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Abstract

The innate immune system is critical for inducing durable and protective T cell responses to 

infection, and has been increasingly recognized as a target for cancer immunotherapy. In this 

review, we present a framework wherein distinct innate immune signaling pathways activate 

five key dendritic cell activities that are important for T cell mediated immunity. We discuss 

molecular pathways that can agonize these activities and highlight that no single pathway can 

agonize all activities needed for durable immunity. The immunological distinctions between 

innate immunotherapy administration to the tumor microenvironment versus administration via 

vaccination are examined, with particular focus on the strategies that enhance dendritic cell 

migration, interferon expression, and interleukin-1 family cytokine production. In this context, we 

argue for the importance of appreciating necessity vs sufficiency when considering the impact 

of innate immune signaling in inflammation and protective immunity, and offer a conceptual 

guideline for the development of efficacious cancer immunotherapies.

eTOC

Innate immune pathways are commonly discussed targets of cancer immunotherapy. Cao and 

Kagan review the state of this rapidly advancing field of study. They introduce the concept that 

five key innate immune activities in dendritic cells are needed to stimulate durable T cell mediated 

anti-tumor immunity.

Introduction

Cancer immunotherapies represent a notable example of how basic scientific explorations 

can impact human health. A wealth of fundamental biochemistry and genetic studies have 

identified modulators of T cell function that impact inflammation and immunity. Examples 

in this area include investigations of membrane proteins that potentiate or suppress T cell 

receptor (TCR) signaling activities, such as CD40, CD80 and CD86, which potentiate 
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TCR signaling activities, and PD-1 and CTLA4, which suppress TCR functions1,2. These 

proteins are known respectively as costimulatory and coinhibitory molecules, with the latter 

representing targets of therapies that promote anti-tumor immunity3–5.

Despite these successes in translating basic science discoveries into clinical treatments 

of disease, the benefits of T cell directed cancer immunotherapy are not comprehensive. 

Therapies that target T cell coinhibitory receptors (e.g. PD-1 or CTLA4) are effective at 

treating a minor spectrum of patients with cancer6. A contributing factor to immunotherapy 

unresponsiveness is the paucity of tumor T cell infiltration, characterizing non-inflamed or 

“cold” tumors. Mechanisms involved in the absence of T cell infiltration include the lack 

of tumor antigens, defects in antigen presentation, and poor T cell activation and homing 

into the tumor bed7. Therefore, an objective of cancer immunobiology is to identify ways 

to convert cold tumors to inflammatory T cell enriched “hot” tumors. Innovations towards 

this goal may derive from the one area of biology where the immune system has been 

successfully weaponized to provide life-long immunity to disease—infection.

Inquiries of how infectious agents induce durable and protective immunity have been 

ongoing for many years8,9. Yet, the molecular basis of pathogen detection remained 

elusive long after the molecular descriptions of T cell activation were underway. The 

descriptions of the pattern recognition receptors (PRRs) of the innate immune system, 

expertly reviewed in 2002 by Janeway10, provided a conceptual framework to discuss 

infection-mediated induction of adaptive immunity. PRRs are a structurally unrelated set 

of proteins that share the ability to interact with microbial products, typically cell wall 

components or nucleic acids. Upon microbial detection by PRRs expressed by dendritic 

cells (DCs), several immunostimulatory activities are triggered that promote T cell mediated 

immunity. Examples of PRRs include the Toll-like Receptors (TLRs), RIG-I like Receptors 

(RLRs), nucleotide binding domain leucine rich repeat containing proteins (NLRs), c-type 

lectin receptors (CLRs), and the enzyme cyclic GMP-AMP synthase (cGAS). The detailed 

mechanisms by which PRRs sense and respond to microbes and their products has been 

described in detail elsewhere11–14. In this review, we discuss PRRs that control key activities 

of DCs needed to stimulate T cell mediated immunity, and how PRR-targeted therapies may 

be utilized to advance the goal of tumor eradication.

