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Abstract

The placenta performs essential biologic functions for fetal development throughout pregnancy.
Placental dysfunction is at the root of multiple adverse birth outcomes such as intrauterine
growth restriction, preeclampsia, and preterm birth. Exposure to endocrine disrupting

chemicals during pregnancy can cause placental dysfunction, and many prior human studies

have examined molecular changes in bulk placental tissues. Placenta-specific cell types,
including cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, and placental resident
macrophage Hofbauer cells play unique roles in placental development, structure, and function.
Toxicant-induced changes in relative abundance and/or impairment of these cell types likely
contribute to placental pathogenesis. Although gene expression insights gained from bulk placental
tissue RNA-sequencing data are useful, their interpretation is limited because bulk analysis can
mask the effects of a chemical on individual populations of placental cells. Cutting-edge single
cell RNA-sequencing technologies are enabling the investigation of placental cell-type specific
responses to endocrine disrupting chemicals. Moreover, /n situ bioinformatic cell deconvolution
enables the estimation of cell type proportions in bulk placental tissue gene expression data.
These emerging technologies have tremendous potential to provide novel mechanistic insights in
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a complex heterogeneous tissue with implications for toxicant contributions to adverse pregnancy

outcomes.
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Introduction

The placenta is a transient organ that develops during pregnancy and plays a key

role in not only the health of the fetus but also the mother (Gingrich et al., 2020;
Padmanabhan et al., 2021). Defects in placental development are associated with poor
pregnancy outcomes, intrauterine growth restriction, and programming of offspring health
and disease. Gestational exposures to endocrine-disrupting chemicals (EDCs) can perturb
placental functions contributing to adverse pregnancy outcomes and later onset diseases.
Understanding the molecular pathways linking EDC exposures to health outcomes via
placental dysfunction is a highly active area of promising and ongoing toxicologic and
epidemiologic research. These studies typically use bulk placental samples, ignoring the
complex cellular heterogeneity of the placental tissue. This review summarizes the current
status of EDC exposures on bulk placental tissue gene expression, as measured by RNA-
sequencing, highlighting the diverse cellular functions of different placental cell types and
cutting-edge technologies available for single cell measures, enabling cell type resolution
of placental gene expression. Lastly, we provide actionable recommendations to advance
research on EDC exposure effects on placental tissue and development.

Impact of prenatal exposure to endocrine disrupting chemicals (EDC) on

perinatal and childhood outcomes

EDCs are chemicals that interfere with hormone signaling through multiple mechanisms
(Ho et al., 2022; Kabir et al., 2015), including disruption of synthesis, transport, or binding
of endogenous hormones in the body (Kavlock et al., 1996), as well as direct activation

of hormone receptors (Kiyama and Wada-Kiyama, 2015). Environmental contaminants
that are classified as EDCs include pesticides (Brander et al., 2016), heavy metals (Jia
etal., 2021), plasticizers (Rattan et al., 2017), and pharmaceuticals (Ho et al., 2022).
Exposure to one or more EDCs during gestation is linked to pregnancy complications
including preeclampsia (Cantonwine et al., 2016), gestational diabetes (Shaffer et al., 2019)
and preterm birth (Welch et al., 2022). It is also associated with offspring outcomes
including hypospadias, cryptorchidism (Grady and Sathyanarayana, 2012; Sathyanarayana
etal., 2016; Wu et al., 2022), male (Bonde et al., 2016) and female (Rattan et al., 2017)
reproductive disorders, behavioral problems (Philippat et al., 2017), autistic traits (Day et
al., 2021), decreased 1Q scores (Tanner et al., 2020), liver injury (Midya et al., 2022) and
cardiometabolic dysfunction (Abrantes-Soares et al., 2022). Depending on the chemical or
chemical mixture studied, EDC exposure is also associated with both increased (Pearce et
al., 2021) and decreased (Hu et al., 2021) birth weight, highlighting the need to improve
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our understanding of specific chemical impacts and the molecular mechanisms underpinning
these associations. Epidemiological evidence for links between many specific chemical
exposures and diseases remain mixed, however, and further research is required into specific
mechanisms and thresholds of exposure that may contribute to disease outcomes.

