
napari-imagej: ImageJ Ecosystem Access from napari

Gabriel J. Selzer1, Curtis T. Rueden1, Mark C. Hiner1, Edward L. Evans III1,2, Kyle I.S.
Harrington3, Kevin W. Eliceiri1,2,4,#

1Center for Quantitative Cell Imaging, University of Wisconsin at Madison, Madison, WI, USA

2Morgridge Institute for Research, Madison, WI, USA

3Chan Zuckerberg Initiative, Redwood City, CA, USA

4Departments of Biomedical Engineering and Medical Physics, University of Wisconsin at
Madison, Madison, WI, USA

The Python image processing community has seen rapid growth from new members

across many domains and with varying levels of software proficiency. Much of this

growth is driven by the accessibility of the scientific Python software stack1–3. The napari

application for n-dimensional image visualization and analysis can potentially further this

growth by fulfilling the need for a convenient and powerful graphical interface built atop

these technologies4. The plugin-based model of napari promotes extensibility, sharing, and

modularity, and the rapidly growing napari community is doing an excellent job driving the

development of needed features to accelerate and broaden napari’s utility.

Meanwhile, the ImageJ software ecosystem5,6, beginning with the original ImageJ and now

supported by ImageJ27 and Fiji8, has developed over decades into a flourishing community

for n-dimensional image processing in Java9. This maturity makes the ImageJ ecosystem a

prime candidate for collaboration, and there is already demand from napari users for popular

ImageJ functions. While some ImageJ features have been or will be ported to napari, this

approach cannot practically scale throughout the entire ImageJ ecosystem. A direct port

would significantly increase the maintenance burden on developers, distracting from work

that might address new problems in the napari community. A more ideal solution would be

for napari and ImageJ to integrate directly, removing the need to keep plugin ports in sync

between the two.

Integrating the ImageJ ecosystem into napari presents two main challenges. The first

is cross-language operation: ImageJ-based tools run on the Java platform, resulting in

eliceiri@wisc.edu .
Contributions
Project concept and design was done by G.J.S., C.T.R., M.C.H., and K.W.E.; napari-imagej coding development and implementation
was done by G.J.S., C.T.R., K.I.S.H., and M.C.H.; case work by G.J.S., M.C.H., E.L.E., K.I.S.H., and K.W.E.; manuscript organizing
and writing by G.J.S., C.T.R., M.C.H., E.L.E., and K.W.E.; and funding and project administration by K.W.E.

Competing Interests
The authors declare no competing interests.

Code availability
The source code, documentation, tutorials and use cases for napari-imagej, which is made available under the open-source BSD
2-clause license, can be found online at https://github.com/imagej/napari-imagej

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2024 April 01.

Published in final edited form as:
Nat Methods. 2023 October ; 20(10): 1443–1444. doi:10.1038/s41592-023-01990-0.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/imagej/napari-imagej

considerable technical barriers when attempting to integrate them into a Python program.

A mechanism is needed to call Java code from Python, allowing users to access new and

existing ImageJ routines simply and transparently. The second challenge is accessibility:

napari users from the Python community may be unfamiliar with Java and ImageJ

terminology and structure. A solution should enable these users to utilize the strengths of

both ecosystems without needing to learn two separate applications.

The PyImageJ project10 provides a robust solution for Python-based ImageJ access,

including its data structures and plugins. However, PyImageJ is a library for programmers,

requiring explicit conversion of Python data structures such as NumPy images into

equivalent Java structures before they can be passed to ImageJ routines. To make ImageJ

truly accessible from napari with no additional programming, we developed another layer on

top of PyImageJ, automating data conversions and enabling access to ImageJ functionality

within one unified napari interface.

This new layer, called napari-imagej, provides an accessible and comprehensive solution to

ImageJ ecosystem access from napari. As a napari plugin, napari-imagej is available on all

operating systems supported by both napari and PyImageJ, including Linux, macOS, and

Windows. Through a configuration dialog, napari-imagej users can customize their ImageJ2

installation, allowing efficient access to all ImageJ ecosystem functionality including

ImageJ, ImageJ2, Fiji, and third-party plugins. The napari-imagej plugin provides two

different mechanisms for accessing ImageJ ecosystem functionality, both built on the same

foundation.

