
Pulmonary emphysema subtypes defined by unsupervised 
machine learning on CT scans

Elsa D Angelini1,2,3, Jie Yang1, Pallavi P Balte4, Eric A Hoffman5, Ani W Manichaikul6, 
Yifei Sun7, Wei Shen8,9, John H M Austin10, Norrina B Allen11, Eugene R Bleecker12, 
Russell Bowler13, Michael H Cho14,15, Christopher S Cooper16, David Couper17, Mark T 
Dransfield18, Christine Kim Garcia4, MeiLan K Han19, Nadia N Hansel20, Emlyn Hughes21, 
David R Jacobs22, Silva Kasela23,24, Joel Daniel Kaufman25, John Shinn Kim4,26, Tuuli 
Lappalainen23, Joao Lima20, Daniel Malinsky7, Fernando J Martinez27, Elizabeth C 
Oelsner4, Victor E Ortega28, Robert Paine29, Wendy Post20, Tess D Pottinger4, Martin R 
Prince30, Stephen S Rich6, Edwin K Silverman14, Benjamin M Smith4,31, Andrew J Swift4,32, 
Karol E Watson16, Prescott G Woodruff33, Andrew F Laine1,9,10, R Graham Barr, MD 
DrPH4,34

1Department of Biomedical Engineering, Columbia University, New York, New York, USA

2LTCI, Institut Polytechnique de Paris, Telecom Paris, Palaiseau, France

3NIHR Imperial Biomedical Research Centre, ITMAT Data Science Group, Imperial College, 
London, UK

4Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA

Corresponding author: R Graham Barr, MD DrPH, Columbia University Irving Medical Center, 622 West 168th Street, New York, 
NY, 10032, rgb9@columbia.edu, 212-305-4895.
Contributorship: EDA, JY, WS, AFL and RGB contributed to the machine learning; PPB, YS, DC, JSK, DM, and RGB contributed 
to the epidemiologic analyses; EAH, NBA, CSC, MD, CKG, EH, MKH, NNH, DRJ, JDK, JL, FJM, ECO, RP, MRP, WP, BMS, KEW, 
PGW and RGB contributed to data collection or funding; AM, ERB, RB, MHC, SK, TL, VEO, TP, SSR, and EKS contributed to the 
genomic analyses;, JHMA and AJS provided radiologist interpretations; EDA and JY drafted the manuscript; all authors contributed to 
revisions and provided final approval.

Competing Interests: Drs Angelini, Balte, Manichaikul, Sun, Shen, Austin, Cho, Couper, Hughes, Jacobs, Kasela, Kaufman, 
Lappalainen, Lima, Oelsner, Post, Prince, Rich, Silverman, Watson and Laine reports receiving grants from the National Institutes 
of Health (NIH). Dr Yang performed the work at Columbia University but is now an employee of Google Inc. Dr Hoffman reports 
receiving grants from the NIH; being a founder and shareholder of VIDA Diagnostics; and holding patents for an apparatus for 
analyzing CT images to determine the presence of pulmonary tissue pathology, an apparatus for image display and analysis, and 
a method for multiscale meshing of branching biological structures. Dr Allen reports receiving grants from the American Heart 
Association and the NIH. Dr Cooper reports receiving personal fees from GlaxoSmithKline. Dr Dransfield reports receiving a grant 
from the NHLBI and personal fees from AstraZeneca, GlaxoSmithKline, Pulmonx, PneumRx/BTG, and Quark. Dr Han reports 
consulting for GlaxoSmithKline, AstraZeneca and Boehringer Ingelheim receiving research support from Novartis and Sunovion. Dr 
Hansel reports receiving grants from the NIH, Boehringer Ingelheim, and the COPD Foundation. Dr Kaufman reports receiving grants 
from US Environmental Protection Agency and the NIH. Dr Martinez reports serving on COPD advisory boards for AstraZeneca, 
Boehringer Ingelheim, Chiesi, GlaxoSmithKline, Sunovion, and Teva; serving as a consultant for ProterixBio and Verona; serving 
on the steering committees of studies sponsored by the NHLBI, AstraZeneca, and GlaxoSmithKline; having served on data safety 
and monitoring boards of COPD studies supported by Genentech and GlaxoSmithKline. Dr Smith reports receiving grants from the 
NIH, Canadian Institutes of Health Research (CIHR), Fonds de la recherche en santé du Québec (FRQS), the Research Institute of 
the McGill University Health Centre, the Quebec Lung Association and AstraZeneca. Dr Woodruff reports receiving personal fees for 
consultancy from Theravance, AstraZeneca, Regeneron, Sanofi, Genentech, Roche, and Janssen. Dr Barr reports receiving grants from 
the Foundation for the NIH, the COPD Foundation, the American Lung Association and the NIH.

Ethics approval
This work was approved by the institutional review board of Columbia University Medical Center (AAAE97603). Written informed 
consent was obtained from all participants.

HHS Public Access
Author manuscript
Thorax. Author manuscript; available in PMC 2023 November 01.

Published in final edited form as:
Thorax. 2023 November ; 78(11): 1067–1079. doi:10.1136/thorax-2022-219158.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5Departments of Radiology, Medicine and Biomedical Engineering, University of Iowa, Iowa City, 
Iowa, USA

6Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA

7Department of Biostatistics, Columbia University Irving Medical Center, New York, New York, 
USA

8Department of Pediatrics, Institute of Human Nutrition, Columbia University Irving Medical 
Center, New York, New York, USA

9Columbia Magnetic Resonance Research Center (CMRRC), Columbia University Irving Medical 
Center, New York, New York, USA

10Department of Radiology, Columbia University Irving Medical Center, New York, New York, USA

11Institute for Public Health and Medicine (IPHAM) - Center for Epidemiology and Population 
Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA

12Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA

13Department of Medicine, National Jewish Health, Denver, Colorado, USA

14Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, 
Massachusetts, USA

15Harvard Medical School, Boston, Massachusetts, USA

16Department of Medicine, University of California, Los Angeles, California, USA

17Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA

18Lung Health Center, University of Alabama, Birmingham, Alabama, USA

19Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA

20Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA

21Department of Physics, Columbia University, New York, New York, USA

22Division of Epidemiology and Community Public Health, School of Public Health, University of 
Minnesota, Minneapolis, Minnesota, USA

23Department of Systems Biology, Columbia University Irving Medical Center, New York, New 
York, USA

24New York Genome Center, New York, New York, USA

25Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, 
University of Washington, Seattle, Washington, USA

26Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA

27Department of Medicine, Cornell University Joan and Sanford I Weill Medical College, New 
York, New York, USA

28Department of Pulmonary Medicine, Mayo Clinic, Phoenix, Arizona, USA

29Department of Medicine, University of Utah, Salt Lake City, Utah, USA

Angelini et al. Page 2

Thorax. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30Department of Radiology, Cornell University Joan and Sanford I Weill Medical College, New 
York, New York, USA

31Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, 
Quebec, Canada

32Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, 
Sheffield, UK

33Department of Medicine, University of California, San Francisco, California, USA

34Department of Epidemiology, Columbia University Irving Medical Center, New York, New York, 
USA

Abstract

Background: Treatment and preventative advances for chronic obstructive pulmonary disease 

(COPD) have been slow due, in part, to limited subphenotypes. We tested if unsupervised machine 

learning on computed tomographic (CT) images would discover CT emphysema subtypes with 

distinct characteristics, prognoses and genetic associations.

Methods: New CT emphysema subtypes were identified by unsupervised machine learning on 

only the texture and location of emphysematous regions on CT scans from 2,853 participants in 

the Subpopulations and Intermediate Outcome Measures in COPD Study, a COPD case-control 

study, followed by data reduction. Subtypes were compared to symptoms and physiology among 

2,949 participants in the population-based Multi-Ethnic Study of Atherosclerosis (MESA) Lung 

Study and to prognosis among 6,658 MESA participants. Associations with genome-wide single-

nucleotide-polymorphisms were examined.

Results: The algorithm discovered six reproducible (inter-learner intra-class correlation 

coefficient, 0.91–1.00) CT emphysema subtypes. The most common subtype in SPIROMICS, 

the combined bronchitis-apical subtype, was associated with chronic bronchitis, accelerated lung 

function decline, hospitalizations, deaths, incident airflow limitation and a gene variant near 

DRD1, which is implicated in mucin hypersecretion (P=1.1×10−8). The second, the diffuse 
subtype was associated with lower weight, respiratory hospitalizations and deaths, and incident 

airflow limitation. The third was associated with age only. The fourth and fifth visually resembled 

combined pulmonary fibrosis emphysema and had distinct symptoms, physiology, prognosis and 

genetic associations. The sixth visually resembled vanishing lung syndrome.