Innate immune signaling pathways in DCs that stimulate durable T cell 

mediated immunity

Due to their unique ability to stimulate naïve T cells, there has been longstanding interest 

in targeting DCs using vaccines or cell-based immunotherapies. There are five key activities 

in DCs that are needed to stimulate new and long-lived antigen-specific T cell responses 

(Figure 1). These activities include 1) MHC-mediated presentation of protein antigens, 2) T 

cell costimulatory molecule expression, 3) Effector T cell activating cytokine expression, 

4) DC migration to the lymph node that drains the cancerous or infected tissue, and 

5) production and release of the memory inducing cytokines interleukin (IL)-1β and 

type I interferon (IFN). The former cytokine (IL-1β) mediates CD4+ and CD8+ T cell 

activities15–17 whereas the latter (IFN) primarily mediates CD8+ T cell activities18–20. Each 
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of these five DC activities is necessary for the differentiation of naïve T cells into robust 

and durable mediators of anti-infective and anti-tumor immunity. PRRs have attracted much 

attention in this area, as chemical mimics of microbial cell wall components or nucleic 

acids can elicit several of these activities from DCs. For example, TLR signaling on DCs 

promotes antigen capture21, and loading on MHC-I and MHC-II22,23. TLRs also promote 

the expression of T cell costimulatory molecules, including CD40, CD80 and CD8624, and 

the expression of IL-1225 and type I IFNs26, which are key cytokines that induce type 1 

CD4+ T cell and cytolytic CD8+ T cell effector responses to infection and cancer. RLRs27 

and cGAS28 also stimulate DCs to drive the above-described T cell activities, and represent 

particularly potent inducers of type I IFN production (Figure 2). However, it is becoming 

increasingly appreciated that not all PRRs elicit similar DC activities and distinct subsets 

of DCs express different repertoires of PRRs29. In addition, recent studies have suggested 

that PRR stimulation is not sufficient to activate all five activities in DCs that are key to 

stimulate durable lymphocyte responses (Figure 2). For example, robust induction of DC 

migration does not occur when PRRs are activated. In the case of respiratory syncytia 

virus (RSV) infections, DC migratory activities from the lung to the draining lymph node 

were intact in mice lacking MyD88 and MAVS30, which regulate TLR and RLR signaling 

respectively13,27. In contrast, RSV-induced cytokine and costimulatory molecule expression 

were ablated in the absence of MyD88 and MAVS30. Similarly, while TLR ligand injection 

into the skin induces some migration of DCs to the draining lymph nodes, this activity is not 

maximal and can be substantially enhanced by other DC stimulants, as discussed below17.

Like migratory activities, TLRs and most other PRRs are unable to elicit IL-1β production 

from DCs, the absence of which results in deficiencies in memory T cell induction and 

re-activation16,17,31,32. Whereas TLRs are robust inducers of pro-IL-1β production, the 

cleavage and release of this cytokine into the extracellular space is not mediated by TLR, 

RLR or cGAS signaling alone33. Rather, TLR signaling must occur in conjunction with a 

second signal, which often represents cellular injury or dysfunction, in order for DCs to 

release bioactive IL-1β into the extracellular space. The cellular injury signals that promote 

pro-IL-1β cleavage and release are numerous, yet commonly result in the assembly of 

a protein complex in the DC cytosol called the inflammasome34. The inflammasome is 

one of several supramolecular organizing centers (SMOCs), which represent the signaling 

organelles of the innate immune system. In the TLR, RLR and cGAS pathways, distinct 

SMOCs are assembled that activate inflammatory transcription factors such as NF-κB, 

AP-1 and IFN regulatory factors (IRFs)35. Inflammasomes, in contrast, do not stimulate 

transcription, but rather serve as a subcellular site of inflammatory caspase activation, 

commonly caspase-136. Caspase-1 can cleave pro-IL-1β into its bioactive state and also 

cleave the pro-protein gasdermin D (GSDMD), which forms plasma membrane pores37–41. 

These GSDMD pores may serve as conduits for IL-1β secretion or (if unrepaired by the 

cell) may promote a lytic form of cell death known as pyroptosis37–41. As TLRs, RLRs 

and cGAS are not effective inducers of inflammasome assembly, these PRRs are unable to 

stimulate production of bioactive IL-1β.

The significance of the role of IL-1β for induction of adaptive immunity dates to the earliest 

descriptions of this cytokine as a lymphocyte activating factor (LAF)42–45. More recently, 

