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Abstract

Background: Fine particulate matter (PM2.5) exposure is a known risk factor for numerous 

adverse health outcomes, with varying estimates of component-specific effects. Populations with 

compromised health conditions such as diabetes can be more sensitive to the health impacts of air 
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pollution exposure. Recent trends in PM2.5 in primarily American Indian- (AI-) populated areas 

examined in previous work declined more gradually compared to the declines observed in the rest 

of the US. To further investigate components contributing to these findings, we compared trends in 

concentrations of six PM2.5 components in AI- vs. non-AI-populated counties over time (2000 – 

2017) in the contiguous US.

Methods: We implemented component-specific linear mixed models to estimate differences in 

annual county-level concentrations of sulfate, nitrate, ammonium, organic matter, black carbon, 

and mineral dust from well-validated surface PM2.5 models in AI- vs. non-AI-populated counties, 

using a multi-criteria approach to classify counties as AI- or non-AI-populated. Models adjusted 

for population density and median household income. We included interaction terms with calendar 

year to estimate whether concentration differences in AI- vs. non-AI-populated counties varied 

over time.

Results: Our final analysis included 3,108 counties, with 199 (6.4%) classified as AI-populated. 

On average across the study period, adjusted concentrations of all six PM2.5 components in 

AI-populated counties were significantly lower than in non-AI-populated counties. However, 

component-specific levels in AI- vs. non-AI-populated counties varied over time: sulfate and 

ammonium levels were significantly lower in AI- vs. non-AI-populated counties before 2011 but 

higher after 2011 and nitrate levels were consistently lower in AI-populated counties.

Conclusions: This study indicates time trend differences of specific components by AI-

populated county type. Notably, decreases in sulfate and ammonium may contribute to steeper 

declines in total PM2.5 in non-AI vs. AI-populated counties. These findings provide potential 

directives for additional monitoring and regulations of key emissions sources impacting tribal 

lands.
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Introduction

Fine particulate matter (PM2.5) air pollution is a risk factor for numerous adverse health 

outcomes, including but not limited to respiratory and cardiovascular diseases (Hystad et 

al., 2020; Pope et al., 2019; Virani et al., 2020). Racial and ethnic minorities often bear 

disproportionate burdens of PM2.5 exposure and associated morbidity and mortality risk 

(Bullard, 1993; Jbaily et al., 2022; Tessum et al., 2019). Given extensive environmental 

degradation on and near tribal lands across the United States (US) (Fernández-Llamazares 

et al., 2020; Lewis et al., 2017), air pollution is a critical public health concern in many 

American Indian and Alaska Native (AI/AN) communities (Shriver and Webb, 2009; Woo 

et al., 2020). AI/AN face a high prevalence of chronic diseases such as diabetes mellitus 

and these populations may be more susceptible to the health effects of continued air 

pollution exposure (Centers for Disease Control and Prevention, 2020). Many American 

Indian (AI) communities are located in the rural US, where PM2.5 concentrations have not 

been well characterized (Dewees and Marks, 2017), as the Environmental Protection Agency 

(EPA) PM2.5 monitors tend to be stationed in more densely populated regions. Moreover, 

AI communities have historically been excluded from most air pollution epidemiological 

studies, and our understanding of the human health hazards in these populations is limited.

Our prior work comparing total PM2.5 mass concentrations between AI- and non-AI-

populated counties across the contiguous US found a lower percent decline over time 

in PM2.5 in AI-populated counties and higher levels in recent years compared to other 

counties (Li et al., 2022). PM2.5 consists of a complex mixture of particles, which vary 

geographically and temporally and arise from different emission sources (Seinfeld and 

Pandis, 2016). Comparing levels of PM2.5 components could help elucidate the contributions 

of specific air pollutants and potential sources to total PM2.5 trends. This present study 

considers the six major PM2.5 components contributing to total PM2.5 mass: ammonium 

(NH4
+), sulfate (SO4

2−), nitrate (NO3
−), black carbon (BC), organic matter (OM), and 

mineral dust. NH4
+ primarily originates from fertilizer use and livestock production 

(Dentener and Crutzen, 1994; Schiferl et al., 2014). SO4
2− and NO3

− are secondary 

pollutants resulting from the oxidation of sulfur dioxide and nitrous oxides and mainly 

originate from anthropogenic fossil fuel combustion, wildfires, and volcanoes (Park, 2004). 