Conclusion: Large-scale unsupervised machine learning on CT scans defined six reproducible, 

familiar CT emphysema subtypes that suggest paths to specific diagnosis and personalized 

therapies in COPD and preCOPD.

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) was the third-leading cause of death 

globally in 2019.[1] Despite identification of hundreds of genetic loci for COPD,[2] which is 

defined by chronic airflow limitation,[3] personalized therapies are lacking for most patients 

due, in part, to a lack of robust subphenotyping.
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Historical attempts to subphenotype COPD included pulmonary emphysema, defined by 

enlargement and destruction of alveoli, and chronic bronchitis, defined by chronic cough 

and phlegm.[4,5] However, many COPD patients have neither subphenotype and targeted 

treatments are limited.

Paradoxically, many individuals who do not have COPD have emphysema or chronic 

bronchitis,[6–8] which has recently been termed ‘preCOPD.’[3] Emphysema on CT is 

predictive of morbidity and mortality independent of lung function,[6,9–11] yet it remains 

uncertain which ‘preCOPD’ phenotypes progress to COPD.[3]

Emphysema itself was subdivided into centrilobular, panlobular and paraseptal emphysema 

based upon 142 autopsies;[12,13] yet these subtypes are read with limited reproducibility 

by radiologists,[14–15] ignored or altered in guidelines,[3, 16] and little-used in practice. 

Hence, traditional subtypes do not provide gold-standards and new approaches are 

warranted.

Unsupervised machine learning is a machine learning approach used to discover naturally 

occurring clusters without reference to pre-assigned gold-standards.[17] Attempts to 

subphenotype COPD using unsupervised clustering of symptoms,[18] lung function,[19, 

20] ‘omics,[21] and standard CT measures[22,23] have generally not yielded robust, familiar 

subtypes, possibly due to use of limited variables and samples. Unsupervised machine 

learning is most powerful when applied at scale to high-dimensional data like research chest 

CT scans, which provide 20–30 megavoxel, 3-dimensional representations of the entire lung 

at submillimeter resolution. Lung CT images have not, to our knowledge, been used to learn 

completely new emphysema subtypes at scale.

We hypothesized that application of a custom-built unsupervised machine learning 

algorithm[24] to cluster the texture and anatomical location of emphysematous regions 

on thousands of CT scans, followed by data reduction, would allow robust learning in 
vivo of new CT emphysema subtypes with distinct characteristics, prognoses and genetic 

associations. The learning used CT images only so we could examine clinical and genetic 

associations independent of the learning.

METHODS

The machine learning algorithm was applied to the Subpopulations and Intermediate 

Outcome Measures in COPD Study (SPIROMICS), which recruited 2,783 COPD cases and 

controls, 40–80 years old with ≥20 pack-years and 200 non-smoking controls in 2010–2015,

[25] initially on random 50% sub-samples to test reproducibility (Figure 1).

Data reduction to CT emphysema subtypes was performed in SPIROMICS and the 

population-based Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study, which 

acquired full-lung CT scans in 2010–12 for 3,128 MESA participants.[26] Results were 

confirmed longitudinally in a subset of 196 MESA Lung participants with repeat CT scans 

(of 317 oversampled for COPD and with 10+ packyears[15]).
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Primary descriptive analyses of clinical characteristics of CT emphysema subtypes were 

evaluated in the MESA Lung Study.

Events analyses were performed in MESA, which acquired cardiac CT scans for 6,814 

Whites, Blacks, Hispanics, and Asians in 2000–02 with follow-up through 2018; incident 

airflow limitation was examined among participants without airflow limitation and with 

repeated spirometry.

Genetic discovery analyses were performed in SPIROMICS, given its greater disease 

severity. Replication was performed in the MESA SHARe Study, which comprised of 

MESA plus 1,595 Black and Hispanic family members and 257 other participants with 

cardiac CT scans,[27] and the Genetic Epidemiology of COPD (COPDGene) Study, which 

recruited 10,192 non-Hispanic White and Black COPD cases and controls ages 40–81 years 

with ≥10 packyears.[28]

CT Scanning

SPIROMICS and MESA Lung used the same inspiratory high-resolution full-lung CT 

protocol: 120 kVp, 0.625–0.75 mm slice thickness, 0.5 sec. rotation time.[29] MESA and 

MESA SHARe acquired cardiac CT scans, which imaged the lower 2/3 of the lungs.[30] 

COPDGene performed full-lung CTs following the COPDGene protocol.[28]

Unsupervised Machine Learning and Data Reduction

Discover of Possible Emphysema Subtypes—The unsupervised machine learning 

algorithm was designed to define possible emphysema subtypes, also called spatial lung 

texture patterns,[24] and was applied blinded to all clinical information including traditional 

emphysema subtypes. The target number of possible emphysema subtypes was not specified, 

nor additional direction provided in this step.