Paul and colleagues revealed that CD4+ and CD8+ T cell responses to protein antigens 
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are enhanced when adjuvants are supplemented with recombinant IL-1β32,46. Genetic 

analysis has revealed the requirement of IL-1 receptor signaling on T cells for memory 

cell generation16. In the context of cancer, the use of adjuvants that induce IL-1β release 

from DCs was effective at inducing long-lived populations of resident memory CD8+ T cells 

that protect mice from multiple implantable tumor models17,31. However, not all inducers 

of IL-1β production from DCs are capable of stimulating T cell mediated anti-tumor 

immunity. Stimuli that elicit inflammasome activities that promote DC pyroptosis are robust 

inducers of IL-1β production, but the death of the DC interferes with all other activities 

for antigen-specific T cell generation17,47. Examples of pyroptosis-inducing inflammasome 

agonists include aluminum hydroxide and QS-21, both of which agonize the NLRP3 

inflammasome and induce pyroptosis48,49. These chemicals are used clinically as adjuvants 

and represent robust inducers of antigen-specific antibody responses50,51. However, their 

utility in generating cytolytic and T helper cell type 1 (TH1) responses is limited, as 

the death of DCs associated with these stimuli likely undermines the days-long T cell 

interactions needed to stimulate adaptive immunity52. There are distinct NLRP3 agonists 

that promote inflammasome activities in the absence of pyroptosis. These agonists include a 

set of oxidized lipids, typified by the chemical PGPC (1-palmitoyl-2-glutaryl-sn-glycero-3-

phosphocholine), which are naturally released from damaged cells53. When murine DCs 

are stimulated with TLR ligands and PGPC, IL-1β is added to the repertoire of cytokines 

these cells can produce while maintaining viability. These DCs also display heightened 

migratory activities compared to DCs stimulated with TLR ligands or aluminum hydroxide 

alone17,54,55 (Figure 2).

The enhanced migratory and IL-1β production activities of DCs exposed to TLR ligands 

and PGPC demonstrate that PRR stimulations alone are not sufficient to maximally elicit 

all five of the key activities needed to stimulate T cell mediated immunity. As such, DCs 

stimulated with TLR ligands and PGPC are more immunostimulatory than DCs that have 

been activated with TLR ligands (or aluminum hydroxide) alone17,56 (Figure 2). In reference 

to the term “active”, which historically defines TLR stimulated cells, DCs exposed to TLR 

ligands and PGPC have been termed “hyperactive”. In vitro studies have demonstrated 

that murine type 1 or type 2 DCs (i.e. cDC1 or cDC2) can achieve a hyperactive state, 

and that CD8+ T cell mediated anti-tumor immunity is dependent on cDC1s in mice57. 

Studies in human monocyte-derived DCs demonstrated that similar activation states exist, 

and hyperactive human cDC2s are associated with an enhanced ability to elicit TH1 

and TH17 cell differentiation58. Consistent with the idea that hyperactive DCs are more 

immunostimulatory than other DC activation states, recent work has found that TLR ligand 

+ PGPC-based adjuvants generate CD8+ T cell responses to model tumor antigens to a 

greater extent than TLR ligands or aluminum hydroxide adjuvants alone17. This increased 

generation of antigen-specific T cells through the use of DC hyperactivating adjuvants is 

associated with durable protective immunity to implantable tumor models in mice17.

When considering the above-described data from the perspective of therapeutic 

development, a critical theme emerges. No single innate immune pathway can elicit all five 

of the key activities in DCs needed to stimulate durable T cell immunity. Additionally, we 

consider that much effort in vaccine development has rightfully focused on the identification 

of cancer-associated (or microbial) antigens. These antigens may serve as guides for 
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the induction of T cell mediated immunity59. However, antigen identification is but one 

component of the process needed for efficient induction of adaptive immunity. The ability 

for a vaccine to induce protective immunity is not only dependent on the antigen(s) selected, 

but also on the DC stimulant used. DC stimulants, i.e. adjuvants, that stimulate all key 

activities in DCs may confer more robust and durable T cell responses to said antigen, and 

may be the missing puzzle piece that drives the immunogenic conversion of cold tumors 

to hot tumors. In the following sections, we discuss this concept further by describing 

current efforts at harnessing innate immune pathways as tools for cancer immunotherapy. 

In each instance, we discuss the approach in terms of reported efficacy, and how the 

approach relates to the five key DC activities needed to stimulate T cell mediated immunity. 

By using this five activity guideline, we aim to explain successes and disappointments 

in immunotherapy approaches, and potentially to provide a logic-based operating plan for 

future immunotherapy development.

Using growth factors to increase intra-tumoral DC abundance

Conventional type I (cDC1) and type 2 (cDC2) DCs represent the principal antigen 

presenting cells that generate new T cell responses to cancer antigens, yet the abundance 

of these cells in tumors is often low60–62. The low abundance of DCs within a cancerous 

(or infected) tissue is considered a bottleneck for antigen delivery to the lymph node in the 

context needed for naïve T cell stimulation63. To alleviate this bottleneck, efforts have been 

taken to increase DC abundance through the use of the DC differentiation factor FMS-like 

tyrosine kinase 3 ligand (FLT3L)64. While FLT3L-based immunotherapies have efficacy in 

several models of cancer, and in some trials in humans, these approaches also demonstrated 

that new DC generation is not sufficient to confer immunity. FLT3L-based approaches need 

to be combined with DC stimulatory approaches to ensure the increase in DC abundance 

correlates with an increase in the types of T cell responses needed for anti-tumor immunity.

