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Abstract

Screening colonoscopy is an important clinical application for several 3D computer vision 

techniques, including depth estimation, surface reconstruction, and missing region detection. 

However, the development, evaluation, and comparison of these techniques in real colonoscopy 

videos remain largely qualitative due to the difficulty of acquiring ground truth data. In this 

work, we present a Colonoscopy 3D Video Dataset (C3VD) acquired with a high definition 

clinical colonoscope and high-fidelity colon models for benchmarking computer vision methods 

in colonoscopy. We introduce a novel multimodal 2D-3D registration technique to register optical 

video sequences with ground truth rendered views of a known 3D model. The different modalities 

are registered by transforming optical images to depth maps with a Generative Adversarial 

Network and aligning edge features with an evolutionary optimizer. This registration method 

achieves an average translation error of 0.321 millimeters and an average rotation error of 0.159 

degrees in simulation experiments where error-free ground truth is available. The method also 

leverages video information, improving registration accuracy by 55.6% for translation and 60.4% 

for rotation compared to single frame registration. 22 short video sequences were registered 

to generate 10,015 total frames with paired ground truth depth, surface normals, optical flow, 

occlusion, six degree-of-freedom pose, coverage maps, and 3D models. The dataset also includes 

screening videos acquired by a gastroenterologist with paired ground truth pose and 3D surface 

models. The dataset and registration source code are available at durr.jhu.edu/C3VD.
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1. Introduction

Colorectal cancer (CRC) is the second most lethal form of cancer in the United States 

(Siegel et al., 2021). At least 80% of CRCs are believed to develop from premalignant 

adenomas (Cunningham et al., 2010). Screening colonoscopy remains the gold-standard for 

detecting and removing precancerous lesions, effectively reducing the risk of developing 

CRC (Rex et al., 2015). Still, an estimated 22% of precancerous lesions go un-detected 

during screening procedures (van Rijn et al., 2006). These missed lesions are thought to be a 

primary contributor to interval CRC — the development of CRC within 5 years of a negative 

screening colonoscopy — which represents 6% of CRC cases (Samadder et al., 2014).

Colonoscopy remains an active application for computer vision researchers working to 

reduce lesion miss rates and improve clinical outcomes (Ali et al., 2020; Fu et al., 2021; 

Chadebecq et al., 2023). Recent works have employed Convolutional Neural Networks 

(CNNs) to detect and alert clinicians of visible, but sometimes subtle, polyps in colonoscopy 

video frames (Hassan et al., 2020; Livovsky et al., 2021; Luo et al., 2021). While these 

algorithms have demonstrated impressive detection rates, they require that polyps appear in 

the colonoscope field of view (FoV) during a procedure to be detected. Missed regions — 

areas of the colon never imaged during a screening procedure — were found to make up an 

estimated 10% of the colon surface in a retrospective analysis of endoscopic video (McGill 

et al., 2018), putting patients at risk of experiencing interval CRC.

To reduce the extent of missed regions, research has explored measuring observational 

coverage of the colon during screening procedures (Hong et al., 2007, 2011; Armin et 

al., 2016). Freedman et al. (2020) describe a data-driven method for directly regressing a 

numerical visibility score for a small cluster of frames using deep learning. Some methods 

utilize deep learning to regress pixel-level depth (Mahmood and Durr, 2018; Rau et al., 

2019; Cheng et al., 2021), and this information can be incorporated into simultaneous 

localization and mapping (SLAM) techniques to reconstruct the colon surface (Chen et 

al., 2019b). Holes in these reconstructions could indicate tissue areas that have gone 

unobserved, and these regions have been flagged in real time to alert the colonoscopist (Ma 

et al., 2019). Other relevant applications of 3D computer vision techniques in colonoscopy 

include polyp size prediction (Abdelrahim et al., 2022), surface topography reconstruction 

(Parot et al., 2013), visual odometry estimation (Yao et al., 2021), and enhanced lesion 

classification with 3D augmentation (Mahmood et al., 2018b).

1.1. Related work

1.1.1. Endoscopy reconstruction datasets—Datasets for evaluating endoscopic 

reconstruction methods differ by intended application, model type, recording setup, and 

ground truth data availability. Acquiring datasets with accurate surface information in the 

surgical environment is generally impractical. As an alternative, both commercial (Stoyanov 

et al., 2010) and computed tomography (CT)-derived (Penza et al., 2018) silicone models 

have been explored. Surface information can be directly measured with either CT or optical 

scanning (OS), and the stereo sensor configuration in some laparoscopes can be used to 

generate ground truth depth (Recasens et al., 2021). Beyond synthetic models, which suffer 

from relatively homogeneous optical properties, both ex-vivo (Mahmood and Durr, 2018; 
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Edwards et al., 2022; Allan et al., 2021; Maier-Hein et al., 2014; Ozyoruk et al., 2021) and 

in-vivo (Ye et al., 2017) animal tissues have been used to generate data with a more realistic 

bidirectional scattering distribution functions (BSDF).