In brief, 25*25*25mm regions of lung were selected for learning if the percentage of 

emphysema-like lung (voxels < −950 Hounsfield units)[31] in the region was above the 

upper limit of normal for percent emphysema, which accounted for variation in body size, 

demographics, current smoking and scanner manufacturer.[32] Unsupervised learning was 

performed with two types of image-based features: texture features,[33] using a learned, 

dedicated texton codebook to encode patterns of emphysematous regions, and spatial 

features using lung spatial mapping.[34]

Unsupervised discovery was performed at a regional level in two-stages: 1) K-means with a 

spatial distance metric[24] to group emphysematous regions into a selected large number of 

clusters; and 2) grouping of similar clusters into possible emphysema subtypes via Infomap 

graph partitioning,[35] which uses Minimum Description Length optimization criteria to 

define the number of subtypes. This two-stage approach was more reproducible than single-

stage approaches.[36–38]

Data Reduction of Possible Emphysema Subtypes to CT Emphysema 
Subtypes—To infer if sets of possible emphysema subtypes might represent different 

severities of a single CT emphysema subtype or distinct subtypes, we used hierarchical 
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clustering and t-SNE projection to examine for further clustering at a participant level 

(Supplement).[39]

Descriptive naming of CT Emphysema Subtypes—Two board-certified chest 

radiologists assigned descriptive names to the CT emphysema subtypes after reviewing 

representative examples and anatomic locations (Figure S1) with consideration of 

physiologic and demographic correlates. Fibrosis, and its co-localization with emphysema, 

were determined qualitatively.

Labelling CT Emphysema Subtypes on Cardiac CT Scans

We developed a deep learning method using supervised domain adaptation with adversarial 

learning to label the scanned lung on cardiac CT scans (Supplement)[40] to increase power 

for events analyses and genetic replication (Figure 1).

Additional Measures

Traditional emphysema subtypes and interstitial lung abnormalities (ILAs), were read by 

board-certified radiologists following standardized protocols.[15, 41]

Dyspnea was assessed using the modified Medical Research Council (mMRC) scale. 

Chronic bronchitis was defined following MRC criteria.[42]

Spirometry was performed in 2004–06, 2010–12, and 2017–18 following American 

Thoracic Society/European Respiratory Society recommendations.[43] COPD was defined 

as post-bronchodilator, and airflow limitation as pre-bronchodilator, FEV1-to-FVC ratio less 

than 0.7.[3]

Other lung structure measures of percent emphysema-950 HU, total lung volume (TLV), 

airway wall thickness (AWT), small airway count (SAC), dysanapsis, total pulmonary 

vascular volume (TPVV) and, in SPIROMICS, functional small airways disease (fSAD) 

were assessed at a single reading center.[26, 29, 31, 32, 44–46]

Exacerbations were self-reported in SPIROMICS. Hospitalizations and deaths from chronic 

lower respiratory diseases (CLRD) were adjudicated in MESA from 2000 to 2018 with 98% 

completeness for mortality.[47]

Consenting participants were genotyped with genome-wide arrays (Supplement). Genome-

wide imputation was performed using the Michigan Imputation Server. Colocalization 

was performed using expression quantitative trait loci (eQTLs) from the Genotype-Tissue 

Expression (GTEx).[48]

Statistical Analysis

Reproducibility of learning was assessed at a regional level on random test emphysematous 

regions in SPIROMICS with a regional-level Dice coefficient. Participant-level percentages 

of each subtype were calculated by summing across lung regions and dividing by TLV, 

similar to the calculation for percent emphysema. Participant-level reproducibility of 

learning was calculated with intra-class correlation coefficients (ICC).
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Generalized linear regression was used to evaluate associations of CT emphysema subtypes 

at a participant level with demographics, symptoms, lung structure, and physiology; mixed 

linear models were used for lung function decline; and Cox proportional hazards models 

were used for events. The primary models included demographic, anthropomorphic and 

smoking potential confounders following a causal framework; CT manufacturer was also 

included as unmeasured site-level confounders would likely be blocked by this variable 

(Figure S1). In a second model, other CT emphysema subtypes that might confound 

relationships were included. Subsequent analyses adjusted for other lung structure measures 

and lung function. Analyses were repeated in SPIROMICS with adjustment for recruitment 

strata given its case-control design.