Much of the ImageJ ecosystem, including the ImageJ2 platform and the plugins designed for

it, can be run in a headless mode without visible ImageJ components. All headless routines

are discovered by the search service within ImageJ2 and integrated directly within napari

within a new napari widget, as shown in Figure 1 (a). By presenting these routines via

this mechanism, napari-imagej minimizes both the display footprint and the amount of Java

and ImageJ terminology exposed to the user, while maintaining comparable performance to

usage from within the ImageJ UI (see for benchmarking analysis). Third-party plugins and

scripts written for the ImageJ2 platform are also automatically exposed in the search results,

maximizing extensibility.

Many plugins and macros written for the original ImageJ were not designed to run without

the ImageJ graphical interface visible. To enable workflows including these routines, we

also provide additional controls to launch the ImageJ interface and to explicitly transfer

napari layers to and from ImageJ, as shown in Figure 1 (b). While the headless widget-based

approach described above is promoted for its flexibility and cleaner integration within

napari, all ImageJ ecosystem functionality can be run using this graphical method, including

both ImageJ2 and original ImageJ plugins.

To run headless ImageJ routines, napari-imagej transparently converts inputs from napari to

their ImageJ ecosystem equivalents. Input types supported by napari-imagej include napari

image, shapes, and points layers, napari labels, napari surfaces, and Python built-in types

such as numeric values and strings of text. By performing these conversions on behalf of

Selzer et al. Page 2

Nat Methods. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the user, napari-imagej minimizes the burden of utilizing ImageJ routines written in other

languages.

The napari-imagej plugin builds on the foundation of PyImageJ to make the ImageJ

ecosystem accessible within the Python ecosystem. Users can utilize ImageJ and Fiji directly

in napari, without explicit data conversion and in tandem with other napari plugins, opening

the door to more expressive and interoperable workflows.

Acknowledgements

The napari-imagej developers would like to thank T. Lambert, G. Bokota, D.D. Pop, J. Nunez-Iglesias, and all
of the napari core developers for their assistance on the integration with the napari application; T. Burke for
collaboration on Python-based image labelings; and N. Chiaruttini, and J. Chacko for early user testing and
feedback. This work has been supported by the National Institutes of Health (P41GM135019) to K.W.E.; Chan
Zuckerberg Initiative funding to C.T.R. and K.W.E.; and additional internal funding from the Laboratory for Optical
and Computational Instrumentation and the Morgridge Institute for Research.

Data availability

All data used for napari-imagej use cases are available via https://napari-

imagej.readthedocs.io/

References

1. Harris CR et al. Array programming with NumPy. Nature 585, 357–362 (2020). [PubMed:
32939066]

2. Virtanen P et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat.
Methods 17, 261–272 (2020). [PubMed: 32015543]

3. van der Walt S et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014). [PubMed:
25024921]

4. Sofroniew Nicholas et al. napari: a multi-dimensional image viewer for Python. (2022) doi:10.5281/
ZENODO.3555620.

5. Schindelin J, Rueden CT, Hiner MC & Eliceiri KW The ImageJ ecosystem: An open platform for
biomedical image analysis. Mol. Reprod. Dev. 82, 518–529 (2015). [PubMed: 26153368]

6. Schroeder AB et al. The ImageJ ecosystem: Open source software for image visualization,
processing, and analysis. Protein Sci. 30, 234–249 (2021). [PubMed: 33166005]

7. Rueden CT et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC
Bioinformatics 18, 529 (2017). [PubMed: 29187165]

8. Schindelin J et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9,
676–682 (2012). [PubMed: 22743772]

9. Schneider CA, Rasband WS & Eliceiri KW NIH Image to ImageJ: 25 years of image analysis. Nat.
Methods 9, 671–675 (2012). [PubMed: 22930834]

10. Rueden CT et al. PyImageJ: A library for integrating ImageJ and Python. Nat. Methods 19, 1326–
1327 (2022). [PubMed: 36253645]

Selzer et al. Page 3

Nat Methods. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://napari-imagej.readthedocs.io/
https://napari-imagej.readthedocs.io/

Figure 1:
(a) Headless ImageJ ecosystem routines are executable directly from the napari interface

by typing search terms into the napari-imagej search bar. A napari widget for executing a

routine can then be generated by selecting any of the corresponding results shown in the

panel beneath. (b) The ImageJ button in the napari-imagej toolbar launches the ImageJ user

interface. From this interface, any ImageJ ecosystem routine can be executed, including

third-party plugins. Multidimensional image data can be passed between the napari and

ImageJ interfaces using the transfer buttons, also located in the napari-imagej toolbar.

Selzer et al. Page 4

Nat Methods. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	References
	Figure 1:

