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Abstract

A first-of-its-kind enantioselective aromatic Finkelstein reaction is disclosed for the remote 

desymmetrization of diarylmethanes. The reaction operates through a copper-catalyzed C‒I bond 

forming event and high levels of enantioselectivity are achieved through the deployment of a 

tailored guanidinylated peptide ligand. Strategic use of transition-metal mediated reactions enables 

the chemoselective modification of the aryl iodide products, thus, the synthesis of a diverse set 

of otherwise difficult-to-access diarylmethanes in excellent levels of selectivity is realized from 

a common intermediate. A mixed experimental/computational analysis of steric parameters and 

substrate conformations identifies the importance of remote conformational effects as a key to 

achieving high enantioselectivity in this desymmetrization reaction.

Graphical Abstract

Since its discovery in 1910, the Finkelstein reaction has been synonymous with halide 

exchange for the preparation of primary alkyl iodides.1–3 The substitution of alkyl bromides 

and chlorides under a well-defined SN2 regime4–5 and the elegant exploitation of Le 

Chatelier’s principle to drive the reaction by precipitation of NaBr or NaCl have rendered 

the Finkelstein reaction a classic in introductory organic chemistry textbooks and a 
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reliable tool for organic synthesis (Figure 1A).6–8 While halide exchange in aryl halides 

is also precedented,9–10 it took nearly a century following Finkelstein’s discovery, until 

Buchwald’s report on the copper-catalyzed aromatic Finkelstein reaction appeared, realizing 

a synthetically useful protocol for C‒Br to C‒I exchange at Csp2 centers (Figure 1B).11 

Despite a renewed interest in the development of milder methods,12–16 Buchwald’s method 

remains state-of-the-art. Indeed, the traditional copper mediated approach that operates via 

an efficient oxidative addition / halide exchange / reductive elimination sequence has shown 

utility in various synthetic campaigns.17–19

Notably, implementation of the enantioselective aromatic Finkelstein reaction has not yet 

been reported in the literature.

Motivated by recent observations applying guanidinylated peptide-based ligands in 

asymmetric copper-based cross-couplings, we sought to establish a synthetic platform that 

would allow for the development of an enantioselective aromatic Finkelstein reaction for 

remote desymmetrization of diarylmethanes.20–24 The generation of stereocenters removed 

from the center of reaction remains a major challenge in contemporary asymmetric 

catalysis.25–27 In this field, peptide-based catalysts have found particular utility, stimulating 

the present study of their capacity to mediate remote aryl bromide to aryl iodide 

substitution. We further hypothesized that leveraging the enhanced reactivity of the C‒I 

bond towards venerable cross-coupling reactions would allow for translation of the installed 

stereoinformation into chemoselective transition metal-catalyzed transformations (Figure 

1C).28 Consequently, the asymmetric aromatic Finkelstein reaction would, facilitate the 

streamlined synthesis of a structurally diverse library of enantio-enriched diarylmethanes, 

negating the need to identify chiral catalysts and ligands for each individual cross-coupling 

reaction.

The selection of 1 as a model substrate was motivated by the privileged role of 

diarylmethanes in drug discovery.29–35 We began by subjecting 1 to a CuI/TMG-Asp-D-

Pro-OLi catalyst system using sodium iodide as iodide source and we were gratified 

to observe the formation of 2 in 49% NMR-yield with 90:10 er, alongside achiral bis-

substituted product 3 (10% yield) (see Supporting Information). Encouraged by this result, 

ligand optimization was initiated (Table 1). While utilization of monomeric, dimeric, 

and trimeric tetramethylguanidine N-capped peptides furnished 2 in promising levels of 

enantioselectivity (up to 91:9 er, L3-L7), tetrameric β-turn peptides with a Li-Di+1-Li+3 

sequence proved superior, generating 2 in good yields (up to 64%) and excellent selectivities 

(up to 96:4 er) (L8-L16). In general, the nature of the i+3 position had only a minor 

influence on selectivity (L9-L12), yet the presence of a C-terminal carboxylate proved 

essential (L8).

Similarly, alteration of the catalyst τ-angle through incorporation of disubstituted amino 

acids (Acpc, Aic, Aib) at the i+2 position did not impact the reaction outcome and 2 was 

isolated in good yield and excellent er (L12-L14).36 Finally, we investigated the effect of 

stereochemical alteration of the amino acid sequence. Employing L15, which contains an 

optically inverted i+3 position had a negligible effect on the reaction outcome. In contrast, 

substitution of Asp for D-Asp (i-position) resulted in an inversion of the sense of enantio-
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induction with 2 obtained in 72:28 er. While L9-L13 furnished the product in similar yield 

and selectivity, L10 performed better on a larger scale and was therefore used going forward.

While separation of 2 from remaining starting material 1 and side-product 3 was not 

possible, a crystal structure of 2 could be obtained, allowing for assignment of the absolute 

configuration as (S) (Figure 2B, see Supporting Information). Our overall strategic vision 

included the use of the aromatic Finkelstein reaction to set up subsequent reactions based on 

the canonical selective transformation of the C‒I over the C‒Br bond, rendering purification 

of 2 obsolete. We therefore turned our attention to product derivatization.

Initial attempts targeted chemoselective Heck-reactions. While the use of phosphine ligands 

resulted in complex product mixtures, a Pd(OAc)2/NEt3-catalyst system enabled the desired 

conversion of 2 (purified mixture containing 1 and 3) to 4 in 67% yield with retention 

of enantioselectivity (Figure 2A). Stimulated by this result, we aimed to advance the 

asymmetric aromatic Finkelstein / cross-coupling strategy to a more general derivatization 

platform, enabling the synthesis of diverse diarylmethanes over two steps with a single 

chromatographic purification.

Pleasingly, the same strategy was compatible with various transition-metal catalyzed 

transformations (Figure 2B).

Heck-product 4 could be isolated in 43% over 2 steps with excellent enantioselectivity (94:6 

er). Our strategy was furthermore compatible with a Cu(I)-catalyzed Larock-type indole 

formation, enabling the synthesis of 5 in 38% over 2 steps, despite an observable drop in 

selectivity (89:11 er), which in this case, can be attributed to background reaction of the 

remaining starting material. Implementation of a Suzuki-reaction using 3-methoxyphenyl-

boronic acid proved fruitful with 6 being isolated in 30% over 2 steps and 91:9 er. 
Enantioenriched mono-brominated diarylmethane 7 could be synthesized via a palladium-

catalyzed dehalogenation using NaBH4 as reductant (40% over 2 steps, 92:8 er). Finally, 

insertion of carbon monoxide into the newly installed C‒I bond in the presence of a 

palladium catalyst resulted in the formation of 8 in 50% over 2 steps with 93:7 er. It 
is notable, from a strategic standpoint, that each of these transformations is enabled by 

desymmetrization of a simple, and common starting material, circumventing individual 

campaigns for new chiral ligands and catalysts.

Having established the synthetic potential of the asymmetric aromatic Finkelstein reaction 

as a platform for chiral diarylmethane synthesis, we explored mechanistic and structural 

requirements to achieve high selectivity. Diarylmethanes have been successfully utilized 

in several methodology and drug discovery campaigns.26–35 In particular, our lab has 

established a high degree of compatibility with small-peptide catalysis over a broad range 

of mechanistically distinct transformations.20–24, 36–37 A series of experiments was therefore 

undertaken to identify parameters that govern the privileged role of diarylmethanes in 

peptide catalysis.

The involvement of a secondary kinetic resolution in the enhancement of selectivity is often 

characterized by an increase of enantioselectivity over time. We thus monitored the reaction 
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progress and indeed observed a continuous increase in er from 88:12 to 95:5 (Figure 3A). 

Furthermore, the reaction features an induction period of around 6 h, which results from the 

required deprotonation of the - NHTFA moiety to reveal the active substrate for catalysis 

(see Supporting Information).

Next, we investigated the influence of diarylmethane structure on reaction outcome (Figure 

3B). Evaluation of the impact of structural modification was possible by isolation of 

the corresponding Heck-reaction products. Initially, the role and nature of the halide 

substituent was investigated. Addition of chloro-substituents to the aryl-core was well-

tolerated furnishing diarylmethane 9 in 58% yield over two steps in 94:6 er. In contrast, 

no conversion to product was observed upon subjecting 10 to the reaction conditions, 

highlighting the relatively poor reactivity of aryl chlorides compared to aryl bromides.

Perhaps most interesting in the context of remote substituents is the bridge between the 

two aromatic rings of the substrate. Considering the excellent enantioselectivity obtained for 

tBu-substituted substrate 4 (94:6 er), the very good levels of selectivity upon installation 

of an adamantyl (11, 92:8 er) and a methylcyclohexyl group (12, 94:6 er) are unsurprising. 

The presence of a tertiary carbon-center in the α-position to the stereogenic center, however, 

resulted in a notable drop in selectivity (cyclohexyl, 13, 84:16 er; isopropoyl, 14, 82:18 er). 
Further decrease of the steric profile upon installation of a methyl group (15), yielded a near 

racemic product (55:45 er).

In previous studies, we noted linear free energy relationships between empirical steric 

parameters and the observed enantioselectivity in the catalytic desymmetrization reaction of 

diarylmethane-bis(phenol) substrates.37–38 Here we show that a computed steric descriptor, 

buried volume (VBur) computed at 3.0 Å sphere centered at the substituent group 

carbon, correlates well with the measured enantioselectivities (R2 = 0.89, Figure 3C).39–40 

Computed steric descriptors provide advantages over empirically derived parameters, 

particularly because they can be readily computed for uncommon substituents (e.g., 

methylcyclohexyl group in 12). To showcase this advantage, we used 12 as a test case 

to evaluate the accuracy of the correlation and found that it accurately predicted the 

enantioselectivity within 0.03 kcal/mol of the measured value. Given the nature of this 

remote functionalization, we sought to understand how the change in a distal group (as 

measured by VBur) induces conformational changes that imbue high enantioselectivity. 

Inspection of the conformational ensemble of each diarylmethane revealed that the identity 

of the substituent group influences the adopted conformation of the substrate; specifically, 

the Boltzmann averaged plane angle (∠) between the two aryl groups varies ca. 30° 

depending on the size of the R group (59.7° for 4 and 87.4° for 15, Figure 3C).41 The 

conformational change manifests itself in the 13C NMR shift of the central methine carbon 

signal, which correlates well with ∠ and er (see Supporting Information). This suggests that 

the structural organization of the diarylmethine is determining enantioselectivity and sheds 

light on the mechanistic effect of a distal substituent.

In summary, we disclose the first report of a highly enantioselective, copper-catalyzed 

aromatic Finkelstein reaction. Guanidinylated peptide ligands serve as enabling tool for the 

desymmetrization of diarylmethanes via stereoselective bromide to iodide substitution at 

Morack et al. Page 4

J Am Chem Soc. Author manuscript; available in PMC 2024 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Csp2-centers. Subsequent stereoretentive transition metal-catalyzed transformations enable 

a platform for the generation of chiral diarylmethane libraries. To elucidate the privileged 

nature of diarylmethanes in desymmetrization reactions, this study identified key parameters 

that govern selectivity, establishing underlying principles for future studies. A secondary 

kinetic resolution was identified as a crucial contributor to the excellent levels of 

enantioselectivity and a computed steric parameter led to insight into the preorganization 

required for selective catalysis. The features of the diarylmethane scaf-fold remain of great 

interest in not only asymmetric catalysis, but also in the study of ligand receptor interactions 

in medicinal chemistry. It seems plausible that the determinants of selectivity in one field 

may be related to selectivity in the other, which may justify further exploration of this 

analogy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Development of an asymmetric aromatic Finkelstein reaction.
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Figure 2. 
A) Identification of an asymmetric aromatic Finkelstein / Heck reaction sequence. 
aYield determined by 1H NMR using dibromomethane as internal standard. B) 

Asymmetric aromatic Finkelstein reaction as platform for the synthesis of enantioenriched 

diarylmethanes. Reaction conditions (0.2 mmol scale): a) Pd(OAc)2, NEt3, ethyl acrylate, 

DMF; b) CuI, PPh3, K3PO4, phenylacetylene, 1,4-dioxane; c) Pd(OAc)2, NEt3, 3-

methoxyphenylboronic acid, toluene; d) Pd(OAc)2, NaBH4, TMEDA, DMF; e) Pd(OAc)2, 

NEt3, EtOH/DMF (1:4), CO. X-ray structure of 2 is shown with atomic thermal parameters 

calculated at 50% probability levels.
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Figure 3. 
Diarylmethane scope and correlation of steric demand with enantioselectivity.
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