Genome-wide association analyses were performed with similar adjustment (Supplement). 

Primary replication of identified SNPs was performed in the race/ethnic group in which they 

were discovered. Colocalization of replicated variants and eQTLs used the coloc method 

(Supplement).[49, 50]

Statistical significance was evaluated with 95% confidence intervals for epidemiologic 

analyses and defined by Bonferroni-corrected P<5*10−8 for genome-wide analyses.

RESULTS

SPIROMICS participants had a median of 43 packyears, 62% had COPD, 0.4% were PiZZ, 

and the race/ethnic distribution was 74.1% White, 19.3% Black, 5.2% Hispanic and 1.2% 

Asian (Table 1). The MESA Lung Study included 54% participants with a smoking history 

(median 14 packyears), 16.9% had COPD, and the race/ethnic distribution was 38.1% white, 

27.2% Black, 21.4% Hispanic and 13.3% Asian. MESA and MESA SHARe were similarly 

multiethnic; COPDGene was biracial (Table S1).

Unsupervised Learning and Data Reduction to CT Emphysema Subtypes

SPIROMICS CT scans had an average of 624+350 emphysematous regions per scan 

covering most of the lung volume for 2,922 participants, which yielded over 1.8 million 

regions for learning. Application of the unsupervised machine learning algorithm to a 

random 50% of scans yielded 10 possible emphysema subtypes (Figure S2). Repeating the 

learning independently on the other 50% also yielded 10 possible emphysema subtypes. 

Agreement in learning was high: regional-level Dice=0.82, participant-level ICC 0.89–1.00 

(Table S2).

Hierarchical clustering suggested that some subtypes overlapped and data dimension 

reduction suggested that the 10 possible subtypes clustered into six CT emphysema subtypes 

(Figure S3). For the six CT emphysema subtypes, agreement in learning was also high (ICC 

0.91–1.00; Table S3) and labelling was reproducible (ICC 1.00 for all).

Longitudinal evaluation over six years of regions-of-interest on co-registered CT scans 

confirmed that, at a regional level, possible emphysema subtypes clustered by t-SNE tended 

to progress from one to another within the same CT emphysema subtype. In contrast, 
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unclustered possible emphysema subtypes remained distinct or developed from normal lung 

(Figure S4).

Qualitative Visual Description

The resultant six CT emphysema subtypes are illustrated in Figure 2. The combined 
bronchiticapical emphysema (CBaE) subtype had a predominantly apical distribution with 

vascular changes. The diffuse subtype had a diffuse distribution with less parenchymal 

destruction and apical sparing. The senile had homogeneously reduced attenuation. The 

restrictive combined pulmonary fibrosis/emphysema (CPFE) subtype had distinct and 

discrete small holes at the level of the secondary pulmonary lobule in predominantly 

apical and posterior but also inferior regions. The obstructive CPFE subtype had diffuse, 

patchy emphysema with intermingled regions of fibrosis. The vanishing lung subtype 

was predominantly apical with bullous emphysema when severe; when less severe, it had 

prominent lobular septal, reduced parenchyma and few vessels.

Comparison with Traditional Emphysema Subtypes

In the subset of 317 MESA Lung participants oversampled for COPD and smoking, 

the distribution of CT emphysema subtypes was similar to SPIROMICS (Table S4). At 

a participant level, centrilobular emphysema was positively associated and overlapped 

predominantly with CBaE and restrictive CPFE subtypes. Panlobular emphysema was 

associated with CBaE and vanishing lung subtypes. Paraseptal emphysema was positively 

associated with restrictive CPFE and vanishing lung subtypes. The diffuse and obstructive 
CPFE subtypes were not independently recognized by radiologists.