BC and OM can originate from any combustion process but mainly from biomass burning 

and transportation emissions, and oxidation of OM compounds can further lead to the 

formation of secondary organic pollutants (Briggs and Long, 2016; Lin et al., 2010). Mineral 

dust consists of a mixture of aluminum, silicon, calcium, iron, and titanium (van Donkelaar 

et al., 2019) and arises from wind erosion of particles in deserts, other landscapes (Prospero, 

1999) and construction derived dust.

To evaluate trends in compositional PM2.5 over time in AI communities, we compared 

concentrations of NH4
+, SO4

2−, NO3
−, BC, OM, and mineral dust from 2000–2017 in the 

contiguous US between AI- and non-AI-populated counties using predicted estimates from 

a satellite-based chemical transport model. We hypothesized that trends in specific PM2.5 

components, namely sulfate, organic matter, and mineral dust, would be differential by AI-

populated county type, given the locations of AI-populated counties across the contiguous 
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US. Furthermore, given varied PM2.5 composition by location, we investigated geographic 

differences in PM2.5 component trends by county type through stratifying by rural status and 

climate region.

Methods

Our analysis included 3108 study counties, derived from counties and county equivalents 

across the 48 contiguous US and the District of Columbia. We used a three-criteria scheme 

to classify study counties with substantial AI populations as “AI-populated counties” as in 

our prior study (Li et al., 2022). Counties were classified as AI-populated if they fit one 

or more of the following criteria: (1) reported greater than 5% self-identified population 

of AI/AN in the 2010 Census (“census” classification), (2) contained at least 20% areal 

overlap with a federally-recognized tribal entity (“Tribal entity” classification), or (3) were 

previously classified as a rural AI county in a nationwide analysis using k-means clustering 

(“rural cluster” classification) (Wallace et al., 2019). We included counties that did not 

meet these criteria as “non-AI-populated” in our analysis. In earlier work, we described the 

breakdown of AI-populated counties by the three classification schemes in more detail (Li et 

al., 2022).

We compared airborne concentrations of SO4
2−, NH4

+, NO3
−, BC, OM, and mineral 

dust from 2000–2017 in counties defined as AI- vs. non-AI-populated. We conducted 

our analysis at the county level to provide findings relevant for informing regulatory 

policymaking.

Annual PM2.5 Component Concentrations

We extracted airborne concentrations of particle-phase NH4
+, SO4

2−, NO3
−, BC, OM, and 

mineral dust from satellite-based surface PM2.5 models that provide annual predictions of 

each PM2.5 component at approximately 1 km2 grid resolution across the US (van Donkelaar 

et al., 2019). These models incorporated satellite retrievals, chemical transport modeling 

(GEOS-Chem), and ground-based measurements to derive total PM2.5 mass, which were 

then partitioned into PM2.5 compositional species using a GEOS-Chem chemical transport 

model simulation. Next, these PM2.5 component estimates were statistically fused with 

ground monitor data to yield accurate continuous surfaces despite sparse compositional 

monitor density in many regions of the US. These models exhibit relatively high predictive 

accuracies. Cross-validated R2 values for the six PM2.5 components range from 0.57 to 0.96 

with the strongest for SO4
2− (R2 = 0.96) and NO3

− (R2 = 0.90) and the lowest for OM (R2 = 

0.57).

We estimated modeled annual concentrations of the six components separately for every 

study county by averaging the PM2.5 component concentrations in all grids with their 

centers contained in each study county.

Covariates

We included county-level population density and median household income from the 2010 

Census to examine differences in PM2.5 component concentrations between AI-populated 

and non-AI populated counties independent of these factors. Given that population density 
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and income distributions are highly skewed across US counties, we included deciles of their 

distributions as categorical variables in the regression models.

Statistical Analysis

We ran separate linear mixed regression models to compare annual concentrations of the six 

PM2.5 components in AI- versus non-AI-populated counties. The primary analysis included 

six regression models for each component separately, with NH4
+, SO4

2−, NO3
−, BC, OM, or 

mineral dust concentrations as the response variable in each model. The predictor variable 

of interest in our statistical models was binary AI-populated county type. We accounted for 

potential within-state correlation using random intercepts for each state and for correlation 

of observations over time in counties using nested random intercepts for counties within 

states. We adjusted each regression model for calendar year (categorical), population 

density (deciles), and median household income (deciles). To evaluate whether the trends 

in PM2.5 components varied over time between AI- vs. non-AI-populated counties, we 

included interaction terms between county type and each calendar year in the above 

models. Specifically, we ran one set of models including main effects only and another 

set additionally including county type and year interaction terms. To assess the presence 

of statistically significant modification of the AI-populated county-type effect measure over 

time, we compared the two sets of models using likelihood ratio tests.

We used R Statistical Software, version 3.6.3, to conduct all statistical analyses. The code 

and datasets used to run the present analyses are publicly available and accessible at: https://

github.com/maggie-mengyuan-li/pm2.5_comp_ai.git.

Secondary analysis

We ran a secondary analysis stratifying by rural and non-rural counties using the 2013 

National Center for Health Statistics (NCHS) Urban-Rural Classification Scheme for 

Counties (Rothwell et al., 2014). Rural counties comprised of nonmetropolitan (i.e., 

micropolitan and noncore) counties defined by the NCHS and non-rural counties included 

metropolitan counties. Since the relative composition of PM2.5 widely differs by climate and 

geography over time (Seinfeld and Pandis, 2016), we conducted a secondary analysis of the 

models containing county type and year interaction terms stratifying by grouped US climate 

regions as defined by the National Oceanic and Atmospheric Administration (NOAA), 

using the following categorizations: West/Northwest (combining the West and Northwest 

climate regions due to low count of AI-populated counties), Northern Rockies and Plains, 

Southwest, Upper Midwest, South, and East (combining the Ohio Valley, Northeast and 

Southeast climate regions).

Sensitivity Analyses

We ran a sensitivity analysis additionally adjusting for US climate regions. To account 

for spatial autocorrelation of PM2.5 component concentrations across counties, we also ran 

sensitivity analyses using geoadditive modeling with an additional tensor-product smooth 

term for latitude and longitude of the county centroid. For our geoadditive models, we 

considered 10 knots as our default for the six components. We examined a varying number 
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of knots (5, 10, and 20) for two components, NH4
+ (a relatively spatially homogenous 

component) and BC (a relatively spatially heterogeneous component).

Results

Of the 3108 counties included in our analysis, we classified 6.4% (n = 199) as AI-

populated and 93.6% (n = 2909) as non-AI-populated. Between 2000 and 2017, the 

mean concentrations for total PM2.5, NH4
+, SO4

2−, NO3
−, BC, and OM were lower in AI-

populated counties than non-AI-populated counties, while the mean concentration of mineral 

dust across the study period was higher in AI-populated counties (Table 1). The distribution 

of population density and household income by AI- vs. non-AI-populated counties are 

detailed further in Table 1.

Across the contiguous US, county-level concentrations of NH4
+, SO4

2−, and NO3
−, BC, 

and mineral dust declined between 2000–2017 (Figure 1, bolded dashed lines). Adjusted 

concentrations of all components were slightly but significantly lower in AI-populated 

counties on average across the study period (Table 2). Using likelihood ratio tests, we 

detected statistically significant variation in AI-populated county type estimates over time 

for all six PM2.5 components.

On average, between 2000 and 2017, NH4
+ was 0.05 μg/m3 (95% confidence interval [CI]: 

0.03, 0.07) lower and SO4
2− was 0.06 μg/m3 (95% CI: 0.02, 0.10) lower in AI-populated 

counties compared to non-AI-populated counties (Table 2). Although NH4
+ and SO4

2− 

concentrations were lower at baseline in AI- vs. non-AI-populated counties, this difference 

was attenuated over time through 2010. After around 2011, concentrations were higher 

in AI-populated counties compared to the other study counties for both NH4
+ and SO4

2− 

(Figure 2A-B). Using estimated values from the mixed models with interaction terms, 

we predicted that from 2000 through 2017, NH4
+ concentrations decreased by 64.7% in 

AI-populated counties and by 85.3% in non-AI-populated counties (Figure 1A, bolded solid 

lines). SO4
2− concentrations decreased by 39.8% in AI-populated counties and 69.7% in 

non-AI-populated counties (Figure 1B, bolded solid lines).