FLT3L treatments inhibit the growth of murine solid tumors including colon carcinoma, 

prostate cancer, Lewis lung carcinoma, melanoma, and lymphoma65–68. In addition, 

adoptive cellular therapy with T cells expressing FLT3L triggered DC proliferation within 

tumors and lymphoid tissues, enhanced type I IFN pro-inflammatory signatures, and 

promoted antitumor activity in solid tumor models in mice69. Studies that use FLT3L as 

part of combined therapies have advanced us a step further. For instance, a multipronged 

approach involving in situ immunomodulation with FLT3L along with TLR3 and CD40 

co-stimulation (and radiotherapy) enhanced DC-mediated T cell recruitment and triggered 

regression of multiple orthotopic tumor models in mice70. In murine melanoma models, 

systemic administration of FLT3L followed by intra-tumoral treatment with TLR3 ligands 

expanded and activated DC progenitors in the tumor proper, sensitized the tumors to 

antibodies that blocked the interactions between the coinhibitory receptors PD-1 and PD-L1, 

and protected these mice from tumor re-challenge62. Immunostimulatory gene therapy using 

adenoviruses expressing FLT3L and thymidine kinase promoted antitumor immunity and 

improved survival in murine model of brainstem glioma, and is currently being tested in 

the clinic71. Finally, in a clinical trial, in situ vaccination with a combination of FLT3L, 

radiotherapy, and a TLR3 agonist induced anti-tumor T cell responses and cancer remission 

in patients with advanced stage indolent non-Hodgkin’s lymphomas72. These collective 
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studies support the idea that innate immune cell numbers are key to enhance anti-tumor 

immunity, but that increasing DC abundance is not sufficient for protection. Innate immune 

activities within these DCs are required to extract the benefit of FLT3L-based therapies.

Using DC stimulants (i.e. adjuvants) to increase T cell stimulatory cytokine 

production

Stimuli of PRRs, including TLRs and cGAS, have been explored as means to increase 

inflammatory DC activities and enhance anti-tumor immunity73,74. These efforts can be 

grouped into two categories: direct immunostimulation via injection of PRR ligands into 

the tumor microenvironment (TME) or indirect immunostimulation through the use of PRR 

ligands as adjuvants in cancer vaccines. A distinction between these approaches is the tissue 

in which the immunotherapy is delivered. In the case of cancer vaccines, the therapy is 

typically delivered via injection into a healthy region of the body distal to the diseased (i.e. 
cancerous) tissue. Injection into the healthy skin, for example, may stimulate cells other 

than DCs. Local macrophage, fibroblast or endothelial cell responses that exist at the site 

of injection may result in reactogenicity (swelling, pain), but these symptoms are usually 

resolved without consequence75. The stimulated DCs at the injection site, in contrast, 

migrate to the lymph node that drains the injection site and represent the key agents of 

T cell stimulation. The exposure of non-DCs to innate immune agonists at the site of vaccine 

injection may therefore have a temporary impact, in terms of local reactogenicity, but the 

long-term effects of the vaccine are largely mediated by other cell types. This statement may 

not apply when considering injections of innate immune stimuli into the TME. In the TME, 

innate immune agonists may impact cancer, stroma, and immune cells in ways that could 

either potentiate or undermine anti-tumor immune responses. Furthermore, as discussed in 

the accompanying review by Pittet and colleages76, complex environmental conditioning 

cues result in significant DC heterogeneity within the TME. DC subsets have differential and 

overlapping capacity to capture, traffic, and present tumor antigens to naïve T cells in tumor 

draining lymph nodes77. There is also accumulating evidence of impactful intra-tumoral 

DC-T cell crosstalk during the development of anti-tumor immunity. For instance, there 

are subsets of tumor resident DCs that express chemokines and costimulatory signals that 

facilitate homing and differentiation of immature T cells into antigen-specific effector T 

cells within the tumor proper78,79. Intra-tumoral DCs are also thought to be important 

in re-stimulating previously activated effector T cells. Therefore, DC-subset specificity 

and compartmentalization sculpt T-cell immunity. Importantly, this idea means that the 

variable nature of the TME, between patients as well as throughout the disease course in an 

individual, translates into unpredictability in response to intra-tumoral therapeutic delivery 

of innate immune stimuli (compared to vaccination approaches). In the following section, 

we discuss examples of beneficial and potentially non-beneficial effects of intra-tumoral 

delivery of innate immune stimuli.