Clinical and Physiologic Characteristics

The CBaE subtype was more common in SPIROMICS than in the MESA Lung Study 

(Figure 3). It was associated independently with smoking history (Table 2) and symptoms of 

dyspnea and – unique among subtypes – chronic bronchitis (odds ratio 1.9 per 10 percentage 

point increase in CBaE, 95% CI 1.2, 3.0; Figure 4; Table S5). It was characterized by 

large cross-sectional decrements in lung function (e.g., −309 ml in FEV1 per 10 percentage 

point increase in CBaE, 95% CI −389, −229) but no difference in TLV. In longitudinal 

analyses, it was associated with decline in FEV1 (−13.2 ml/year per 10 percentage point, 

95% CI −21.7, −4.8), the FVC and the FEV1/FVC ratio. These findings were little changed 

with adjustment for other measures of lung structure and function (Table S6). The CBaE 
subtype was also associated with a 2–3 fold independent increase in risk of CLRD 

hospitalizations, CLRD mortality and all-cause mortality and, among participants with 

normal lung function, incident airflow limitation (Table 3). These findings were independent 

of AWT, ILAs, percent emphysema and, for CLRD hospitalizations, lung function (Table 

S7). In SPIROMICS, it was also associated with worse symptom scores, reduced exercise 

capacity, desaturation on exertion, increased hemoglobin and exacerbations (Table S8).

The second most common subtype in SPIROMICS, the diffuse subtype, was also common 

in MESA Lung (Figure 3). Greater age, male sex, White race/ethnicity and lower body 

mass index (BMI) but not smoking were associated with the diffuse subtype (Table 2). It 

was associated with few symptoms; the FEV1/FVC ratio was lower cross-sectionally; AWT 
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and TPVV were reduced; the haemoglobin, FVC and TLV were greater (e.g., 487ml per 

10 percentage point, 95% CI 448, 526 ml); and differences in lung function decline were 

more modest (Figure 4; Table S5). Findings were similar with adjustment for other lung 

structure measures (Table S6). The diffuse subtype was associated with an approximately 

50% increase in risk for CLRD hospitalizations and CLRD mortality, lower all-cause 

mortality and, among participants with normal lung function, incident airflow limitation 

(Table 3). These findings were independent of AWT and ILAs but attenuated by percent 

emphysema (Table S7). In SPIROMICS, it was associated with worse symptom scores, 

hypoxemia, desaturation on exertion and exacerbations (Table S8).

The senile subtype was equally common in the two studies (Figure 3). Greater age was 

associated with it (Table 2), and it had similar physiologic changes to the diffuse subtype but 

not the poor prognosis (Figure 4; Table 3).

The restrictive CPFE subtype was more common in SPIROMICS than in the MESA Lung 

Study (Figure 3). It had similar symptomatology to the CBaE subtype but was more 

common among women and non-Whites and was associated with higher BMI, restrictive 

spirometry, reduced SAC and TLV and greater ILAs (Table 2; Figure 4). Despite its high 

symptom burden, it was not independently associated with hospitalizations or mortality 

(Table 3). Findings were similar in SPIROMICS (Table S8).

The obstructive CPFE subtype was equally common in the two studies (Figure 3). Female 

sex, Black and Asian race/ethnicities, and higher BMI were associated independently with 

it (Table 2). It was associated with obstructive spirometry, reduced AWT and greater TLV 

cross-sectionally (Figure 4). In longitudinal analyses, it was associated with significant 

increases in the FEV1 and FVC (Figure 4; Table S5) and an 80% increase in risk of CLRD 

mortality (Table 3). The latter finding was independent of AWT and ILAs but attenuated by 

percent emphysema (Table S7).

The vanishing lung subtype occurred mainly in SPIROMICS (Figure 3) and was 

independently associated with dyspnea, desaturation on exertion, and large increases in lung 

volumes (Table 2 and S6).

There were modest differences for some CT emphysema subtypes by CT manufacturer 

(Table S9).

Genetic Associations

In SPIROMICS, no single nucleotide polymorphism (SNP) reached genome-wide 

significance for the CBaE subtype; however, rs35563062 was significantly associated with 

the lowest attenuation (most severe) of the three possible subtypes that comprise the CBaE 
subtype in White and all participants (P=1.1×10−8; Figure 5 and Table S10). Meta-analysis 

of replication results was statistically significant in White and all participants (Table S11). 

It did not show evidence for colocalization. The closest gene, DRD1, encodes for the 

dopamine receptor1 (DRD1).

There were no replicated genome-wide significant associations for the diffuse or senile 
subtypes.

