for extracting 

and describing that dependence across all or subsets of the epidemics. Within the context of 

the opioid syndemic, it is even more relevant as we theoretically believe the epidemics result 

from unobservable common causes. If we only looked at a single epidemic or outcome, 

we may be misled by outcome specific variation or error that is not directly related to the 

underlying common factors. In the factor model framework, we use factors to identify and 

synthesize variation that is common to multiple outcomes from that which is specific to each 

individual outcome. The factors then tell the collective story of the syndemic of outcomes, 

while the outcome specific variation can suggest locations where other unrelated processes 

might be influencing that outcome only. While the primary goal of the analysis is to extract 

the common underlying factors of the syndemic, location-specific departures from the joint 

patterns observed elsewhere can be informative and suggest emerging patterns that may 

warrant further investigation. For example, a location with higher overdose death rates than 

expected based on a collection of syndemic outcomes may suggest an especially potent drug 

supply in that location.

The objective of this study is to describe the opioid syndemic in Ohio from 2014 to 

2019 using a dynamic spatial factor model. Doing so will highlight complex dependencies 

between the overlapping epidemics of the syndemic and estimate hidden drivers of the 

outcomes that can be used to help inform future epidemiologic investigation.
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Methods

Data

We base our syndemic model on multiple sources of surveillance data that are routinely 

monitored by state agencies. We characterize the syndemic using four outcomes: overdose 

deaths involving opioids, treatment admissions for opioid use disorder, total cases of HCV, 

and new diagnoses of HIV. For each outcome of interest, we obtain annual county-level 

counts for each of Ohio’s 88 counties from 2014 to 2019, which is the most recent 

completely available 6-year period. We obtain annual population estimates from the Ohio 

Public Health Data Warehouse [30], which curates estimates from the National Center for 

Health Statistics, to enable the calculation of rates.

We obtain publicly available county-level counts of overdose deaths involving opioids from 

the Ohio Public Health Data Warehouse Ohio Resident Mortality Data [30], maintained by 

the Ohio Department of Health (ODH). We include all resident deaths where poisoning 

from any opioid is mentioned on the death certificate, which includes ICD-10 multiple cause 

of death codes T40.0-T40.4 and T40.6. Deaths are indexed to the county of residence of 

the decedent. We also obtain county-level counts of treatment admissions via a data use 

agreement from the Ohio Department of Mental Health and Addiction Services. Treatment 

admissions include any residential, intensive outpatient, or outpatient treatment for opioid 

misuse and are indexed to the patient’s county of residence. Counts reflect unique patients 

and do not include healthcare encounters for treatment of overdose or other complications 

due to misuse. In this analysis, treatment admissions serve as a proxy for opioid use disorder 

diagnoses. Data are broken down into two age groups but are only used in total here. State 

policy requires censoring of counts between 1 and 9, which we account for within the 

model.

We also include county-level counts of HCV and HIV cases to capture infectious disease 

dimensions of the syndemic. Both counts are collected and publicly reported by ODH. 

Due to county-level variation and substantial under-reporting of acute HCV cases, we use 

the total count of HCV cases, which provides the best indicator of trends in the burden 

of infections. The total count includes both newly diagnosed acute and newly diagnosed 

chronic cases. We also use counts of newly diagnosed HIV infections to assess trends in 

HIV. A new diagnosis of HIV is defined as a person with a diagnosis of HIV and not AIDS, 

a diagnosis of HIV and an AIDS diagnosis within 12 months, or concurrent diagnoses of 

HIV and AIDS. Cases are indexed to the county of residence at the time of diagnosis.

Statistical Considerations

We take an exploratory approach using a dynamic spatial factor analysis following the 

conceptual diagram in Figure 1. In this framework, we assume a vector of spatio-temporal 

factors, F, characterizes the unobserved common processes that drive each epidemic and 

induce dependence between epidemics. While not explicitly estimating unobserved drivers 

like opioid misuse, this model will allow us to decompose the syndemic into a set of 

spatio-temporal factors that will help to illuminate complex patterns that can guide future 

investigations and enhance epidemiologic knowledge of the syndemic. Our framework 
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serves as a bridge between the multivariate statistical problem of modeling a syndemic 

and the theoretical problem that the opioid syndemic is driven by common unobservable 

processes.