Across the study period, NO3
− was on average 0.12 μg/m3 (95% CI: 0.08, 0.16) lower 

in AI- compared to non-AI-populated counties (Table 2). Although we detected statistical 

effect modification over time and consistently lower levels in AI-populated counties across 

the study period, the maximal difference in NO3
− in any given year between AI- and 

non-AI-populated counties was similar in magnitude to NH4
+ and smaller in magnitude 

than for SO4
2− (Figure 2C). When we compared component concentrations using estimated 

values from our primary linear mixed models, NO3
− concentrations between 2000 and 2017 

decreased by 36.8% for AI-populated counties and 43.1% for non-AI-populated counties 

(Figure 1C, bolded solid lines).

Concentrations of BC were also lower in AI-populated vs. non-AI-populated counties on 

average between 2000 and 2017 (Table 2). Although we detected statistically significant 

effect modification of differences by county type over time, there was no clear pattern in this 

difference from year to year (Figure 2D). We estimated that BC concentrations decreased 
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by 0.36% in AI-populated counties and by 15.3% in non-AI-populated counties over time 

(Figure 1D, bolded solid lines).

Between 2000 and 2017, OM and mineral dust concentrations were lower in AI-populated 

vs. non-AI-populated counties (Table 2). Despite statistically significant changes over time 

by county type for both components, we did not observe any consistent patterning in 

changes of this difference across the study period (Figure 2E-F). Estimated concentrations 

over time reflected a 12.5% increase in OM in AI-populated counties and 2.2% decrease 

in non-AI-populated counties. There was a 19.3% decrease in mineral dust in AI-populated 

counties and 17.4% decrease in non-AI-populated counties (Figure 1E-F, bolded solid lines).

Comparing rural to non-rural counties, the relative contributions of SO4
2− to total PM2.5 

were generally higher in non-rural counties, whereas relative contributions of mineral dust 

to total PM2.5 were generally higher in rural counties (Supplementary Table S1). The 

median relative contributions of ammonium, nitrate, BC, and OM to total PM2.5 differed by 

less than 1% between rural and non-rural counties. The overall differences in component 

levels estimated across the study period between AI- and non-AI-populated counties were 

similar in magnitude and direction in rural counties compared to the primary analysis; in 

non-rural counties, the estimates also did not differ substantially from the primary analysis, 

with wider confidence intervals observed (Table 2). Annual estimated differences over 

time in mean concentrations for all six components in AI-populated vs. non-AI-populated 

counties were similarly patterned across rural and non-rural counties to our primary analysis 

(Supplementary Figure S4-5).

Evaluating county type differences over time across climate regions, the number of AI-

populated counties in each stratum varied from 11 in the East (Ohio Valley, Northeast, and 

Southeast climate regions) to 72 in the South climate region (Supplementary Figures S2-7). 

In the West/Northwest, Northern Rockies and Plains, and East climate regions, there were no 

substantial changes in component level differences over time by AI-populated county type 

(Supplementary Figures S2, S3, S7). In the Southwest and Upper Midwest climate regions, 

concentrations of NH4
+, SO4

2−, and NO3
− were generally lower in AI-populated counties 

across all study years, but this difference was attenuated over time (Supplementary Figures 

S4-5). In the South climate region, SO4
2− and OM concentrations became somewhat higher 

after 2008 in AI-populated counties, while concentrations of NH4
+ were higher during the 

middle of the study period (2008–2012) in AI-populated counties (Supplementary Figure 

S6).”

Sensitivity Analysis

When we additionally adjusted for climate region, average differences across the study 

period and over time did not vary considerably from our primary analysis (Table 2 

and Supplementary Figure S6). In our geoadditive models, which included a tensor 

product between latitude and longitude to account for spatial autocorrelation in component 

concentrations, findings for all components were also consistent with our primary analysis 

(Table 2 and Supplementary Figure S7). Estimates did not substantively differ when we used 

5, 10, and 20 knots (results not shown).
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Discussion

We analyzed differences in six PM2.5 component concentrations from 2000 through 

2017 between AI- and non-AI-populated counties across the contiguous US. For most 

components, levels were lower on average in AI-populated counties vs. non-AI-populated 

counties. When examining differences in annual concentrations over time, we detected 

increasing trends in AI- vs. non-AI-populated county type for NH4
+ and SO4

2−. For BC, 

OM, and mineral dust there were no clear differences over time by county type; For NO3
−, 

the differences between AI- vs. non-AI-populated counties were small; yet consistently 

lower for AI- vs non-AI-populated counties over the entire study period. Overall, the percent 

declines over time were higher in levels of NH4
+, SO42−, NO3

−, and BC in non-AI- vs. 

AI-populated counties, while for OM and mineral dust they were higher in AI- vs. non-AI-

populated counties.

Furthermore, based on results from the climate region-stratified analyses, differences in 

NH4
+ and SO4

2− over time by county type may be somewhat driven by differences in 

the Upper Midwest and South climate regions. NH4
+ exists as a component of PM2.5 in 

two primary forms: ammonium sulfate and ammonium nitrate. Ammonium sulfate, which 

includes SO4
2−, makes up a substantially higher proportion of total PM2.5 in the Midwestern 

and Eastern US while ammonium nitrate, which includes NO3
−, contributes to a higher 

proportion of total PM2.5 in the Western US. In previously published work, we estimated 

overall declines in PM2.5 with steeper declines in non-AI-populated counties. Our findings 

suggest that ammonium sulfate differences by county type are likely related to total PM2.5 

differences by county type in our previous study (Li et al., 2022), given the similarity in 

the magnitude and direction of time trends of NH4
+, SO4

2−, and total PM2.5 differences by 

county type. Ammonium sulfate levels have drastically reduced overall in non-AI-populated 

counties across the study period, with particularly steeper declines relative to AI-populated 

counties estimated after 2011. In contrast, there has been little to no decline in many AI-

populated counties. Common sources of ammonium sulfate include sulfur dioxide emissions 

from coal-fired power plants and steel production, and ammonia from agriculture (Speight, 

2017). Mass closures of coal-fired power plants in recent decades in these regions (Midwest 

and East) could be a factor contributing to differences in NH4
+ and SO4

2− in AI-populated 

vs. non-AI-populated counties across our study period (Seinfeld and Pandis, 2016).

The existing literature on air pollution in indigenous communities is limited and findings 

have been mixed. A recent study reported that population-weighted average concentrations 

of total PM2.5 for Native Americans were lower from 2000–2016 compared to Black, White, 

Hispanic, and Asian communities across ZIP Code Tabulation Areas (ZCTAs) nationwide 

(Jbaily et al., 2022). Mortality rates in 2014 attributable to PM2.5 exposure from electricity 

generation sources were lower among Native Americans compared to other racial and 

ethnic groups overall across the US, but higher for Native Americans in Oklahoma, a 

state containing a substantial proportion of AI-populated counties (Thind et al., 2019). Our 

study also detected lower concentrations of all six components in AI-populated counties on 

average from 2000–2017. However, none of the previous studies examined differences in 

trends over time by an AI- vs non-AI classification for total PM2.5 or its components. In 

our previous study (Li et al., 2022), we also detected overall lower PM2.5 concentrations in 
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AI-populated counties, but a slower rate of decrease in PM2.5 concentrations in AI-populated 

counties over time resulted in higher PM2.5 concentrations in more recent years. With this 

present study, we expand our previous findings and show that the concentrations of specific 

components, namely SO4
2− and NH4

+, reflect a similar pattern of differences over time by 

AI-populated county type as total PM2.5 concentration.

Stronger adverse health outcomes have been detected for exposure to specific PM2.5 

components. Studies have found that exposure to NH4
+, SO4

2−, and NO3
− is associated 

with an increased risk of asthma exacerbation and other respiratory effects (US EPA, 

2019). Higher effects were explicitly estimated in regions with high correlations between 

these components and total PM2.5 (US EPA, 2019). One study observed an increase in 

all-cause mortality risk from exposure to higher levels of NH4
+ and decreased risk from 

higher levels of NO3
−, across multiple cities in different countries (Masselot et al., 2022). 

Increased exposure to SO4
2− was associated with a higher risk of cardiopulmonary mortality 

(Brook et al., 2010), and exposure to sulfur originating from coal combustion was positively 

correlated with coronary heart disease risk (Thurston et al., 2016). AI/AN populations 

face significantly higher burdens of cardiovascular disease and diabetes compared to white 

Americans and other racial and ethnic groups (Hutchinson and Shin, 2014). Existing studies 

have found that persons with diabetes appear to display proinflammatory responses to short- 

and long-term exposure to air pollution (Jacobs et al., 2010). Higher levels of air pollution 

were associated with higher rates of CVD incidence, hospitalizations, and mortality for 

persons with diabetes (Hart et al., 2015; Pereira Filho et al., 2008; Pinault et al., 2016). 

Thus, AI/AN populations may be at a higher risk for PM2.5- and component-specific CVD-

related adverse health outcomes. Substantial barriers to accessing quality healthcare, such 

as geographic isolation and lack of transportation access, are prevalent in rural AI/AN 

communities, further exacerbating health burdens (Cromer et al., 2019). Characterizing 

trends in PM2.5 components and identifying those with the largest differences between AI- 

vs. non-AI-populated counties is critical for maximally efficient policies to protect public 

health equitably.

Limitations

First, the ecological design of this study limits our ability to draw conclusions and 

comparisons at the community or individual levels. Second, uncertainties in the predicted 

estimates of PM2.5 components, if correlated with temporal changes in concentrations, 

may induce some bias in the estimated effects of AI-populated county type on PM2.5 

concentrations. Third, due to the scarcity of monitoring data of speciated PM2.5 in 

predominantly rural and American Indian communities, we are unable to compare patterns 

of ground-level concentrations between AI-populated vs. non-AI-populated counties; since 

this analysis incorporates modeled predictions of PM2.5 component concentrations, potential 

differences in predicted PM2.5 model performance in AI- vs. non-AI-populated counties 

given fewer monitors in highly rural areas could influence the validity of our findings 

and conclusions. Future work currently under development to begin to address this present 

limitation includes planned residential monitoring of PM2.5 components in American Indian 

communities in the Southwest and Great Plains. Fourth, analyzing annual concentrations of 

PM2.5 components cannot capture any seasonal variability in levels of various components, 
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which could fluctuate substantially. Fifth, while broad in scope, our method of classifying 

AI-populated counties may not capture counties with substantial AI/AN populations. In 

particular, the census definition in our classification scheme for AI-populated counties 

incorporated data from the 2010 Census. Data from the 2020 Census showed an 86.5% 

increase in the self-reported AI/AN population, indicating a historical undercount of AI/AN 

in previous census reports (ICT, 2021). As of 2022, the majority of AI/AN lived in 

metropolitan areas (U.S. Department of Health and Human Services Office of Minority 

Health, 2023). Although we conducted a secondary analysis stratifying by rural status and 

did not detect substantive differences from our primary analysis findings, our county-level 

analysis is unable to assess exposure burdens among the large urban AI population and 

thus cannot generalize exposure patterns among the AI population as a whole. AI-populated 

counties are not randomly distributed across the US and certain climate regions have no or 

very few AI-populated counties, limiting the statistical power of the climate region stratified 

analyses; thus, these results may not be wholly representative in estimating differences 

between AI-populated vs. non-AI-populated communities regionally. Further research 

conducted at finer resolutions could potentially investigate differences in concentrations 

associated with distinct Indigenous cultural regions and environmental regions. There is also 

potential for residual confounding by socioeconomic status by factors other than household 

income, population density, or climate region. Finally, we could not compare levels of other 

components, such as trace metals, that pose substantive risks to human health. Nonetheless, 

the components we examined are the largest contributors to total PM2.5 mass.

Conclusions and Policy Implications

Air pollution in tribal areas is a widely known issue among many AI communities. 

Our previous work highlighted slower declines in total PM2.5 over time in AI- vs. non-

AI-populated counties (Li et al., 2022). The examination of PM2.5 component trends 

revealed that specific components, namely NH4
+ and SO4

2−, may be contributing to these 

slower declines in AI-populated counties. Future work investigating PM2.5 emissions in 

AI-populated counties could elucidate sources of air pollution impacting tribal lands and 

areas with large populations of AI people. Additional monitoring is also needed to further 

validate the ground accuracy of analyses using modeled data. The resourcefulness of tribal 

air programs in data collection and management invites many opportunities for collaboration 

and mutual learning among researchers, federal and state agencies, and tribal governments. 

These collaborations could aid in addressing the critical gap in air pollution research to 

ensure that tribal populations are being considered when informing the National Ambient 

Air Quality Standards. The establishment of stable funding mechanisms and institutional 

infrastructure can continue to improve tribal air pollution monitoring and regulatory efforts.
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• PM2.5 components levels on average were lower in AI-vs. non-AI-populated 

counties

• NH4
+ and SO4

2− levels lower at baseline, higher over time in AI-populated 

counties

• NO3
− levels lower throughout study period in AI-populated counties

• Ammonium sulfate reflect similar trends to total PM2.5 by AI-populated 

county type
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Figure 1: 
Trends in observed and predicted concentrations of six PM2.5 components over the study 

period (2000 – 2017) for AI and non-AI populated counties. The thin, light-colored teal 

and brown lines display the observed (raw data) state-specific annual means for AI- and 

non-AI-populated counties. The bolded dashed teal and brown lines show the observed 

annual concentrations averaged across all 48 states for AI- and non-AI-populated counties. 