Angelini et al. Page 9

Thorax. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The SNP most significantly associated with the restrictive CPFE subtype in White and 

all participants (rs113562654, P=4.5×10−8) lies in NR2C1 (Figure 5 and Table S10). Meta-

analysis of replication results was statistically significant in White and all participants (Table 

S11) and it colocalized with eQTL for NR2C1 in GTEx lung tissue (Figure S5).

Two loci were identified for obstructive CPFE subtype (Figure 5 and Table S10), of which 

one (rs149784669, P=4.6×10−9), near to EXOSC, was unique to and replicated among 

Blacks (Table S11).

The PI Z variant in SERPINA1 was not significantly associated with a CT emphysema 

subtype.

DISCUSSION

Unsupervised machine learning on over 1.8 million emphysematous regions on CT scans 

defined six reproducible CT emphysema subtypes with distinct symptoms, physiology, 

prognosis and, for three, replicated genetic associations. The two most common subtypes 

predicted incident airflow limitation among participants without COPD, improving the 

specificity of ‘preCOPD.’ All resembled early COPD subtypes, which are ignored in 

contemporary guidelines, and provide precise CT-defined subtypes, some of which suggest 

avenues to personalized medicine.

The most common emphysema subtype in SPIROMICS was the CBaE subtype, which was 

read by radiologists as centrilobular or panlobular emphysema. The CBaE subtype was 

strongly related to smoking and uniquely associated with bronchitic symptoms, unchanged 

TLV and increased haemoglobin – similar to the original description of bronchitic, Type 

B (‘blue bloaters’) COPD: patients who ―produced large quantities of sputum, …had 

relatively smaller total lung capacities‖ and polycythaemia.[5] The CBaE subtype also was 

associated independently with accelerated lung function decline, incident airflow limitation, 

exacerbations, hospitalizations, and all-cause mortality. The original Type B subtype applied 

to few patients; the machine-learned CBaE subtype appears to be a major subset of smoking-

related COPD and ‘preCOPD.’

The CBaE subtype was associated with a gene variant near DRD1. DRD1 is relevant 

to smoking-related disease as nicotine has dopaminergic effects.[51] DRD1 is present on 

the airway epithelium, where it increases mucin production and specifically MUC5AC,

[52] consistent with the observed bronchitic symptoms with this subtype. MUC5AC 

is hypothesized to contribute to COPD[53] by causing small airway loss[54] and lung 

function decline,[55] as observed for this subtype. Dozens of approved drugs target DRD1, 

suggesting paths toward personalized treatments for the CBaE subtype.

The diffuse subtype was associated with few symptoms, lower BMI, and higher TLV, 

similar to the original description of emphysematous, Type A (‘pink puffers’) COPD who 

had ―little sputum, and rarely showed hypercapnia or recurrent heart-failure; their total 

lung capacities tended to be increased.‖[5,56] It also was associated with incident airflow 

limitation and CLRD hospitalizations and deaths. The diffuse subtype was not recognized 

independently by radiologists but was strongly correlated with percent emphysema (r=0.88). 
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This homogeneous loss of lung tissue may relate to microvascular disease[57, 58] or 

environmental exposures.[59] The original Type A subtype has largely disappeared from 

the literature; the machine-learned diffuse subtype appears to be a major subset of COPD 

and ‘preCOPD’ unrelated to smoking.

The senile subtype was age-related but not associated independently with morbidity 

or mortality. The concept of a benign, age-related emphysema is longstanding in the 

literature[60–63] but, to our knowledge, has not been specifically defined previously.

Two CPFE subtypes were more common among non-White participants: one common in 

participants with a smoking history and associated with restrictive physiology; the other 

common in the general population and associated with obstructive physiology. The first 

was classified by radiologists as centrilobular or paraseptal emphysema; the second was 

not recognized independently. Distinct gene variants were identified for each. The first is 

in NR2C1, which is close to FGD6, which is implicated in macular degeneration, another 

smoking-related disease.[64] The other, which was observed only in Black participants, is 

near EXOSC5, which is expressed in the lung[65] and codes for exosome component 5, 

which is implicated in lung diseases.[66, 67] CPFE tend to have high symptom burden,[68] 

consistent with our findings, and restrictive physiology is relevant in COPD.[3,69]

The last, rare CT emphysema subtype occurred only with a smoking history, was bullous, 

and visually resembled vanishing lung syndrome (giant bullous emphysema).[70]

This is the first report of which we are aware to use large-scale unsupervised learning on CT 

images to define new CT emphysema subtypes. Our preliminary report[24] yielded similar 

possible emphysema subtypes but was based upon 1/10 the sample size. Unsupervised 

approaches using an auto-encoder[71] and existing CT measures[72] on small subsets 

of SPIROMICS and a preliminary report using standard texture features in a generative 

model[73] did not result in familiar subtypes.