Within the TME, normal or cancerous cells are abundant, as are cell death events. The 

factors released by damaged cells in the TME can stimulate TLRs, cGAS and likely other 

PRRs. Examples of such factors include heat shock proteins, ATP, nucleic acids, uric acid, 

calcium regulatory protein S100 family, and nuclear protein high mobility group box 180. 
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Activation of TLRs by this diverse repertoire of damage associated molecular patterns 

(DAMPs) modulates signaling pathways in a cell and context-specific manner. For instance, 

TLR stimulation in DCs is pivotal for priming antigen presentation and inducing cytotoxic T 

cell responses. In macrophages, TLR stimulation promotes M2 to M1 phenotypic switching, 

expression of costimulatory molecules and immunostimulatory cytokines, and consequently 

antitumor immunity81. Furthermore, TLR activation facilitates differentiation of myeloid-

derived suppressor cells (MDSC) towards an M1 phenotype and enhances tumor regression 

in mice82. TLR ligation on T and B cells may promote their survival, as well as cytokine, 

antibody, costimulatory molecule expression, and effector functions83,84. Interestingly, in 

tumor cells, TLR signaling can have conflicting functions. TLRs may facilitate interactions 

with immune cells to reverse immune suppression85 and promote tumor apoptosis86. 

However, TLRs on tumor cells can also promote tumor stemness, resistance to cytotoxic 

lymphocyte attack, and tumor cell proliferation and metastasis87.

As evidenced above, the predominant effect of TLR simulation on the diverse population 

of cells in the TME is anti-tumorigenic, prompting TLR agonists to be studied as 

immunotherapies. For instance, the TLR2 agonists Pam3Cys and SMP-105 are under 

investigation in bladder cancer88. The TLR3 agonists polyI:C and ARNAX have been shown 

to enhance effector T cell responses and tumor suppression89–91. The TLR4 activators AS04, 

MPLA, and GLA-SE have been tested in experimental and clinical trials to treat cervical 

cancer and lymphoma92. Flagellin, an agonist of TLR5 and multiple NAIPs in the NLR 

family, has been studied in the context of head/neck and prostate cancers93,94. The TLR7 

agonist imiquimod has been tested in several gynecologic cancers. Finally, several variations 

of CpG oligodeoxynucleotides have been tested as TLR9 agonists in the treatment of a 

range of tumors95. A central feature of all TLR-based immunotherapies is their ability to 

induce several key activities described in Figure 1. These activities include the induction of 

antigen-presentation, T cell co-stimulation, T effector cell cytokines, and type I IFNs from 

responding DCs (and macrophages). The impact of type I IFNs is notable here, as these 

cytokines are key drivers of cytolytic T cell activities in the TME, as well as analogous 

Natural Killer (NK) cell activities96. As such, type I IFN production has emerged as a 

functional biomarker of an effective intra-tumor innate immunotherapy. This need for a 

robust type I IFN response in the TME even extends to chemotherapies, where IFN gene 

expression profiles are associated with protective immunity97.

Based on the emerging importance of type I IFNs as a key aspect of intra-tumoral 

protective immunity, non-TLR pathways that drive IFN responses have attracted attention. 

Notable examples include the pathways activated by cGAS and its downstream effector 

protein (which is also a PRR) STING. These proteins induce inflammatory responses 

typified by type I IFNs to double stranded DNA. Under normal circumstances, DNA is 

sequestered from the cytosolic space. However, tumor cells are prone to leak DNA into 

the cytosol, due to a combination of genomic instability, oxidative stress, and metabolism 

dysregulation74. This leaked DNA may be detected by cGAS, which consequently activates 

its latent enzymatic activity to produce a cyclic dinucleotide (CDN) known as cyclic 2’3’ 

GMP-AMP (cGAMP). cGAMP, as well as other CDNs, represent ligands for STING 

that activate inflammatory and IFN responses that are key to stimulate cytolytic and 

inflammatory T and NK cell responses to cancer. cGAS or STING activation and type I 
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IFN release from DCs have been shown to augment DC maturation, antigen processing 

and presentation, migration, tumor antigen-specific T cell priming and activation, and 

maintenance of cytotoxic T cell stemness98–102. In addition, cGAS-STING activation in 

tumor cells can be anti-tumorigenic by inducing apoptosis103,104. STING activation has 

beneficial effects in several preclinical cancer models105–108, leading to strong clinical 

interest in the development of cGAS and STING agonists.

Several in vitro and murine tumor models have supported the benefits of natural CDNs 

that activate STING-induced type I IFN responses in controlling tumor growth and 

prolonging survival109–111. CDNs have also been tested as a cancer vaccine adjuvant 

and shown antitumor effects in murine models of colon, pancreatic, and upper airway 

squamous cell carcinoma112. The use of these agonists has been limited however, by 

their instability and low bioavailability. New strategies have explored how to overcome 

these limitations, including optimizing delivery of CDNs (e.g. in biopolymer implants or 

liposomal nanoparticles)113,114, as well as structurally modifying the molecules to enhance 

their stability and potency115. Non-CDN STING agonists are also being researched. For 

instance, a CDN analogue called lavone-8-acetic acid derivative 5,6-dimethylxanthenone-4-

acetic acid (DMXAA) suppresses the growth of many mouse models of cancer, including 

B16 melanoma, in a STING dependent manner115. Unfortunately, DMXAA clinical trials 

have been limited because its interaction is restricted to mouse STING. Therefore, recent 

studies are exploring DMXAA analogues that may be more efficient at activating human 

STING116. There is also a growing body of research that supports the use of STING 

agonists as adjuvants with chemotherapy and radiotherapy110,117. In addition, STING 

agonists have been shown in preclinical tumor models to increase the efficacy of T cell 

directed immunotherapies, such as those targeting coinhibitory receptors118–120. However, 

as was discussed for TLRs, emerging evidence has revealed that cGAS-STING signaling 

may have pro-tumorigenic functions. This pathway can contribute to a immune-suppressive 

tumor environment by mobilizing regulatory T cells and myeloid derived suppressor cells 

(MDSCs), some of the most important suppressors of anti-tumor immunity121. In addition, 

STING signaling is reported to promote tumor cell metastasis by activating noncanonical 

NF-kB signaling and epithelial-to-mesenchymal transition122.

Targeting CCR7 to direct DC migration to lymph nodes

After activation, DCs must traffic to the tumor draining lymph nodes, rich in T cells, 

to initiate adaptive immune responses. The CCR7-CCL19/CCL21 axis guides DCs to 

their lymph node destination. CCR7 is a G protein-coupled chemokine receptor that can 

be upregulated by PRRs on DCs and activated by PRR-induced lymph node-homing 

chemokines CCL19 and CCL21123. PRR-induced expression of CCR7 ligands throughout 

the lymphatic system establishes a gradient that facilitates directional movement of 

DCs toward their cognate T cells within lymph nodes124,125. CCR7 oligomerization and 

stimulation results in downstream phosphorylation by Src and activation of a variety of 

molecular pathways including P13K/AKT, MAPK/NF-kB, and HIF-1a signaling126–128. 

The molecular targets of many of these pathways in the regulation of immune cell 

migration remain elusive, but likely regulate actin cytoskeleton rearrangement, metabolic 

Cao and Kagan Page 8

Immunity. Author manuscript; available in PMC 2024 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reprogramming, as well as protein and epigenetic modifications that collectively influence 

the migration of DCs toward their destination129–133.

Aside from DCs, CCR7 can be expressed by cancer cells and potentiate metastasis. In 

the setting of this dichotomy, studies on the role of CCR7 in tumorigenesis have led 

to discrepant results134. CCR7 expression in lung cancer seems to correlate with better 

survival prognosis135, whereas in other circumstances (breast, pancreatic, gastric, colorectal) 

correlate with metastasis and poor survival prognosis136–140. Therefore, CCR7 and its 

ligands play two important but conflicting roles in tumorigenesis; whether targeting CCR7 

using agonists or antagonists is more appropriate for cancer intervention remains debatable. 

Subsets of pre-clinical studies have shown that CCR7 agonism using intra-tumoral 

administration of CCL21 or CCL19 ligands potentiate DC and T cell influx into the tumor 

proper, and antitumor immune response141,142. Direct delivery of chemokines, however, 

has been challenging due to system toxicities. Therefore, recent studies have focused on 

targeted and controlled delivery of these chemokines using nanoparticles, gene modification, 

and incorporation into CAR T cell therapy. For instance, a vault nanoparticle encapsulating 

CCL21 has been developed with promising in vitro and in vivo results143. Murine B16-

BL6 melanoma cells transfected to express CCL19 had a slower rate of growth after 

transplantation, as compared with control counterparts144. In vivo transfection of CCL19 

or CCL21 via intra-tumoral injection of adenoviral vectors encoding these chemokines 

into murine B16-BL6 melanoma and colon carcinoma reduced tumor growth145,146. Co-

expression of CCL19 in CAR T cells reduced growth of solid tumors and prolonged survival 

in mice147. Finally, DCs transfected in vitro to express CCR7 demonstrated enhanced ability 

to migrate to draining lymph nodes, and to mediate an anti-tumor response in melanoma 

and lung cancer models148–150. Clinical relevance of this approach was assessed in a phase 

I trial involving intra-tumoral injection of CCL21-gene modified DCs into patients with 

lung cancer, which resulted in an enhanced tumor-specific CD8 T cell response151. These 

are just a few of many examples illustrating the clinical potential of exploiting CCR7 in 

immunotherapy.

Targeting IL-1 signaling to stimulate memory T cells

While TLR and STING agonists are becoming increasingly sophisticated in therapeutic use, 

a fundamental aspect of immune system function may undermine the utility of these PRR 

ligands as agents of immunotherapy. This aspect relates to the aforementioned inability of 

TLR or cGAS-STING agonists alone to induce IL-1β production (Figure 2). IL-1β is a 

cytokine that has the potential to act both as a general inflammatory agonist in the TME 

and to maximize memory T cell responses to cancer antigens31,32. The receptor for IL-1β 
is a heterodimer of IL-1R1 and IL-1RacP, which is referred hereafter as IL-1R. IL-1R is 

expressed by a variety of cell types, including cancer cells, T and B cells, fibroblasts and 

endothelial cells. IL-1R signaling via its downstream adaptor protein MyD88 is essential 

to generate memory CD4+ or CD8+ T cells152. Past studies have hinted at the potential 

anti-tumor benefits of IL-1β. For instance, enhanced IL-1β production in mice vaccinated 

with irradiated melanoma or with ex vivo matured/antigen-loaded DCs is associated with 

enhanced antigen presentation by DCs, antigen-specific T cell activity, and ultimately 

control of tumor growth153,154. Chemotherapy activates NLRP3 inflammasome in DCs, 
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IL-1β release, and cytotoxic T cell responses that suppress tumor growth155. Based on 

this evidence, vaccination approaches that seek to stimulate long-lived T cell responses 

would likely benefit from the use of DC hyperactivators as adjuvants to potentiate IL-1β 
production. In the TME, agonists of IL-1β production may also be beneficial, as IL-1R 

signaling on memory T cells is key to reactivating their effector functions, including TH1, 

TH2 and TH17 cells16. Consistent with this idea, supplementing T cell therapy with IL-1β 
improves anti-tumor responses, such as in adoptive T cell therapy of a murine melanoma 

model156.

However, as was the case of TLR and cGAS-STING agonists, IL-1R signaling in the 

TME may also have pro-tumor functions. For instance, IL-1β can enhance recruitment 

of MDSCs and stimulate IL-17 production by CD4+ T cells that in turn promote 

tumor growth155,157–159. IL-1β can also promote endothelial cell activities that enhance 

angiogenesis, leading to metastasis160. These potential pro-tumor functions of IL-1β have 

led to speculation that neutralization of this cytokine would promote anti-tumor immunity. 

Suggestive clinical data to support this theory was offered by a clinical trial initially 

designed to study Canakinumab (an IL-1β neutralizing antibody) in heart disease. In this 

trial, circumstantial evidence suggested the ability of the drug to lower lung cancer incidence 

and mortality161. However, a trial to formally assess Canakinumab as an anti-tumor therapy 

did not yield promising results162. This lack of clinical efficacy may be explained by the 

need for IL-1R signaling to promote T cell responses in cancer. Immunotherapies that 

promote IL-1 mediated T cell responses may be required to further explore this possibility. 

Ultimately, the complex role of IL-1 signaling in tumor immunity is likely reflected by its 

diverse function in a background of heterogenetic tumor environments.

Concluding Remarks

Strategies of inducing anti-tumor immunity are diverse, yet all derive from the focal point 

of how our body responds to infectious agents. Here we have focused on distinct innate 

immune agonists and signaling pathways, and how they may be used as agents of cancer 

immunotherapy. We discussed datasets illustrating that not all innate immune pathways 

and DC activation states are equivalent. Different DC agonists (and tissues of agonism) 

may impact the effectiveness of an immunotherapy. Much of what we discussed can be 

considered prophetic, as we have far more pre-clinical data to interpret than clinical data for 

innate immunotherapies. Despite this prophetic nature, the lessons learned on how one can 

use our basic understanding of DC and T cell biology to create new cancer therapies will 

likely guide the future of innate immunity. As our knowledge of innate immune pathways 

increases, so will therapeutic opportunities. Importantly, this knowledge will not only inform 

the future, but will also help explain the past. For example, the paradigm of the five 

key DC activities needed for T cell immunity (Figure 1) may explain the successes and 

disappointments of prior approaches to host defense.

In considering immunotherapy approaches of the past, a central point of consideration 

is that there exists a fundamental distinction between pathways that are necessary 

and pathways that are sufficient to induce protective immunity. Several pathways have 

been described as necessary for inflammatory activities in diverse contexts of disease. 
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Inhibition of any necessary pathway will result in immunosuppression and represents a 

potential treatment for autoimmune or autoinflammatory disease. For example, TNFα, 

IL-1R and IL-23 inhibition all offer protection (to varying extents) against autoimmune 

or autoinflammatory diseases in mice and humans. However, while a pathway may be 

necessary for inflammation, it may not be sufficient to induce protective immunity. This 

concept may explain why single target immunotherapies are more effective as tools of 

immunosuppression than immunostimulation. For example, strategies that target individual 

molecules and pathways among the five key DC activities have been used clinically as a 

means of immunostimulation. IL-12R agonists (using recombinant IL-12p70), costimulatory 

molecule agonists (using CD40 antibodies, recombinant CD40 ligand, or OX40 antibodies), 

and inducers of type I IFNs have all been attempted for use in a therapeutic setting 

against cancer, as have individual PRR agonists163–165. None of these approaches would 

be expected to elicit all five of the key DC activities needed to orchestrate robust T cell 

mediated immunity. In considering the future, approaches that directly agonize all five of 

the key DC pathways may prove useful. Yet much remains to be learned. We do not yet 

know the therapeutic potential of distinct DC activation states for most murine models of 

cancer, particularly in genetically engineered and spontaneous models which may better 

represent human disease. We also have not fully appreciated the complexity of the DC-T 

cell crosstalk during tumorigenesis, and how this translates into potential differences in the 

efficacy and side-effect profile of intra-tumoral versus vaccination approaches of delivering 

different innate immunostimulants. Another unknown is whether immune responses against 

leukemia depend on these five key dendritic cell activities to the same extent as solid 

tumors, especially given the disseminated nature of the disease and lack of an obvious 

tumor draining lymph node. DCs play an important role in the elimination of leukemic 

cells166, and research has explored the use of TLR and STING agonists in the treatment 

of leukemia105,167. However, clinical trials testing DC stimulants in the treatment of blood 

cancers is only in the preliminary phases (NCT01842139, NCT01834248). Finally, as Pittet 

and colleagues discuss in their accompanying review76, we do not know the degree of T 

cell clonality resulting from DC agonistic treatment, and the relationship between innate and 

adaptive immunotherapies. Addressing these unknowns will require time, and an increased 

investment in the basic understanding of immune system functions is necessary. The value 

of such an investment cannot be overstated, as the impact of human health may be felt for 

generations to come.
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Highlights

1. Lessons from infection-induced immunity inform cancer immunotherapy 

development

2. Five key dendritic cell (DC) activities stimulate long-lived anti-tumor T cells

3. No single innate immune pathway stimulates all five protective DC activities

4. Next-generation cancer vaccines and intra-tumoral immunizations are in 

development
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Figure 1. Five key activities in DCs that are needed to stimulate new and long-lived antigen-
specific T cell responses.
A generalized, color-coded depiction of these key activities (antigen presentation, co-

stimulation, immunostimulatory cytokine production, IL-1 production, cell migration) is 

provided at the center of the figure and elaborated at the periphery.

Cao and Kagan Page 23

Immunity. Author manuscript; available in PMC 2024 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The effect of various innate immune stimuli on the key DC activities.
Relative capacity for different innate immune agonists (TLR, cGAS, with and without 

adjuvants aluminum hydroxide (alum) or PGPC) to stimulate the key DC activities that 

are important for eliciting optimal T cell mediated immunity. We note that not all innate 

immune agonists are shown (e.g. ligands for CLRs) and not all have been examined in the 

same studies. As such, the relative intensity of innate immune activities depicted should be 

considered speculative and may be context dependent.
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