Let Y ijk be the observed count for outcome k in year j in county i. In our case, we have 

k = 1, …, 4 outcomes (treatment, death, HCV, and HIV). We assume a spatial rates model 

[31]:

Y ijk ∼
ind

Poisson Eijkλijk
(1)

where λijk is the relative risk of outcome k in year j for county i compared to the expected 

count standardized to the state-level rate in 2014 j = 1 . That is, Eijk = P ijrk where P ij is the 

total population in county i in year j and rk is the overall state rate of outcome k in 2014 (i.e., 

rk = ∑i Y i1k / ∑i P i1 ). The adjustment for censoring [32] of treatment counts is shown in the 

eAppendix.

Let Fij denote the D-dimensional vector of dynamic spatial factors at location i in year j. 
These factors estimate the common underlying processes, or shared variation, across the 

outcomes of the syndemic. In this paper, we use D = 3. We assume the following generalized 

linear model to relate Fij to relative risk for the observed outcomes:

log λijk = Γk
′ Fij + ϵijk . (2)

We define factor loadings for outcome k, Γk, as the ktℎ column of the D × D matrix Γ. To 

ensure identifiability, Γ is constrained to be lower triangular with entries of 1 on the main 

diagonal. The factor loadings determine how each factor relates to each outcome and reflects 

the multivariate relationships common across locations and years. We assume ϵijk ∼
ind

N 0, σk
2

is an error term to account for uncorrelated heterogeneity and overdispersion. That is, ϵijk is 

outcome-specific variation that is not explained by the common factors.

In general, the selection of the dimension of the factors D and the construction of the matrix 

Γ will be application specific. The number of factors D must be less than the number of 

outcomes and can be selected by an optimization of model fit or theoretical considerations. 

Likewise, there are identifiability constraints on the specification of the factor loadings Γ, 

but as long as those constraints are met [33, 34], the loadings can be specified to ease 

interpretation of the factors or align with theoretical understanding. Here, we choose a 

specification of Γ that leads to factors that are epidemiologically meaningful within our 

application.

The model parameters of primary interest are the dynamic spatial factors. From Equation 

2. we note that Fij is shared across each outcome as it lacks an outcome specific subscript 

k. Thus Fij characterizes the shared latent processes that drive the set of outcomes and 

describe the interrelationships that define the syndemic. The vector of factors is dynamic 

and spatial as it varies over time for each county. Let fijd denote the dtℎ element of Fij and 
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assume an intrinsic conditional autoregressive model of spatial correlation [35, 36] with an 

autoregressive of order 1 (AR(1)) temporal dependence structure. We assume for j = 1 (i.e., 

2014):

fi1d ∣ f−i1d ∼ N μ1d +
ℓ

wiℓ

wi +
fℓ1d − μ1d , τd

2

wi +
, (3)

and for j > 1:

fijd ∣ f−ijd, fi j − 1 d ∼ N μijd +
ℓ

wiℓ

wi +
fℓjd − μℓjd , τd

2

wi +
, (4)

where μijd = μjd + ηd(fi j − 1 d − μ j − 1 d), μjd is a mean for factor d at year j, ηd is an autoregressive 

parameter for factor d, τd
2 is a variance, and f−ijd is the vector of factor d for all counties 

excluding county i in year j. We let wiℓ be an indicator of whether counties i and ℓ are 

neighbors (i.e., share a boundary) and wi +  be the total number of neighbors for county 

i. This structure implies within each factor the value for a particular county is correlated 

with its value the previous year and the values of its neighboring counties. Since the 

intrinsic conditional autoregressive model is an improper probability distribution, we enforce 

a necessary centering constraint so it is a valid process model [35].

We fit the model within the Bayesian paradigm and must specify prior distributions for 

all unknown parameters. In general, we use weakly informative prior distributions for 

all parameters. As mentioned above, the factor loadings matrix Γ is constrained to be 

lower triangular for identifiability. For the (i, j)tℎ non-constrained element of Γ, we assume 

γij ∼
iid

N(0, 100) for i > j. Constrained elements of Γ are fixed at 1 for i = j and 0 for 

i < j. For each of the time-varying factor mean parameters μjd, we assume independent 

uniform prior distributions on the real line. Each autoregressive parameter ηd is assigned 

an independent Uniform(0,1) distribution. Finally, all variance parameters σk
2 and τd

2  are 

given independent inverse gamma prior distributions with shape and scale parameters equal 

to 0.5. We fit the model using a Markov chain Monte Carlo algorithm implemented in 

nimble [37] in R for 500,000 iterations. We discard the first 250,000 iterations as burn-in 

and thin the remaining samples by 50. We assess convergence visually using trace plots. 