More recently, game engines, such as Unity (Unity Technologies) have been used to render 

synthetic images from 3D anatomical models, such as CT colonography volumes (Mahmood 

et al., 2018a; Rau et al., 2019; Ozyoruk et al., 2021; Zhang et al., 2021; Rau et al., 

2022). Rendered data is advantageous because error-free, pixel-level ground truth labels 

such as depth and surface normals are available from rendering primitives. Additionally, 

large quantities of data may be quickly produced. One significant drawback is the limited 

ability of rendering engines to simulate real-world camera optics, non-global illumination, 

proprietary post-acquisition processing, sensor noise, and light-tissue interaction.

The majority of endoscopic reconstruction datasets with real images are designed for 

laparoscopic imaging of the abdomen and thorax. Laparoscopic datasets are unsuitable 

for benchmarking colonoscopic imaging because of large differences in the angular FoV 

(and corresponding distortion), sensor arrangement, and organ geometry. Furthermore, it 

is challenging to mimic the realistic motions of a colonoscope with a rigid laparoscope. 

Ozyoruk et al. provide a video dataset for imaging the stomach, small bowel, and colon with 

several different camera types with one sequence recorded using a clinical colonoscope 

(Ozyoruk et al., 2021). Each video sequence in this dataset is paired with a ground 

truth camera trajectory and 3D surface model, but no pixel-level ground truth data was 

generated, limiting the utility of the data. Generating pixel-level ground truth information is 

particularly challenging for colonoscopy, due to the space-constrained imaging environment, 

high resolution requirements, and large range of working distances that are relevant for 

clinical applications.

1.1.2. Registering real and virtual endoscopy images—Registering endoscopic 

frames with ground truth surface models enables derivative ground truth data and metrics 

to be extracted. For example, ground truth depth frames may be assigned to real endoscopy 

images provided the endoscope pose relative to the surface model is known. However, 

registration using conventional, feature-based methods is challenging due to a lack of 

robust corner points and variable specular reflections common in endoscopic images. To 

circumvent this challenge, segmented fiducials have been used to register optical images 

to ground truth CT volumes (Rau et al., 2019; Stoyanov et al., 2010). While this method 

is robust, one drawback is the presence of unrealistic fiducials throughout the image FoV. 

Edwards et al. (2022) opt to remove the fiducials and instead rely on the manual alignment 

of a virtual camera with a ground truth CT volume. The manual nature of this method works 

well for producing small quantities of data, but it is a barrier to registering large quantities 

of data, and its accuracy is limited by inter-operator variability. Penza et al. (2018) use a 

calibration target to calibrate the coordinate systems of a fixed camera and laser scanner, 

allowing for simultaneous recording of endoscopy frames and 3D surface information in 

laparoscopic imaging environments that are not size-constrained.

A summary of existing and the proposed endoscopic 3D datasets and acquisition methods is 

reported in Table 1.
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1.1.3. 2D-3D registration—2D-3D registration enables the registration of a 2D image 

with a 3D spatial volume, and it is frequently used for aligning 3D preoperative CT volumes 

with 2D intraoperative X-ray images. Most methods rely on optimizing the similarity 

between a target 2D image and a simulated 2D radiograph of the 3D volume acquired at the 

estimated pose (Markelj et al., 2012). Common similarity measures are gradient- (Livyatan 

et al., 2003), intensity- (Birkfellner et al., 2003), and feature-based (Groher et al., 2007) 

metrics. More recently, 2D-3D registration methods have evolved to include learning-based 

algorithms to address challenges in cross-modality registration (Oulbacha and Kadoury, 

2020) and feature extraction (Grupp et al., 2020).

1.2. Contributions

While the body of computer vision research in colonoscopy is extensive, evaluating and 

benchmarking methods remains a challenge due to a lack of ground truth annotated data. In 

this work, we present a High Definition (HD) Colonoscopy 3D Video Dataset (C3VD) for 

quantitatively evaluating computer vision methods. To the best of our knowledge, this is the 

first video dataset with 3D ground truth that is recorded entirely with a clinical colonoscope. 

In this work, we contribute:

1. a 2D-3D video registration algorithm for aligning real 2D optical colonoscopy 

video sequences with ground truth 3D models. GAN-estimated depth frames are 

compared with rendered predicted views along a measured camera trajectory for 

minimizing an edge-based loss.

2. a technique for generating high-fidelity silicone phantom models with varying 

textures and colors to facilitate domain randomization.