In general, as described by the Developmental Origins of Health and Disease (DOHaD)
hypothesis (Barker, 2007), exposures that disrupt growth and development in early

life can contribute to lifelong health effects (Almond and Currie, 2011). The prenatal
period of development represents a uniquely susceptible life stage for EDC exposure,

as endocrine signals during this period are critical for fetal growth and healthy organ
development (Gicquel and Le Bouc, 2006; Scott et al., 2009; Toivanen and Shen, 2017).
For example, maternal exposure to EDCs is linked to birth weight in human studies

and mechanistic toxicology studies, demonstrating EDC impacts body weight and energy
metabolism. Pregnant mice exposed to EDCs like tributyltin have offspring with altered
differentiation potential of multipotent cells, leaving them predisposed to differentiate into
adipocytes (Kirchner et al., 2010). These cell-type differentiation impacts of EDCs can
reveal mechanisms for their contribution to disease etiologies. For example, the EDCs that
predispose multipotent cells to differentiate into adipocytes potentially contribute to obesity
(Hao et al., 2012; Kirchner et al., 2010). In addition, EDCs like phthalates and bisphenol
A stimulate cell proliferation in prostate (Corti et al., 2022) and breast (Williams and
Darbre, 2019) cells, providing a plausible mechanism for contribution to cancer progression.
Virtually all of the adverse health endpoints implicated by prenatal EDC exposures are

at least partly mediated by the placenta, which may be unsurprising given the placenta’s
multifunctional role in fetal development. There is therefore a great need to understand
the role the placenta plays in mediating EDC effects on maternal and fetal health during
pregnancy.

Placental function, structure, development, and cell types

The placenta is a transient and multifaceted organ specially adapted to carry out multiple
life-supporting and regulatory functions for the fetus throughout pregnancy. Perhaps the
most fundamental functions of the placenta are to facilitate fetal oxygen, nutrient, and
waste exchange at the maternal-fetal interface, which consists of a selective interhaemal
barrier separating maternal and fetal circulations (Caruso et al., 2012). The placenta is

also responsible for regulating many physiological processes of pregnhancy through its roles
in hormone synthesis, immune protection, and xenobiotic metabolism, all necessary for
normal fetal development during pregnancy. Additionally, placental growth, development,
and function are highly dependent on maternal and fetal hormone signaling and crosstalk
(Murphy et al., 2006).

Originating from the earliest stages of pregnancy, the fetal components of the placenta,
including the placental disk, umbilical cord, and amniotic and chorionic membranes, derive
from the blastocyst, and therefore share genetic makeup with the fetus (Caruso et al., 2012).
Initial placental development, known as placentation, begins shortly after fertilization as
the blastocyst undergoes implantation into the endometrial layer of the uterine wall (Kim
and Kim, 2017). The placental disk originates from two tissues: the stromal extraembryonic
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mesoderm and the epithelial trophectoderm. Importantly, the extraembryonic mesoderm
differentiates into fibroblasts, placental blood vessels and immune cells, including Hofbauer
cells, the resident macrophages of the placenta (Burton and Fowden, 2015). Hofbauer cells
are one of several notable placental cell types that confer unique structure and function to

the organ. In addition to serving immune cell functions, Hofbauer cells promote critical
angiogenesis throughout the placenta across the entire pregnancy (Loegl et al., 2016; Reyes
and Golos, 2018; Seval et al., 2007). The maternal component of the placenta, the decidua, is
derived from the endometrial lining of the uterus. Thus, together the placenta and associated
membranes represent an example of parabiosis with cellular components derived from the
fetal and maternal compartments.

As the placenta grows throughout pregnancy, finger-like projections called chorionic villous
trees with extensive placental vasculature extend from the chorion of the placental disk into
the interstitial space that houses the fetal-maternal interface (Figure 1). The trophectoderm,
which makes up the wall of the blastocyst at the implantation face, differentiates into
trophoblast. The trophoblast layer gives rise to cell types which constitute the epithelial
barrier and covering of the villous trees (Burton and Fowden, 2015). Multiple cell types

of trophoblast lineage perform essential placenta functions unique to the maternal-fetal
interface and are often implicated in placental dysfunction. The innermost trophoblast

layer covering villous trees consists of proliferative and undifferentiated cytotrophoblasts.
These cells fuse to form and replenish the syncytiotrophoblast layer, a multinucleated,
semi-continuous syncytium covering the surface of villi and some parts of the basal and fetal
plates (Castellucci and Kaufmann, 2006; Midgley et al., 1963). The syncytium makes up
the interhaemal membrane separating maternal and fetal circulations where gas and nutrient
exchange takes place. Cytotrophoblasts also differentiate into extravillous trophoblasts that
invade from anchoring chorionic villi that connect to the maternal component of the
placenta, termed the decidua, which derives from the uterine endometrium. Extravillous
trophoblasts, in conjunction with maternal immune cells, facilitate critical remodeling of
the maternal spiral arteries necessary to optimize maternal blood flow to the placenta
(Burton and Fowden, 2015; Maltepe and Fisher, 2015). The extravillous trophoblasts also
form the outermost cell columns at the tips of chorionic villi that anchor the villi to the
maternal basal plate and stabilize them in the intervillous space (Pijnenborg et al., 1981).
Given the complexity of the placental tissue, to gain insight into placental function and/or
dysfunction from EDC exposure, effects on placenta-specific cell types should be prioritized
for interrogation.

The placental microenvironment is an important factor in determining its structure and

cell type composition. For example, placental oxygen levels change throughout pregnancy
with severe hypoxic conditions prevailing during the first trimester. The first trimester is

a period when implantation and cytotrophoblast invasion occurs and uterine spiral artery
remodeling begins. Oxygen tension influences the destiny and function of several of the
placental cell types during early pregnancy (Zhao et al., 2021). High oxygen tension in

the spiral artery promotes endovascular trophoblast invasion (Sato, 2020). The ability of
the placenta to cope with environmental challenges highlights its plasticity to safeguard a
healthy pregnancy. For instance, hypoxia-inducible factor (HIF) (Fryer and Simon, 2006) is
induced to allow for adaptation to low oxygen tension. Maternal blood pressure is another
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potential mediator of placental cell type composition. For example, elevated blood pressure
has been associated with a reduced mesenchymal stromal cells-to-syncytiotrophoblast ratio
(Broséus et al., 2022). Recent histopathologic findings indicate SARS-CoV-2 infection leads
to significant placental hypoperfusion and inflammation (Di Girolamo et al., 2021). A
systematic review found that 12% of pregnant women with SARS-CoV-2 infection had the
virus present in syncytiotrophoblasts (Ashary et al., 2020). The consequence of this and
other inflammatory disorders in modulating cell type composition is an avenue for future
research.

Placenta as an endocrine organ and a target organ for EDC toxicity

One of the key roles of the placenta is its endocrine function, including the ability to
synthesize and secrete hormones that are central for establishment and optimal maintenance
of pregnancy, fetal development, and parturition (Costa, 2016). Early placental defects
underlie several disorders of pregnancy such as miscarriage, fetal growth restriction, and
pre-eclampsia (Dimitriadis et al., 2023). The placenta’s secretome comprises of a plethora
of hormones, steroids (progesterone, estrogen), proteins (human chorionic gonadotropin
[hCG], human placental lactogen [HPL], placental growth hormone [HPGH], leptin,
adiponectin, inhibin, activin, placental growth factor [PIGF]), and cytokines such as tumor
necrosis factor alpha (TNF-a) and interleukin-1 (IL-1). The roles placental hormones play
during pregnancy are myriad and beyond the scope of this review. However, some of their
most important functions include regulation of growth and differentiation of trophoblasts,
support of fetal growth, protection of the fetus from infection, modulation of maternal
adaptations, and preparation of the uterus and mother for parturition (Mesiano, 2009).

The syncytiotrophoblast layer is the predominant site of the production of progesterone, a
key player in pregnancy maintenance. The functions of progesterone include placentation,
immune tolerance, inhibition of myometrium contractility, and preparing the mammary
gland for lactation. During early pregnancy, the corpus luteum is the site of production of
progesterone, under the influence of placental hCG (Garner and Armstrong, 1977). hCG
also plays a role in placental angiogenesis, trophoblast invasion, myometrial quiescence,
and immunomodulation (Nwabuobi et al., 2017). Other placental hormones such as HPL
regulate maternal lipid and carbohydrate metabolism (Costa, 2016), while HPGH takes on
growth hormone functions (Caufriez et al., 1993), namely, metabolic regulation, induction
of insulin resistance, as well as promotion of gluconeogenesis and nutrient availability

for the growing fetus (Alsat et al., 1998). Estrogens are the other major class of steroids
produced by the placenta and promote embryo implantation, angiogenesis, vasodilation, and
syncytialization (Berkane et al., 2017). The endocrine function of the placenta extends to the
support of maternal immunologic (Daniel et al., 1987), nutritional, metabolic (Parrettini

et al., 2020; Stern et al., 2021), and cardiovascular (Melzer et al., 2010) adaptations.

In addition to its endocrine function, the placenta also synthesizes several chemicals

that influence inflammation, oxidative stress response, angiogenesis, and innate defense
mechanisms. MicroRNAs (Jin et al., 2022) and extracellular vesicles (Jin and Menon, 2018)
that regulate post-transcriptional gene expression and facilitate intracellular communication
between mother and placenta have the potential to serve as biomarkers of disease, and are
also part of the placental secretome.
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The placenta is a plausible target organ for EDC toxicity because of multiple structural

and functional characteristics. The placental structure consists of a large surface area and a
thin interface separating maternal and fetal circulation, which provides an ideal environment
for maternal transfer of compounds (Burton and Jauniaux, 2015). Because the placenta is
highly perfused at rates up to 700 ml/min by the third trimester (Wang and Zhao, 2010),
systemically available toxicants are readily delivered to the placenta. Additionally, multiple
different types of EDCs can cross the placenta, as previously reviewed (Yang et al., 2019).
Beyond its role in material transfer, the placenta plays a role in biotransformation and
chemical metabolism. The placenta is capable of metabolizing toxicants, such as EDCs,

into reactive metabolites because it expresses an abundance of metabolizing enzymes

such as cytochrome P450s, glutathione-s-transferases, lipases and other enzymes, thereby
increasing the risk of tissue-generated metabolites (Myllynen et al., 2005). Due to the unique
characteristics of the placenta, EDCs have the potential to disrupt critical signaling and
cause significant placental injury, as previously reviewed (Gingrich et al., 2020; Yang et al.,
2019).

Use of bulk placental tissue in environmental exposure gene expression

studies

Human epidemiology studies frequently sample biopsies of placental villous tissue for
measurement of molecular biomarkers of exposure or adverse pregnancy outcomes. Gene
expression is frequently selected as a molecular biomarker because it is highly responsive
to chemical exposure and represents a potential mechanistic link between exposure and
function. In particular, bulk placental tissue gene expression has been investigated with

a multitude of environmental exposures using candidate gene quantitative PCR, targeted

or genome-wide microarray, and genome-wide RNA-sequencing technologies in animal
models and humans (Rosenfeld, 2021). Recently, there have been several human population
studies evaluating mRNA, IncRNA, or microRNA expression with RNA-sequencing in bulk
placental tissue with the majority focusing on prenatal exposure to metals (Table 1) (Lapehn
and Paquette, 2022). Importantly, these prior RNA-sequencing and exposure studies did

not estimate cell composition or include cell composition in their analytic framework,
which represents a future opportunity. RNA-sequencing analyses of prenatal chemical
exposures, including EDCs, are an understudied category of environmental exposure with
only three papers evaluating prenatal chemical exposures (phthalates, polycyclic aromatic
hydrocarbons, and organophosphate pesticides) with the placental transcriptome at birth in
a human population (Li et al., 2023; Paquette et al., 2023, 2021). Therefore, there is still

a substantial breadth of knowledge to be gained through new studies of the full placental
transcriptome and its associations with environmental exposures.

Environmental toxicology studies, similar to epidemiology studies, have also used bulk
placental tissue to evaluate gene expression following /n vitro EDC treatment. Placental
villous explant tissue obtained from human pregnancies is a common model because it
allows for measurement of toxicological endpoints in intact human tissue and has the
advantage of retaining some aspects of the placental microenvironment such as cell-to-cell
interactions. Use of this model generally consists of excising out villous tissue from the ex
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vivo placenta in small chunks, floating tissues in appropriate tissue culture media, exposing
explants to toxicant(s) of interest, and flash-freezing tissues or isolating mRNA for future
analysis. Multiple studies have used this model to evaluate toxicant-induced changes in
gene expression for several compounds including the trichloroethylene metabolite S-(1,2-
dichlorovinyl)-I-cysteine (DCVC) measured with RNA-sequencing (Elkin et al., 2021),
candidate gene PCR studies of Bisphenol A (Sieppi et al., 2016; Zou et al., 2022) and

the cholesterol-lowering drug Pravastatin (Brownfoot et al., 2015), among others. Animal
models have also been used extensively to study effects of toxicant exposure on placenta
tissue /n vivo, though most animal placentas differ in structure and/or function relative

to human placentas. In these models, pregnant animals are exposed to toxicants through
various methods, animals are euthanized, and bulk placental tissues are dissected out and
processed for further analysis. For example, animal models have been used to assess
toxicant-induced changes in gene expression for different EDCs, including phthalates (Xu
etal., 2021), bisphenols A and S (Mao et al., 2020), trichlorethylene (Elkin et al., 2021),
PCBs (Laufer et al., 2022) and dexamethasone (Lee et al., 2017). Similar to epidemiological
studies, prior toxicology studies did not take into account differences in placental cell
composition. Therefore, it is unknown which cells within the bulk placental tissues analyzed
contributed to gene expression changes reported in each study. Because many of these
studies have their raw data stored in data repositories such as the National Institutes of
Health’s Gene Expression Omnibus, there is a {Updating}future opportunity to re-analyze
these data using innovative computational methods that account for cell composition, as
described in subsequent sections.

To date, bulk placental tissue makes up the vast majority of RNA-sequencing data (Table

1). Although gene expression insights gained from bulk placental tissue RNA-sequencing
data are useful, their interpretation is somewhat limited because bulk analysis can mask the
effects of a chemical on individual populations of placental cells which could be identified
through RNA-sequencing of sorted cell types or single cells (Zhang et al., 2019). Because
the placenta undergoes such rapid growth, development, and ultimately, aging over the
course of a pregnancy, cell type composition of placental tissue can vary greatly depending
on when sample collection occurs (Lim et al., 2017; Sitras et al., 2012; Suryawanshi et

al., 2022). Another challenge of interpreting data from bulk placental tissue is the extreme
heterogeneity of tissue resulting in vastly different gene expression patterns which can
fluctuate solely based on the location within the tissue of sample collection (Coorens et al.,
2021). Moreover, placental tissue presents a unique set of challenges for data interpretation
because the organ is embedded into the maternal decidua to varying degrees throughout
pregnancy, which results in the unavoidable co-mingling of placental cells and maternal
cells when placental tissue is procured for experimental purposes (Heazlewood et al., 2014;
Lamb et al., 2012; Sardesai et al., 2017). Due to the unique conditions of placental tissue

in vivo, interpreting gene expression data from bulk placental tissue samples is particularly
challenging. Use of the emerging single-cell RNA-sequencing technologies when evaluating
placental tissue gene expression changes is a way to avoid some of the pitfalls of interpreting
bulk placenta RNA-sequencing data.
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Single-cell molecular analyses and the placenta

Single-cell RNA-sequencing is a relatively new technology that measures genome-wide
gene expression in a series of individual cells, as opposed to sequencing all transcripts
collected from bulk tissue homogenate. Single-cell RNA-sequencing improves on bulk
RNA-sequencing by capturing cell specific and cell state specific gene expression, allowing
for the detection of differences in cell composition or differential expression within cell
types, which improve the potential biologic relevance of inferences of results. However,
single cell technologies typically require increased cost and expertise and limit throughput
and sequencing depth relative to bulk tissue RNA-sequencing (Hedlund and Deng, 2018).
Single-cell RNA-sequencing data analysis typically begins by annotating individual cells
using defining genes or similarity indices with established cell type-specific samples. Once
cells are annotated to cell types, investigators can perform cell type specific differential
expression analyses or even compare the cell type composition of their samples (Luecken
and Theis, 2019). Furthermore, single-cell RNA-sequencing measures are not affected by
cellular heterogeneity differences that confound bulk tissue analyses (Campbell et al.,
2020). The increasing adoption of single-cell RNA-sequencing across tissues has led to

the discovery of new cell types and subtypes with distinct gene expression profiles from
previously discovered cell types. Most single-cell RNA-sequencing approaches require
dissociation of the tissue to a single cell suspension. Consequently, cell composition and
novel cell type results must be interpreted with caution as tissue dissociation bias, the
differential resilience of cell types to the tissue dissociation process, may distort the
appearance and abundance of cell types (Hedlund and Deng, 2018). This is especially true
in the human placenta since large, multi-nucleated syncytiotrophoblasts may be less likely
to remain intact through processing and are generally incompatible with microfluidic-based
whole cell single-cell RNA-sequencing platforms. Single nucleus RNA-sequencing, which
relies on only capturing more stable nuclei instead of whole cells, has emerged as an
alternative to potentially address dissociation bias as well as capture large cells not amenable
to single-cell preparation protocols (Kim et al., 2023). Though single-cell RNA-sequencing
is more susceptible to dissociation bias, the technology provides key insight into cell states
and distributions and overcomes critical limitations of bulk analyses.

We identified 15 studies that performed single-cell RNA-sequencing on human placental
tissue (as of December 2022) (Table 2), including 9 studies involving placentas collected

at the end of gestation (Campbell et al., 2023; Chen et al., 2022; PavliCev et al., 2017;
Pique-Regi et al., 2019; Tsang et al., 2017; Wang et al., 2022; Yang et al., 2021; Zhang et
al., 2021; Zhou et al., 2022) and 6 studies involving placentas collected earlier in pregnancy
(Li et al., 2022; Liu et al., 2018; Ray et al., 2022; Sun et al., 2019; Suryawanshi et

al., 2018; Vento-Tormo et al., 2018). All studies were conducted in humans, except one
study which used mice (Tosevska et al., 2022). While the majority of early pregnancy
placental samples were from aborted fetal tissue, Sun et al collected first trimester samples
using chorionic villi sampling, which provides an opportunity to follow pregnancies to the
end of gestation (Sun et al., 2019). Syncytiotrophoblasts are multinucleated cells which
would be anticipated to cause inherent challenges for single-cell RNA-sequencing. Only one
study attempted to directly address this issue by isolating syncytiotrophoblasts using laser
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microdissection followed by conventional bulk RNA-sequencing (Pavlicev et al., 2017). This
challenge may explain why syncytiotrophoblasts are not well represented as a major portion
of cell types in clustering-based analyses of these cell types, despite their prominent role

in placental physiology and function. As an alternative, single-nucleus RNA-sequencing
has been successfully employed to capture transcriptomes generated from an /in vitro
syncytiotrophoblast model (Khan et al., 2021). Another key consideration for all placental
studies is the reporting of key clinical characteristics and covariates of interest, and only a
few studies reported this type of data for important factors such as maternal BMI, maternal
age, and/or race/ethnicity of participants (Chen et al., 2022; Pique-Regi et al., 2019; Yang
et al., 2021). Four studies also collected and generated single-cell RNA-sequencing data

of the maternal decidua (Pique-Regi et al., 2019; Sun et al., 2019; Suryawanshi et al.,

2018; Vento-Tormo et al., 2018), which provided opportunities to explore interactions
between the maternal-fetal interface using receptor-ligand networks. While earlier single-
cell RNA-sequencing studies characterized typically developing placental and decidual cell
types and their interactions, more recent single-cell RNA-sequencing studies have begun

to apply this approach to pregnancy complications, including preeclampsia (Campbell et
al., 2023; Tsang et al., 2017; Zhou et al., 2022), preterm birth (Pique-Regi et al., 2019)

and gestational diabetes (Yang et al., 2021). One study applied single-cell RNA-sequencing
to investigate functional changes to the placenta related to severe COVID-19 infection
ultimately resulting in fetal demise (Chen et al., 2022). Meta-analysis or other integrative
analyses in single-cell RNA-sequencing studies of the placenta are currently limited.
However, one study performed an integrated analysis of newly collected uncomplicated
placentas alongside 2 previously published studies (Pique-Regi et al., 2019; Tsang et al.,
2017) to develop a deconvolution reference for bulk placental gene expression measures
(Campbell et al., 2023). However, no human placenta studies to date have utilized single-cell
RNA-sequencing data in the context of environmental exposures analysis.

Future opportunities and recommendations in single-cell placental

toxicology

The generation of bulk transcriptomics data in well powered cohorts with rich phenotypic
data provides an unprecedented opportunity to study environmental exposures, but the
ability to gain mechanistic insight into toxicity is limited due to a lack of cell-specific
information. Generating single-cell data in a cohort setting may not be feasible due to
cost, timeline constraints, and logistics of sample collection, but cellular deconvolution
tools can provide an opportunity to reveal the cellular proportions of bulk sequencing data
(Figure 2). Deconvolution refers to the bioinformatic process of estimating the distribution
of cell types that constitute bulk tissue. Campbell et al recently developed a human
placental deconvolution tissue reference panel based on cell type-specific gene expression
profiles generated from new and existing single-cell RNA-sequencing data (Campbell et
al., 2023). This panel was developed for use with the bioinformatic deconvolution tool
CibersortX (Newman et al., 2019) but may be applied in other deconvolution algorithms
and includes gene expression signatures for 8 placental cell types, 11 other fetal cell
types, and 8 co-mingled maternal peripheral immune cell types. The rapid development
of publicly available, cell type-specific sequencing and microarray data and conveniently
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packaged deconvolution algorithm software have made deconvolution increasingly available
to the research community. Deconvolution references are now increasingly available across
species such as mice (Marsh and Blelloch, 2020; Nelson et al., 2016), and other tissues

and biological molecules, including brain, umbilical cord blood, and DNA methylation
(Campbell et al., 2023). The use of deconvoluted cell composition estimates in placental
research is evolving but has largely focused on modeling cell composition proportions as a
primary outcome or as a covariate in genome-wide association studies of gene expression.
For example, the Campbell placental RNA reference panel applied to a previously published
case control microarray study of preeclampsia revealed that the proportion of extravillous
trophoblasts was overrepresented among preeclampsia cases compared to controls, a

cell type whose dysfunction has previously been implicated in preeclampsia. Further, a
differential gene expression analysis of the same dataset suggested that upregulation of
preeclampsia relevant genes FLT71, ENG, and LEPamong preeclampsia cases was partially
mediated by differences in cell composition (Campbell et al., 2023). Another tool developed
using single cell RNA-sequencing data is “PlacentalCellEnrich”, which allows the user to
characterize if a list of genes is enriched for genes with placental cell specific expression
patterns (Jain and Tuteja, 2021). These approaches may be applied to bulk placenta tissue
studies to test whether and how EDCs affect placental cell composition and gene expression.

Adopting widespread use of single-cell RNA-sequencing technologies to assess cell-specific
differential gene expression in the placenta induced by toxicant exposures offers important
advantages over current methods using bulk tissue or specific cell types. Similar approaches
have been successfully deployed in lead (Pb) toxicology of the hippocampus brain region

in mice (Bakulski et al., 2020), and has recently been applied in a mouse air pollution
exposure study of the placenta (Tosevska et al., 2022). Evaluating gene expression changes
at single cell resolution from tissues containing a full breadth of placental cell types will
allow researchers to assess cell type-specific gene expression changes. This will lead to
in-depth analysis of cell-by-cell transcriptional responses to a toxicant. Researchers will be
able to pinpoint responses and/or impairment of specific cell types that likely play a role in
placental pathogenesis. Single-cell approaches can even identify novel cell types and states.
Moreover, changes in relative cell type abundance resulting from toxicant exposure can be
determined using single-cell RNA-sequencing.

Single-cell approaches can be integrated with a chemical risk assessment framework

for translational impact. One such framework is the Adverse Outcome Pathway (AOP)
approach, used by researchers in regulatory and academic institutions. AOPs organize
biological effects of toxicant exposure into a logical sequence of events of increasing

scale of biological complexity from molecular, to cellular, and finally to organism or even
population level effects (Ankley et al., 2010; Spinu et al., 2020; Vinken, 2013). Each step
in an AOP is linked by Key Events that ultimately link early molecular events (e.g. toxicant
binding to hormone receptor) to adverse health outcomes (e.g. fetal growth restriction).
Single cell RNA-sequencing allows researchers to identify molecular (transcriptomic)
responses at single cell resolution within the complex microenvironment of the placenta.
Single-cell transcriptomics methods present a powerful method for identifying Key Events
in specific placental cells, allowing researchers to build new AOPs that demonstrate how
EDC exposure leads to adverse preghancy outcomes. Thus, these methods have the potential
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to significantly improve our ability to assess the risks posed by exposure to EDCs during
pregnancy.

An additional future opportunity of single cell approaches is to model interactions between
cells. Cell-cell interactions can be modeled through the use of receptor-ligand networks,
which is a mathematical model detailing the relationship between different cells within a
tissue, which is reflected in the ligands and their expressed receptors through both single
cell and bulk RNA-sequencing data (Armingol et al., 2021). A network is a mathematical
collection of objects composed of “nodes” connected by “edges”. Here, “nodes” represent
cytokine ligands or receptors from specific cell types, and “edges” quantitatively encode the
relationships between nodes. Since different placental cells release protein ligands, ligands
bind to cell surface receptors, and receptors pass information to cells, these edges can

be considered “directed’. Computational methods have been developed to analyze directed
networks, estimating global properties of the network as indicators of the ‘immune state’.
Receptor-ligand interactions have been curated in various databases, including cellphoneDB
(Efremova et al., 2020), iCellNet (Noél et al., 2021), and the Human Connectome DB

(Hou et al., 2020). These databases can act as a network scaffold for individual cell

type networks, which can be refined through expression thresholding, expression product,
expression correlation, or differential combination approaches (Armingol et al., 2021). This
network architecture provides a framework to overlay tissue-specific expression levels and
correlations to determine the immune cell cross talk in the decidua and placenta.

One exciting potential application of single-cell RNA-sequencing in placental toxicology

is to use it to understand how EDCs disrupt the unique signaling pathways that occur at

the maternal-fetal interface during pregnancy. Cellular communication within and between
maternal and fetal cells is essential to the routine functioning of the maternal-fetal interface,
and EDCs may disrupt these molecular signals. Placental cells and maternal cells undergo a
carefully orchestrated ligand-receptor mediated crosstalk program with the specific goal of
regulating some physiological processes unique to pregnancy. An example of maternal-fetal
tissue coordination is the selective modulation of the maternal immune system in response
to the presence of the semi-allogeneic fetus. Although complex and not fully understood,
tissue and cell-specific immunomodulation is regulated by interactions between uterine
natural killer cells and regulatory T cells on the maternal side and extravillous trophoblasts
and syncytiotrophoblast on the placental side (Napso et al., 2018). Additionally, hormones
synthesized and released by the placenta regulate maternal T cells (Morelli et al., 2015).
Using single-cell RNA-sequencing to interrogate how EDCs may disrupt maternal-fetal
signaling will lead to new mechanistic insights by potentially identifying new cells involved
and revealing cell-specific signaling through gene expression.

Spatial transcriptomics is an emerging single-cell technology that does not require tissue
dissociation and thus preserves the tissue structure and cellular geographic organization. The
technology was highlighted by Nature Biotechnology as the 2021 method of the year (Marx,
2021) and is now available and scalable through several commercially available platforms.
Spatial transcriptomics works by integrating existing sequencing based approaches with
microscopy based techniques such as fluorescence in situ hybridization (FISH) (Tian et

al., 2022). Spatial transcriptomics can provide resolution into the cell-type composition
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of tissues, the rules and patterns of how individual cell types spatially interact, and also
elucidate molecular interactions between tissue components (L. Tian et al., 2022). Given
the significance of the maternal-fetal interface in fetal development and placental function,
spatial transcriptomics approaches could provide novel insight into the interactions of

cells and tissues at this critical interface. Recently, two studies were published detailing
spatial transcriptomics applied to chorionic villous placental tissue (Liu et al., 2022) and
trophoblast development in early pregnancy (Arutyunyan et al., 2023). Eventually, spatial
transcriptomics approaches should be used to provide insight into how EDCs may interfere
with processes at the maternal fetal-interface, representing a critical research gap.

Looking ahead, additional recently developed genomics technologies have the potential

to yield novel mechanistic insight into how EDCs may disrupt cellular functions in the
placenta. Single cell CUT&TAG is a novel experimental approach that can profile single

cell DNA accessibility, histone modifications, and transcription factor occupancy at a single
cell resolution (Bartosovic et al., 2021), representing a major technological improvement
over chromatin immunoprecipitation and sequencing (CHIP-Seq). This may be highly
relevant in the field of EDCs, based on their known mechanisms of toxicity involving
disruption of nuclear hormone receptor transcription factors which can result in changes to
the synthesis and signaling of downstream genes (Hall and Greco, 2019). Single-cell Assay
for Transposase-Accessible Chromatin (ATAC)-sequencing is another emerging technology
that can be used to understand the regulatory elements that drive cell-type gene expression
(Fang et al., 2021). Endocrine disrupting chemicals including phthalates have been shown

to disrupt histone acetylation and chromatin accessibility (Kuhl et al., 2007; Zhang et al.,
2014), but to our knowledge this has not been profiled on a genome scale or single-cell level.
Researchers may also consider other applications of single-cell methodologies as they are
developed, such as single cell proteomics, or epigenomics. We anticipate that these emerging
technologies may further elucidate the mechanisms of toxicity for EDCs by pinpointing how
they disrupt maternal-fetal communication and transcriptomic regulation of gene expression.

Conclusions

Exposures during pregnancy to EDCs can result in adverse pregnancy outcomes and
postnatal complications for children. Molecular and cellular changes to the placenta

are likely central to these disorders. Given the placenta is constituted of multiple cell
types of unique form and function, greater biologic and mechanistic insights can be
gained by incorporating measures of cell composition or cell-specific measures (Figure 2).
Specifically for large epidemiologic studies using archived bulk placental tissue measures,
we recommend that investigators use single cell placental reference panels to estimate cell
composition in their samples. With this approach, investigators can test for differences in
estimated placental cell composition by exposure or outcome, and they can incorporate
measures of cell composition in their tests of differential gene expression. For smaller
epidemiologic studies or in vitro toxicologic studies with fresh placental tissue available,
we recommend investigators consider a single nuclei approach to assess cell type specific
differential gene expression. This allows for the identification of cell type specific adverse
outcome pathways. As new technologies emerge and throughput increases, innovative
opportunities for placental EDC toxicology will continue to evolve. This manuscript has
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focused on placental villous tissues, however the placenta coordinates with additional
tissues (fetal membrane, decidua). Many of the principles presented are applicable in these
tissues, and fully capturing the biology will require considering tissue-tissue interactions. In
addition, the concepts of this manuscript are applicable to toxicants beyond EDCs. The field
of placental toxicology is in an exciting position to be able to build on prior successes in
bulk tissue and in cell culture and now able to extend and consider cell specific responses
and interactions in the tissue.
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Figure 1. Human term placental tissue cellular heterogeneity.
A. Major cell types of the placenta include the resident macrophage Hofbauer cells

(green), mesenchymal cells including fibroblasts (brown), and endothelial cells that line

the fetal vasculature (pink). The outermost layer is the multinucleated semi-continuous
syncytiotrophoblast (purple), which is formed by the syncytialization of cytotrophoblasts
(light blue). The syncytiotrophoblast is the direct barrier between the placental villous

tissue and the intervillous space perfused with maternal blood (dark red). Created with
BioRender.com. B. Human term placenta villous tree excised from human placenta in Harris
Lab. C. Cross-section of human term villous tree isolated by Harris Lab and visualized using
hematoxylin and eosin stain.
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‘ Larger cohort studies (>100) can consider utilizing cellular deconvolution approaches to estimate cellular proportions

Applying cell Proportions to bulk RNA seq to identify specific cell types disrupted by EDCs
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confounded by sample-level
differences in cellular heterogeneity
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Single Cell Placental analyses can provide necessary reference signatures to deconvolute bulk datasets

Figure 2. Recommendations for placental RNA-sequencing implementation based on sample size

and research question.

Single-cell RNA-sequencing data is most amenable to in vitro studies and studies

with small sample sizes, and can produce cell specific signatures of EDC disruption.
Large cohort studies may find it more challenging to deploy single-cell sequencing,

but can leverage single cell analyses to adjust for cellular heterogeneity and examine

cell proportions within their data. *Syncytiotrophoblasts are multi-nucleated and may

be challenging to capture using standardized single-cell approaches. EDC=Endocrine
Disrupting Chemicals, SC=Single Cell, SN=Single Nuclear, SCB=Syncytiotrophoblast,
EVT=Extra villous trophoblast, CYT=Cytotrophoblast, ANK=decidual natural Killer cell,

HB=hofbauer cell, MC=macrophage”
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