Computation took approximately 8 hours using the DEAC cluster [38]. Code is available in 

the eAppendix.

This project was reviewed and deemed exempt by the Wake Forest University Institutional 

Review Board.

Results

In Table 1, we present descriptive statistics of the observed county rates of each outcome 

per 100,000 residents over the course of the study period. For summary purposes, treatment 

rates are computed by assuming censored counts equal 5. Throughout the six year study 

period, median treatment rates increased each year and the rate in 2019 was almost 2.5 
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times the rate in 2014. For both death and HCV rates, the median increases to a peak in 

2016 and 2017 with slight declines at the end of the study period, although median rates 

still exceeded those in 2014. Median rates of HIV remained fairly constant throughout 

the six years studied. Observed log rate ratios for each outcome are shown in eFigure 1, 

standardized to expected state-level rates for each outcome in 2014.

The parameters of primary interest are the dynamic spatial factors that characterize the 

synergy and shared variation of the epidemics that compose the syndemic. Posterior mean 

estimates of the three factors are shown in Figure 2. Since 2014 was used as a baseline, 

estimates of the factors are relative to 2014. That is, a value of 0 corresponds to the state 

average value in 2014. Posterior estimates of the loadings are shown in Table 2, which 

provide necessary context for interpreting the factor estimates. The loadings illustrate the 

relative contribution of each outcome to each factor and also the constraints applied to Γ.

Figure 2(A) gives the posterior mean estimates of Factor 1. Based on Table 2, the first 

factor characterizes variation shared by all four outcomes with the most weight on treatment, 

death, and HCV. We can interpret this factor as the overall latent burden of the syndemic 

over space and time, which reflects shared variation across all four outcomes. That is, Factor 

1 estimates an underlying hidden process that is related to all of the outcomes. In general, 

we see temporally increasing trends across the state. In the first 3 years, above average 

counties are mostly concentrated in the southern portion of the state. As the time series 

advances, estimates across most of the state shift to above the baseline average with the 

largest estimates still concentrated in southern Ohio. The maps of Factor 1 generally align 

with the current understanding of the geographic burden of the opioid syndemic in Ohio, 

providing a degree of qualitative validity.

The posterior mean estimates of Factor 2 appear in Figure 2(B). From Table 2, we see that 

Factor 2 is composed of shared variation from the harms of opioid misuse (death, HCV, and 

HIV) and is particularly weighted towards HIV. Practically, we are able to use Factor 2 to 

describe counties where rates of harms are above or below what would be expected based 

on the joint relationship across outcomes after accounting for Factor 1. That is, Factor 2 

highlights counties where the harms are disproportionate to what would be expected given 

the number of treatment admissions. The general temporal trend of Factor 2 is increasing 

through 2016 and then decreasing through the end of the time series. Spatially, above 

average areas are primarily concentrated in the state’s largest cities, Cincinnati (southwest), 

Columbus (central), and Cleveland (northeast). While the general burden is concentrated 

in rural southern Ohio, rates of harms are higher in the state’s urban counties, particularly 

overdose death and HIV. This is also likely due to higher rates of treatment in southern Ohio 

relative to the rates of harm in that part of the state and thus below average estimates of 

Factor 2. This is also apparent by examining the observed and estimated log standardized 

rate ratios in eFigures 1 and 2.

In Figure 2(C), we show the posterior mean estimates of Factor 3. Factor 3 is positively 

associated with HCV and negatively associated with HIV (Table 2). This reflects remaining 

shared variation between HCV and HIV that is not already accounted for in Factors 1 and 2. 

That is, Factor 3 is greater for counties where rates of HCV exceed what would be expected, 
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but HIV rates are below expected. This factor provides an interesting epidemiologic 

construct because HCV is often used as an early warning proxy for the potential of HIV 

outbreaks. Essentially, Factor 3 is highlighting counties at risk of but not yet experiencing 

HIV outbreaks. The general temporal trend in Factor 3 is similar to the other factors with 

increases followed by decreases. Spatially, the largest estimates of Factor 3 are in southern 

and southeastern Ohio, which is the Appalachian region of the state. As seen in eFigures 1 

and 2, this region has some of the highest rates of HCV in the state but below average rates 

of HIV, which suggests that networks exist for transmission of injection-related infectious 

diseases, even if HIV has yet to penetrate those networks.

The trends in the estimated factors described above can also be seen in eFigure 3. In eFigure 

3, we plot each county’s time series for the posterior mean of each factor. County time series 

are colored by region, as defined in eFigure 4, to further highlight the geographic trends 

illustrated by the maps of the estimates.

We highlight seven counties in Figure 3 to illustrate the general themes discussed above. 

For Factor 1, we see the Appalachian counties (Scioto, Jackson, Pike) and Montgomery 

(Dayton) have the highest estimates. Franklin (Columbus) and Hamilton (Cincinnati) are 

closer to the state average. Focusing on harms illustrated by Factor 2, the urban counties 

(Hamilton, Montgomery, Franklin) have the highest values which peak around 2016. In 

2017, estimates for Factor 2 also increase for Pike and Scioto counties. Finally for Factor 

3, all of the urban counties are below the state average while the Appalachian counties are 

above the state average. These counties are known to have a high burden of HCV and have 

been identified as being at high risk of an HIV outbreak [39]. We also note that Delaware, a 

wealthy county outside of Columbus, is below the state average for all three factors.

Finally, we can also extract useful meaning from the uncorrelated heterogeneity and show 

posterior mean estimates of the random effect in eFigure 5. These estimates characterize 

residual variation that is unique to each outcome. For treatment, there are not particularly 

strong patterns. For death, we see larger estimates in the southwest and northeast corners 

of the state. These correspond to the Cincinnati/Dayton and Cleveland areas, respectively. 

Both of these regions saw high death rates, particularly from 2015–2017, due to the influx of 

illicit fentanyl and carfentanyl which was initially centered in urban areas. As these changes 

in the drug market were unrelated to the other outcomes considered, the associated increases 

in the death rates are reflected as uncorrelated heterogeneity in the model. Looking at HCV, 

rates are slightly higher in the north central region of the state than would be suggested 

by levels of the other outcomes considered. Finally for HIV, rates are higher in the state’s 

major cities: Cincinnati (southwest), Columbus (central), and Cleveland (northeast). This is 

not particularly surprising as these areas likely have more sexual transmission of HIV and 

would be less correlated with the rest of the outcomes of the opioid syndemic.

Discussion

In this paper, we develop a dynamic spatial factor model for the opioid syndemic in Ohio 

counties. Through the estimation of dynamic spatial factors, we are able to estimate the 

complex dependencies and characterize the synergy across outcomes that underlies the 
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syndemic. By examining the sources of shared variation across outcomes, we can extract 

useful epidemiologic insights to help better understand the complexities of the syndemic and 

guide future investigations. Our model also enables us to identify uncorrelated heterogeneity 

which suggests the presence of variation unique to specific outcomes and not shared across 

the syndemic.

Our approach is particularly useful for describing complex epidemiologic phenomena like 

the opioid syndemic. The syndemic is fundamentally driven by unobservable community 

processes related to misuse of opioids and the drug use environment. Since we cannot 

directly observe these processes of interest, we glean our epidemiologic insights from the set 

of related outcomes that constitute the syndemic. While one may be able to infer a picture 

similar to that given by Factor 1, it is challenging, if not impossible, to manually synthesize 

multiple spatio-temporal time series to uncover the relationships brought out by our model. 

This challenge only increases as the number of time series or the size of the spatial field 

increases. Instead, the dynamic factor model provides a principled approach for synthesizing 

shared information across time series into a lower dimensional set of factors. It also provides 

flexibility to construct factors through the specification of the loadings that are theory driven 

and epidemiologically meaningful. Our approach simplifies the complexity of the problems 

and illuminates insights that would otherwise be missed by simply examining the observed 

data.