3. a ground truth dataset with pixel-level registration to a known 3D model 

for quantitatively evaluating computer vision techniques in colonoscopy. This 

dataset contains 10,015 HD video frames of realistic colon phantom models 

obtained with a clinical colonoscope. Each frame is paired with ground truth 

depth, surface normals, occlusion, optical flow, and a six degree-of-freedom 

camera pose. Each video is paired with a ground truth surface model and 

coverage map (Figure 1).

The dataset, 3D colon model, phantom molds, and 2D-3D registration algorithm are all 

made publicly available at durr.jhu.edu/C3VD.

2. Methods

We propose a method for generating video sequences through a clinical colonoscope with 

paired, pixel-level ground truth. We first describe a protocol for producing high-fidelity 

phantom models (Section 2.1) and recording video sequences with ground truth trajectory 

(Section 2.2). We then introduce a novel technique for registering the acquired video and 

trajectory sequences with a ground truth 3D surface model (Section 2.3).
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2.1. Phantom model production

A complete 3D colon model - from sigmoid colon to cecum - was digitally sculpted in 

Zbrush (Pixologic) by a boardcertified anaplastologist (JRG) using reference anatomical 

imagery from colonoscopic procedures. This method introduces higher frequency detail in 

the digital models as compared to models derived from resolution-limited CT colonography. 

We split the sculpted model into five segments: the sigmoid colon, descending colon, 

transcending colon, ascending colon, and cecum. Three-part molds were generated for each 

segment. Two parts comprised two halves of the outer shell and one insert part formed the 

colon lumen and mucosal surface. All molds were 3D printed with an Objet 260 Connex 

3 with 16 micrometer resolution. Casts of each mold were created with silicone (Dragon 

Skin™, Smooth-On, Inc.). Silicone pigments (Silc Pig™, Smooth-On, Inc.) were used to vary 

the color and texture. Silicone was manually applied in 5–12 layers with varying degrees of 

opacity to emulate patient-specific tissue features and vasculature patterns at varying optical 

depths. A silicone lubricant (015594011516, BioFilm, Inc.) was applied to the surface of the 

models at recording time to simulate the highly specular appearance of the mucosa.

2.2. Data acquisition

The setup used for data acquisition is shown in Figure 2. An Olympus CF-HQ190L video 

colonoscope, CV-190 video processor, and CLV-190 light source were used to record video 

sequences of the phantom models. The models were placed inside the molds with inserts 

removed to keep them static and free of deformation during video recording. The tip of 

the colonoscope was rigidly mounted to a UR-3 (Universal Robotics) robotic arm. For 

each video segment, 4–8 sequential poses were manually programmed to mimic a typical 

colonoscopy trajectory. The robotic arm traversed the colon with interpolation between these 

poses with 10 micrometer repeatability. A pose log was recorded from the arm at a sampling 

rate of 63 Hz. Colonoscopy videos were recorded in an uncompressed HD format using 

an Orion HD (Matrox) frame grabber connected to the SDI output of the Olympus video 

processor.

2.3. Registration pipeline overview

Pixel-level ground truth for each video frame was generated by moving a virtual camera 

along the recorded trajectory and rendering ground truth frames of the 3D model. While 

the colonoscope trajectory for the virtual camera was known, the location of the phantom 

model relative to this trajectory was unknown. Assuming the phantom model was stationary 

for the duration of a video sequence, the phantom pose can be expressed as a single rigid 

body transform (Tfinal), consisting of a rotational component θ  and translational component 

t . We parameterize this transformation using three Euler angles and a translation vector 

θα θβ θγ tx ty tz . To estimate this unknown transform, we utilize a 2D-3D registration 

approach to align geometric features shared between the 2D video frames and the virtual 3D 

model of the phantom. The registration pipeline samples the parameter space for a model 

transform prediction Ti , evaluates the feature alignment between target depth frames and 

renderings at the current model transform, and updates the model transform prediction using 

an evolutionary optimizer. This registration method is outlined in Figure 3 and detailed in 

the following subsections.
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2.3.1. Data preprocessing—Before beginning the registration optimization, each video 

sequence, pose log, and ground truth 3D model were preprocessed. For a video sequence 

consisting of N frames, keyframes were sampled at an interval of δ, resulting in K total 

keyframes. A depth frame was then estimated for each keyframe using a Generative 

Adversarial Network trained to estimate depth (Section 2.3.2).