The bolded solid teal and brown lines indicate the estimated annual concentrations from our 

linear mixed regression model with county type × year interaction terms, averaged across 

states for AI- and non-AI populated counties, for decile groups of median annual household 

income between $40,300 and $42,400 and population density between 22 and 33 individuals 

per sq mile.
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Figure 2: Mean difference in annual PM2.5 component concentrations between AI- and non-AI-
populated counties: 2000–2017.
The solid line represents the total estimated effect (adjusted for calendar year, random 

intercepts for counties within states, population density and income deciles, and county 

type × year interaction) of being classified as an AI-populated county vs. non-AI-populated 

county on annual concentrations of each PM2.5 component over the study period; the dashed 

lines show the 95% confidence intervals from the primary analysis. The solid red line 

represents no difference on average in adjusted component concentrations between AI and 

non-AI-populated counties.
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Table 1:

Descriptive Statistics for AI- and Non-AI-Populated Counties: United States; unadjusted averages across 

2000–2017.

Characteristic
County Type

AI Non-AI

Number of counties (n) 199 2909

Mean (SD)

AI population (%) 18.2 (19.9) 0.6 (0.6)

Total PM2.5 (μg/m3) 6.3 (2.1) 8.4 (2.2)

NH4
+ (μg/m3) 0.56 (0.34) 0.80 (0.46)

SO4
2− (μg/m3) 1.4 (0.83) 2.2 (1.15)

NO3
− (μg/m3) 0.66 (0.42) 0.86 (0.58)

BC (μg/m3) 0.46 (0.18) 0.63 (0.25)

OM (μg/m3) 2.2 (0.82) 2.8 (0.92)

Mineral Dust (μg/m3) 0.66 (0.34) 0.57 (0.27)

Population Density (per mi2) 41 (116) 276 (1790)

Median Annual Household Income (×$1,000) 40.4 (7.6) 44.4 (11.6)

Environ Res. Author manuscript; available in PMC 2024 November 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 18

Table 2:

Mean (95% CI) difference in modeled PM2.5 component concentrations (μg/m3), comparing AI populated vs. 

non-AI-populated counties (2000 – 2017).

Primary analysisa Adjusted for
climate regionb

Adjusted for
latitude/longitudec

Stratified by Rural Statusd
(Secondary Analysis)

Rural Non-rural

NH4
+ −0.05 (−0.07, −0.03) −0.05 (−0.07, −0.03) −0.01 (−0.02, 0.00) −0.04 (−0.06, −0.02) −0.04 (−0.10, 0.02)

SO4
2− −0.06 (−0.10, −0.02) −0.06 (−0.10, −0.02) −0.06 (−0.10, −0.02) −0.06 (−0.10, −0.01) −0.07 (−0.19, 0.05)

NO3
− −0.12 (−0.16, −0.08) −0.11 (−0.16, −0.07) −0.03 (−0.05, −0.00) −0.09 (−0.13, −0.05) −0.08 (−0.19, 0.03)

BC −0.02 (−0.03, −0.01) −0.02 (−0.03, −0.01) −0.01 (−0.02, 0.00) −0.02 (−0.03, −0.00) −0.01 (−0.05, 0.03)

OM −0.06 (−0.12, −0.01) −0.06 (−0.12, −0.00) −0.03 (−0.08, 0.01) −0.04 (−0.10, 0.01) −0.09 (−0.26, 0.08)

Dust −0.03 (−0.05, −0.01) −0.03 (−0.05, −0.01) −0.01 (−0.02, −0.00) −0.01 (−0.03, 0.00) −0.01 (−0.03, −0.00)

a
Model adjusted for calendar year, population density and income deciles, and random intercepts for counties within states

b
Model additionally adjusted for NOAA climate region

c
Geoadditive model with a tensor term for latitude and longitude

d
Separate analyses for micropolitan and noncore counties (Rural) and metropolitan counties (Non-rural) defined by the CDC NCHS
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