Our descriptive analysis can motivate several future investigations to better understand 

the opioid syndemic and its spatio-temporal heterogeneity. We observe the highest overall 

burdens of the syndemic in southern Ohio as illustrated by Factor 1. These counties would 

be ideal places to study opioid misuse and the general impact of the syndemic on rural 

communities. In fact, there are existing studies doing just that [40]. We also found areas 

with excess rates of harm due to the syndemic as illustrated by Factor 2, particularly around 

Cincinnati, Columbus, and Cleveland. Future work may want to explore whether there is 

adequate access to, awareness of, and uptake of harm reduction services among people who 

misuse opioids in those communities. The results also suggest that while the overall burden 

may be highest in rural areas of the state, it is also critical to remember to adequately 

address the needs in more urban areas, which may differ from those in rural areas. Finally, 

Factor 3 highlights counties that are not experiencing HIV outbreaks currently but are at 

high risk given their observed increased rates of HCV. These counties should be targeted for 

harm reduction programs focusing on the prevention and treatment of infectious diseases, 

such as syringe service programs and rapid HIV testing. Such targeted efforts can help 

prevent injection-related HIV outbreaks like those seen in neighboring Indiana [11, 12], 

Kentucky [13, 14], and West Virginia [15, 16].

Our analysis has a few limitations. All data used in the analysis are surveillance data 

collected by the state of Ohio and can be subject to reporting biases. In particular, death 

counts are based on information reported on death certificates which can contain systematic 

errors [41]. There are also limitations to and variations in the detection and reporting of 

infectious diseases like HIV and HCV. Because the analysis uses newly diagnosed total 

HCV, some chronic cases may have been acquired in the past and be less relevant to 

the current syndemic. However, we believe most HCV cases are linked to the growth of 
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injection drug use in the state. In addition, it is likely that a substantial proportion of HIV 

cases are not related to injection, which may impact the results and lead to a stronger signal 

in more urban areas. However, a strength of this analysis is that we focus on shared variation 

across all of the outcomes, which may help to mitigate bias or error unique to any single 

outcome.

In conclusion, we have developed an approach for syndemic modeling using a dynamic 

spatial factor model. Our approach is particularly useful for the opioid syndemic because 

the underlying drivers of the syndemic are not easily observable. Through estimation of 

latent factors, we are able to summarize shared variation across multiple spatial time 

series and use the resulting estimates to gain new insights into the relationships between 

the epidemics within the syndemic. Our framework provides a coherent approach for 

synthesizing information and estimating underlying sources of variation that can be used 

to inform future investigations and interventions to mitigate harms of the opioid syndemic.
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Figure 1: 
Conceptual diagram of the model for location i in year j. HCV=hepatitis C virus. 

HIV=human immunodeficiency virus.
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Figure 2: 
Posterior mean estimates of the three latent factors from 2014–2019.
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Figure 3: 
Posterior mean estimates of each of the factors over time for selected counties.
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Table 1:

Median (first quartile, third quartile) observed county rates of each outcome per 100,000 residents from 2014–

2019. Observed treatment rates are computed by assuming censored counts are equal to 5.

Year Treatment Death HCV HIV

2014 90.4 (54.8, 117.7) 13.9 (9.2, 20.1) 97.8 (54.7, 140.1) 2.5 (0.0, 5.2)

2015 108.8 (71.8, 163.7) 16.9 (11.1, 24.6) 127.4 (80.0, 193.5) 2.6 (0.0, 4.7)

2016 137.6 (88.8, 198.1) 23.6 (11.9, 32.0) 162.0 (106.3, 232.4) 2.4 (0.0, 5.0)

2017 161.3 (111.9, 226.6) 27.7 (14.6, 41.4) 149.9 (108.3, 215.7) 2.8 (1.0, 5.9)

2018 195.6 (129.0, 274.1) 21.9 (12.5, 29.2) 132.8 (95.9, 183.6) 2.6 (0.0, 6.4)

2019 224.5 (148.2, 347.9) 19.3 (11.2, 34.1) 113.3 (80.9, 153.7) 2.8 (0.0, 5.1)
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Table 2:

Posterior mean estimates and 95% credible intervals for the factor loadings on each outcome for each of the 

three factors.

Outcome Factor 1 Factor 2 Factor 3

Treatment 1.00 0 0

Death 0.68 (0.55, 0.81) 1.00 0

HCV 0.58 (0.46, 0.69) 0.77 (0.62, 0.94) 1.00

HIV 0.38 (0.08, 0.69) 2.03 (1.55, 2.57) −1.93 (−2.45, −1.40)
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