For each keyframe, a pose Ai describing the position of the robotic arm end-effector relative 

to the base was sampled from the pose log. Synchronization between the video sequence 

and pose log was achieved by solving for the relative temporal offset that resulted in the 

maximum correlation between the optical flow magnitude and the pose displacement of 

the camera. A handeye calibration was performed to characterize the transformation, X, 

between robotic arm pose, Ai, and colonoscope camera pose Bi . This calibration allows the 

relationship

Aa
−1AbX = XBa

−1Bb, (1)

where Aa/Ba and Ab/Bb are pairs of robot and camera poses captured for calibration. Once 

calibrated, robotic arm poses were transformed to camera poses by solving a rearranged 

version of the handeye relationship

Bi = BcalX−1Acal
−1AiX, (2)

where Acal and Bcal are a pair of poses retained from the calibration.

Finally, the ground truth triangulated mesh was converted to a Split Bounding Volume 

Hierarchy (SBVH), and a rendering context was created for rendering depth frames from the 

3D ground truth model (Section 2.3.3). The initial model transform (Tinitial) for each video 

sequence was manually aligned. We used a custom graphical user interface that overlayed 

the first keyframe with frames rendered at camera pose B1 as the model transform was 

manually perturbed.

2.3.2. Target depth estimation—Predicting pixel-level depth for each keyframe was 

formulated as an image-to-image translation task. A conditional generative adversarial 

network (cGAN) was trained with synthetically rendered input-output image pairs, and 

inference was performed on real images. Previous studies demonstrating strong domain 

generalizability when trained on synthetic data and applied to real data motivated using a 

cGAN network architecture (Chen et al., 2018; Rau et al., 2019). 1,000 pairs of synthetic 

colonoscopy images with paired depth were rendered using the virtual 3D models and 3 

unique BSDFs for domain randomization. The descending colon model and a fourth BSDF 

were omitted from the training data and saved for validation experiments. To enable training 

at HD-resolution, multi-scale discriminator models and a multi-layer feature matching loss 

were employed in addition to the traditional GAN loss (Wang et al., 2018). Keyframes were 

fed to the trained generator to produce target depth frames for alignment.

2.3.3. Rendering depth frames—Depth frames at each camera pose were rendered 

using a virtual camera in the 3D colon model, and these frames were compared to the target 

Bobrow et al. Page 6

Med Image Anal. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



depth frames to evaluate the accuracy of the current model transform prediction. A wide 

FoV (≈170°) is a key characteristic of clinical colonoscopes that maximizes the visibility of 

the peripheral colon surface. However, this fisheye effect has not been simulated in synthetic 

endoscopy datasets (Ozyoruk et al., 2021; Rau et al., 2022). To model the entire FoV of a 

commercial colonoscope, we adopted a spherical camera intrinsic model (Scaramuzza et al., 

2006) as shown in Figure 4.

For each pixel u v , there exists a ray direction V ∈ ℕ3 emanating from the camera origin 

O ∈ ℝ3 into world space. Pixel coordinates are first shifted with respect to the optical 

center of the camera c ∈ ℝ2 × 1, and then skewed with an affine transformation A ∈ ℝ2 × 2 to 

account for lens misalignment, producing distorted pixel coordinates u′v′ ∈ ℝ2:

u′
v′ = A−1 u − cx

v − cy
,  A = e f

g 1 . (3)

Distorted pixel coordinates and corresponding ray directions are related by a parametric 

equation

V x

V y

V z

=
u′
v′

f ρ
(4)

where ρ = u′2 + v′2, f ρ = α0 + α2ρ2 + α3ρ3 + α4ρ4, and α0…α4 are coefficient parameters 

solved for during calibration. V  is transformed by the rotational matrix for the current 

camera pose and the resulting ray direction is cast from the ray origin.

For each optimization iteration, the model transform is first updated to the current sample 

Ti − 1 Ti , and depth frames DT  are rendered at each virtual camera pose B1⋯BK . For 

efficient computation, we implement a custom raycasting engine using the Nvidia®OptiX™ 

raytracing API. This enables direct access to the GPU RT cores (Parker et al., 2010). The 

model SBVH is used to initialize an acceleration structure, and the structure is updated with 

each new model transform.

2.3.4. Edge loss E optimization—Target and rendered depth frames are compared to 

evaluate the accuracy of the current prediction. To minimize the effect of scale inconsistency 

that is common in depth predicted by deep learning, we compare geometric contours from 

depth discontinuities in the target and model depth frames. Contours are extracted using 

Canny edge extraction and binarized. To provide a continuous and smooth loss function 

when comparing target and model depth frames, we blurred these edges with a normalized 

Gaussian kernel, denoting this operation as ℰ̂ = E D . The registration optimization then 

aims to maximize the overlap of these blurred edge frames by computing a similarity metric 

between frame pairs,
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sim ℰ̂, ℰ = 1
KHW k = 1

K

v = 1

H

u = 1

W
ℰ̂k u, v ⋅ ℰk u, v , (5)

where ℰ̂ is the set of rendered edge frames, ℰ is the set of target edge frames, and K is the 

number of frame pairs. The output of this similarity function is a value between 0.0 and 1.0 

that is maximal when the target and rendered edges are equivalent and perfectly aligned. To 

reframe the function as a minimization problem, the similarity value is subtracted from 1.0, 

yielding the full objective function

Tfinal  = argmin
T

1.0 − sim E DT , ℰ , (6)

Evaluation samples for the model transform are iteratively refined by an evolutionary 

optimizer called Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen et 

al., 2003).

2.4. Simulated screening colonoscopies

In addition to the video segments with pixel-level ground truth that can be computed with 

robot-arm fine pose information, we recorded four simulated screening colonoscopy video 

sequences with coarse six degree-of-freedom pose and 3D surface models. The phantom 

model segments were adhered together with silicone adhesive (Sil-Poxy™, Smooth-On, Inc.) 

and mounted in a laser cut foam scaffold. An electromagnetic field generator (Aurora, 

Northern Digital Inc.) was positioned above the model, and a six degree-of-freedom 

electromagnetic sensors (EM, 610016, Northern Digital Inc.) was rigidly affixed to the distal 

tip of the scope for recording pose information at 40Hz. Beginning at the cecum, the scope 

was withdrawn by a trained gastroenterologist (VSA) while video and pose information was 

recorded. The EM poses were synchronized and transformed to camera poses using the same 

process described in Section 2.3.1. If the sensor failed to track for a portion of the trajectory, 

temporally neighboring poses were linearly interpolated.

3. Experiments and results

3.1. Implementation

A cross-section of the complete sculpted colon model is shown in Figure 5. Model segment 

lengths as well as lesion types and major axis diameters are reported in Table 2. The 

3D printed molds for this model were used to cast four complete sets of phantoms. Each 

phantom set was cast with unique material properties.

Camera intrinsic parameters for the CF-HQ190L video colonoscope were measured using 

30 images of a 10×15 checkerboard with 10×10 millimeter squares and the Matlab 2022a 

Camera Calibration Toolbox (Mathworks). The calibration resulted in a 0.47 pixel mean 

reprojection error. The final results of this calibration are reported in Table 3. The camera 

extrinsic poses estimated from the calibration were used with the corresponding robot poses 
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to compute the handeye transform X. The solution for X was found using the optimization 

method proposed by Park and Martin (1994).

The depth estimation network architecture was implemented in Pytorch. The initial learning 

rate of 0.0002 was held constant for the first 50 epochs, then linearly decayed for the final 

50 epochs. Input frames were zero-padded to a size of 1088×1376 and fed to the network 

with a batch size of 1 The training computation was split across 4 Nvidia® RTX A5000 

Graphics Processing Units, taking 31 hours to complete. Real colonoscopy video frames 

were then input into the trained generator to produce target depth frames. Because the target 

depth frames remain constant during registration optimization, the target edge features are 

extracted once before beginning iterative optimization.

The complete registration pipeline was implemented in C++ and CUDA and computed using 

an Nvidia® RTX 2080 TI Graphics Processing Unit. Sample evaluations were rendered, 

edges extracted, and a loss computed at an average rate of 4.0 milliseconds per keyframe.

CMA-ES iterations were computed with a population size of 100 samples. The parameter 

space was bounded to θ = ±0.1 radians and t = ±7.5 millimeters with respect to (Tinitial). 

The bounds were linearly scaled to a uniform space during parameter sampling σ = 0.1  to 

account for the difference in scale between rotation and translation parameters.

3.2. Evaluation with synthetic data

To quantitatively validate the registration error of the proposed algorithm, 10 synthetic video 

sequences, each composed of 200 frames, were rendered with a 3D model and a BSDF 

not included in the dataset used to train the depth estimation network. In each experiment, 

the model initial transform was first manually aligned, then optimized using the registration 

pipeline. To quantify the registration accuracy, we compute the error Terror  as

Terror  = Tgt
−1Tfinal , (7)

where Tgt is the ground truth model transform and Tfinal  is the final registered transform, 

both in homogeneous form. The homogeneous transform Terror  is broken into rotation 

and translation components, converting the rotation component to Euler form θ , then 

independently evaluating ∥ θ ∥ and ∥ t ∥.

Using these synthetic sequences and validation metrics, we first investigated the effect of 

number of keyframes K on registration accuracy. Optimizations were run for all 10 video 

sequences with K ranging from 1 to 10. Results are presented in Figure 6. We find that 

the rate of improvement in registration accuracy significantly decreases at K equal to 5, 

achieving a 0.321 millimeter and 0.159 degree accuracy. This resulted in an improvement 

of the translational accuracy by 55.6% and rotational accuracy by 60.4% compared to using 

only a single frame. With this in mind, K is set equal to 5 for the remaining experiments to 

balance registration accuracy with time-efficiency of computation.

To evaluate the effect of using blurred edge features in the loss function, we experimented 

with optimizing the alignment of depth frames prior to edge extraction. Depth-based 
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registrations were optimized using L1, L2, Normalized Cross Correlation (NCC), and 

Gradient Correlation (GC) loss functions (De Silva et al., 2016). To validate our loss 

function selection for edges, we also experimented with L1, L2, DICE (using binarized 

edges), and NCC losses with edge frames. The results for each input type and loss function 

are reported in Table 4.

To assess the benefit of registering in the depth domain, we registered synthetic video frames 

without depth transformation to predicted views rendered with a Lambertian BSDF. Edges 

were extracted from the color synthetic frames and rendered predicted views and a loss 

was computed using the proposed function. This method resulted in an average registration 

accuracy that was an order of magnitude larger than registration in the depth domain (Figure 

6).

Lastly, we examined how trajectory complexity affects registration accuracy. Synthetic 

colonoscopy sequences were rendered using three trajectory types with increasing 

complexity: simple (linear translation only), moderate (helical translation only), and 

complex (helical translation with pitch and yaw rotation). 10 synthetic sequences per 

trajectory type were rendered and registered to the ground truth 3D model. This 

experiment resulted in 0.117-degree, 0.063-degree, and 0.070-degree rotational error for 

simple, moderate, and complex trajectories, respectively. The translational errors were 

0.150-millimeter, 0.070-millimeter, and 0.089-millimeter for simple, moderate, and complex 

trajectories, respectively.

3.3. Evaluation with real video sequences

Once the registration pipeline was validated using synthetic data with available ground truth, 

the algorithm was then applied to real recorded videos and poses. While the ground truth 

model transform for real data is unknown, the quality of each registration may be evaluated 

by qualitatively comparing the edge alignment quality across each video. Sample results for 

a recorded sequence are reported in Figure 7. The results demonstrate that the registration 

pipeline aligns sample frames with the target frames throughout the entire video.

4. Dataset and distribution format

22 video sequences consisting of 10,015 frames were registered for inclusion in the dataset. 

The illumination conditions in each sequence were varied by adjusting the illumination 

mode (automatic versus manual) and illumination power settings on the clinical light source. 

The sequences also include a combination of “down-the-barrel”, “en-face”, and partially 

occluded views. A listing of the dataset video sequences is included in Table 5. Once 

registered, the virtual camera was moved to the camera pose corresponding with each video 

frame, and ground truth depth, surface normals, occlusion, and optical flow were rendered 

for each frame. Sample dataset frames are displayed in Figure 8. For each video sequence, 

a coverage map was generated by accumulating the surface faces observed in each frame 

throughout the video, then marking those faces which went unobserved. A sample coverage 

map for a video sequence from the dataset is shown in Figure 9. For every frame in the video 

dataset, we provide a corresponding:
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• Depth frame: Depth along the camera frame’s z-axis, clamped from 0–100 

millimeters. Values are linearly scaled and encoded as a 16-bit grayscale image.

• Surface normal frame: Reported with respect to the camera coordinate system. 

X/Y/Z components are stored in separate R/G/B color channels. Components are 

linearly scaled from ±1 to 0–65535. Values are encoded as a 16-bit color image.

• Optical flow frame: Computed flowing from the current frame to the 

previous frame, meaning the first frame in the sequence has no value: 

Ii − 1 = Ii u + Δu, v + Δv . Values are saved in a color image, where the R-channel 

contains X-direction motion (left → right, −20 to 20 pixels), and the G-channel 

contains Y-direction motion (up → down, −20 to 20 pixels). Values are linearly 

scaled from 0 to 65535 and encoded as a 16-bit color image.

• Occlusion frame: Encoded as an 8-bit binary image. Pixels occluding other mesh 

faces within 100 millimeters of the camera origin are assigned a value of 255, 

and all other pixels are assigned a value of 0.

• Camera pose: Saved in homogeneous form.

For each video sequence, we also provide:

• 3D model: Ground truth triangulated mesh, stored as a Wavefront OBJ file.

• Coverage map: Binary texture indicating which mesh faces were observed by the 

camera during the video sequence (1=observed, 2=unobserved).

Finally, we include four video sequences of simulated screening procedure, consisting of 

20,058 frames, and ground truth camera poses in homogeneous form.

5. Discussion and conclusion

This work presents a 2D-3D registration method for acquiring and registering phantom 

colonoscopy video data with ground truth surface models. Unlike traditional 2D-3D 

registration techniques that register single views, this method operates on video sequences 

and measured pose. Our results demonstrate that leveraging this temporal information 

improves the registration accuracy compared to registering a single frame (Figure 6). 

To circumvent registration errors caused by specular reflections and surface textures, we 

transformed keyframes to a depth domain for similarity evaluation. The transformed depth 

frames show scale inconsistency (Figure 7), as is common in GAN-predicted depth. We 

found the impact of this inconsistency to be reduced by aligning edge features extracted 

from the depth frames, further improving the registration accuracy (Table 4). Additionally, 

our loss function outperforms other metrics such as NCC and DICE, while also being 

computationally cheaper.

We also found that the registration accuracy for moderate and complex trajectories 

outperformed simple trajectories. One possible explanation is an increase in the number of 

unique edge features used for alignment and their increased translation in the imaging plane 

in moderate and complex trajectories. Prior to registration optimization, the input sequence 

is sampled to generate a set of keyframes, and this number of keyframes is constant (K=5) 
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for all trajectories. While simple trajectories included only linear translation primarily in 

the colon major axis direction, moderate and complex trajectories also included lateral 

translation as well as pitch and yaw variation. The camera poses in complex trajectories are 

more diverse than simple trajectories, which results in a larger diversity of edge features for 

alignment. Additionally, simple linear translation of the camera parallel to the major colon 

axis results in much smaller displacements in image features compared to camera translation 

perpendicular to the colon axis.

This registration method was used to generate C3VD, the first colonoscopy reconstruction 

dataset that includes real colonoscopy videos labeled with registered ground truth. Unlike 

the EndoSLAM dataset (Ozyoruk et al., 2021), C3VD is recorded entirely with an HD 

clinical colonoscope and includes depth, surface normal, occlusion, and optical flow frame 

labels. While EndoSLAM uses real porcine tissue mounted on nontubular scaffolds, we opt 

for tubular phantom models to simulate a geometrically realistic lumen. By recording with 

a real colonoscope, C3VD overcomes the limited ability of renderers to simulate non-global 

illumination, light scattering, and nonlinear post-processing (Rau et al., 2022). Compared to 

other datasets which omit large portions of the angular FoV, C3VD is the first dataset to 

model the entire colonoscope FoV through an omnidirectional camera model.

C3VD can be used to validate the sub-components of SLAM reconstruction algorithms, 

including estimating pixel-level depth, surface normals, optical flow, and occluded regions. 

The ground truth surface models and coverage maps can be used to evaluate entire SLAM 

reconstruction methods and techniques for identifying missed regions. Additionally, the 3D 

model assets are open-sourced and offer a higher-resolution alternative to CT colonography 

volumes for rendering synthetic training data. Mold files and fabrication protocols are also 

provided so that other researchers may produce and modify phantom colon models. The 

simulated screening colonoscopy videos may be used to test algorithms on full sequences 

with realistic scope motion.

The proposed methods have several important limitations. Precise pose measurements are 

required to generate the registered video sequences, and these trajectories are recorded by 

mounting the colonoscope to a robotic arm. While this method enables several additional 

forms of ground truth information, the scope range and types of motion are limited. 

Additionally, the phantom models must remain static during video acquisition, whereas 

colonic tissue is flexible, dynamic, and in frequent contact with the scope during imaging. 

Lastly, small errors in the handeye calibration accumulate, causing a gradual drift in the 

camera trajectory. Future work could improve upon these limitations with adjustments to 

the data acquisition protocol and registration algorithm. A more-accurate radiofrequency 

positional sensor could circumvent trajectory limitations imposed by the robotic arm. 

Handeye calibration errors could possibly be reduced by co-optimizing both the model 

transformation and the handeye transformation. This method could also be paired with 

dynamic CT, similar to Stoyanov et al. (2010), to produce video data with deformable colon 

models.

The C3VD dataset presented here also has important limitations in its diversity and scope. 

Future work could expand this dataset to encompass a larger variety of endoscopic imaging 
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and tissue conditions. For quality metric applications, such as fractional coverage, additional 

trajectories and colon shapes with a variety of missed regions should be developed. Among 

the challenges to applying 3D reconstruction algorithms to colonoscopy are loose stool and 

debris that often occlude the field of view. To simulate these artifacts, artificial stool could 

be applied to the silicone models to span varying levels of bowel preparation quality. The 

auxiliary water jet and suction systems of the colonoscope could be used to simulate bowel 

cleaning and underwater imaging in the videos. Similarly, the air and water nozzles may 

be used to remove debris from the objective lens. Future datasets may also benefit from 

including alternative endoscope systems and modalities, such as narrow band imaging (NBI) 

and chromoendoscopy. The use of distal attachments such as EndoCuff (Rex et al., 2018) 

and the effect on observational coverage could also be explored. Finally, we also envision 

generating ground truth data for evaluating structured illumination Parot et al. (2013) and 

hyperspectral methods (Yoon et al., 2021). Validation data for these methods could include 

phantoms with tuned optical scattering and absorption properties to realistically simulate 

light-tissue interactions (Ayers et al., 2008; Chen et al., 2019a; Sweer et al., 2019).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• 2D-3D registration that leverages temporal information in optical 

colonoscopy videos

• conditional Generative Adversarial Network used to transform frames to 

depth domain

• High-fidelity silicone phantom models with 3D ground truth

• Public dataset for quantitative benchmarking of computer vision tasks in 

colonoscopy
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Fig. 1: Sample frame from the proposed dataset.
Real colonoscope frames are paired with registered ground truth (GT) depth, surface 

normals, and optical flow frames (left). Each video is paired with a ground truth camera 

trajectory, 3D surface model, and coverage map (right).
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Fig. 2: Data acquisition setup.
A commercial colonoscope is rigidly affixed to a robotic arm using a 3D printed mount. The 

colonoscope is navigated through the silicone colon with known 3D shape while video and 

pose are simultaneously recorded.
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Fig. 3: 2D-3D video registration method.
Temporally synchronized video and pose measurements are sampled to produce a set of 

keyframes for registration with the ground truth 3D model. Keyframes are individually 

transformed to a depth domain by a generative model to produce target depth images. A 

virtual omnidirectional camera is moved to each keyframe pose to render depth images of 

the 3D model. Rendered and target depth frames are compared while the model transform is 

updated with an evolutionary optimizer until convergence.
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Fig. 4: Omnidirectional camera model.
(a) Pixel coordinates are skewed by an affine transform to model lens misalignment and 

offset to the optical center. (b) Each pixel is assigned a ray direction defined by a parametric 

surface that is a function of the pixel’s radial distance from the optical center.
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Fig. 5: Cross section of the ground truth 3D colon model.
Sculpting the 3D model using reference anatomical images introduces higher-resolution 

detail than CT colonography volumes.
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Fig. 6: Average registration error for 10 synthetic video sequences with increasing number of 
keyframes K.
The registration error decreases with increasing number of keyframes. Registering frames 

in the depth domain (blue line) results in improved registration accuracy compared to 

registering frames in the color domain.
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Fig. 7: Qualitative registration results.
RGB video frames are transformed to the depth domain by a generative model, and target 

edge features are extracted. Edge features from rendered depth frames are compared with 

the target edge features to compute an alignment loss, and the predicted model transform is 

iteratively updated until alignment is achieved. Blurred edge features are binarized in this 

figure for visibility. See Supplementary Video I for a visual depiction of the improvement in 

registration as the optimization progresses.
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Fig. 8: Sample frames from the C3VD dataset.
Frames are recorded using a clinical colonoscope and silicone phantom models constructed 

with four unique textures. Each real video frame is paired with ground truth depth, surface 

normals, occlusion, and optical flow. A sample video sequence is shown in Supplementary 

Video II.
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Fig. 9: Sample coverage map for a recorded video sequence.
Unobserved surface regions due to occlusion are marked as red.
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Table 2:

Ground truth 3D colon model attributes

Segment Length (mm) Lesion Type Major axis (mm)

A 192 Hyperplastic 4.2

Traditional adenomatous 6.6

B 339 Sessile serrated 6.2

C 241 Sessile serrated 10.0

D 93 - -

E 97 - -
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Table 3:

Omnidirectional camera intrinsics for Olympus CF-HQ190L video Colonoscope

Size H×W 1080 × 1350

Optical Center cx 679.54

C y 543.98

Polynomial α0 769.24

α2 −8.13 × 10−4

α3 −6.26 × 10−7

α4 −1.20 × 10−9

Stretch e 0.9999

f 2.88 × 10−3

g −2.96 × 10−3
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Table 4:

Effect of loss functions on registration accuracy

Input Loss ∥θterror∥ (deg) ∥tterror∥ (mm)

Depth L1 8.008 14.941

L2 8.729 16.109

NCC 2.904 6.014

GC 0.558 0.843

Edge L1 0.466 0.654

L2 0.417 0.750

DICE 0.374 0.756

NCC 0.450 0.681

Proposed 0.159 0.321
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Table 5:

C3VD dataset video sequences

Segment Texture Video Frames

A 1 a 700

2 a 514

3 a 613

3 b 536

B 4 a 148

C 1 a 61

1 b 700

2 a 194

2 b 103

2 c 235

3 a 250

3 b 214

4 a 382

4 b 597

E 1 a 276

1 b 765

2 a 370

2 b 1,142

2 c 595

3 a 730

3 b 465

4 a 425

A-E* 1 a 5,458

2 a 5,100

3 a 4,726

4 a 4,774

*
Simulated screening colonoscopies
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