Strengths of the current report include automated learning of emphysema subtypes on 

lung images, high reproducibility of learning, CT emphysema subtypes that echo the 

older literature, biologically relevant genetic associations, and multi-ethnic discovery and 

replication.

Nonetheless, data reduction strategies were not as robust as unsupervised machine learning 

and some CT emphysema subtypes might represent a more severe form of another, although 

genetic and longitudinal results support the current classification. The distribution of 

some CT emphysema subtypes varied between SPIROMICS and MESA Lung, which was 

expected given study design differences. We did not validate the subtypes against histology, 

preventing cellular-level insights. No gold-standard was available, but the mirroring of the 

classic literature suggests construct validity. Learning was based upon cross-sectionally 

acquired scans, although longitudinal analyses suggested subtypes were relatively stable. CT 

emphysema subtypes are continuous measures; further work is needed to define thresholds 

to categorize individuals. Differentiation of CPFE subtypes from traction bronchiectasis and 

honeycombing was not explicit; however, the predominantly upper lobe and generalized 

anatomic distributions of the two CPFE subtypes were not typical of them. Events 
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analyses used cardiac CT scans, which may underestimate risk for some subtypes. Some 

epidemiologic associations varied by study, but many were consistent with the classic 

literature. Not all genetic results colocalized; nonetheless, replicated loci and nearby 

candidate genes were biologically plausible.

In summary, large-scale unsupervised machine learning applied to lung CT scans defined six 

novel, reproducible CT emphysema subtypes that bore similarities to previously described 

but largely discarded subtypes. The CBaE and diffuse subtypes were associated with 

incident airflow limitation in ‘preCOPD’ and poor outcomes in COPD. Additional studies 

are warranted to test if implicated genes are causal and drugs targeting identified pathways 

yield personalized strategies for ‘preCOPD’ and COPD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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What is already known on this topic

Chronic obstructive pulmonary disease (COPD) and emphysema have long been 

recognized as heterogeneous, overlapping diseases and some patients with non-

obstructive emphysema, or ‘pre-COPD,’ may progress to COPD; yet modern 

unsupervised machine learning methods have not been applied at scale to the vast amount 

of imaging data in contemporary chest CT scans in order to subphenotype emphysema.

What This Study Adds

Unsupervised machine learning (clustering) on the texture and anatomical location of 

millions of emphysematous regions on chest CT scans, followed by data reduction, 

revealed six CT emphysema subtypes, several of which closely resemble earlier clinical 

descriptions of COPD subphenotypes. A combined bronchitis-apical emphysema subtype 

was characterized by symptoms of chronic bronchitis, accelerated lung function decline, 

increased all-cause mortality and, among those with normal lung function, incident 

airflow limitation; it was also associated with a gene variant relevant to nicotinic 

pathways and mucin hypersecretion. A diffuse emphysema subtype was associated 

with wasting, respiratory hospitalizations and deaths and, among those with normal 

lung function, incident airflow limitation. An obstructive combined fibrosis pulmonary 
emphysema subtype was largely asymptomatic but associated with respiratory deaths. 

The other three CT emphysema subtypes had distinct physiologic or genetic associations.

How this study might affect research, practice or policy

These precise new CT emphysema subtypes have differential prognosis and may suggest 

paths to more specific diagnosis and personalized therapies in COPD and in preCOPD.
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Figure 1. 
Schema of unsupervised machine learning, data reduction, primary descriptive analyses, 

events analyses and GWAS. Unsupervised machine learning of possible emphysema 

subtypes was performed in twoindependent training sets in SPIROMICS. Both training sets 

yielded 10 possible emphysema subtypes, and training was repeated on all of SPIROMICS. 

The resultant 10 possible emphysema subtypes were labelled on MESA Lung CT scans. 

Data reduction was performed in SPIROMCS and MESA Lung and yielded six CT 

emphysema subtypes; data reduction was confirmed longitudinally on coregistered CT 
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scans in a subset of the MESA Lung Study oversampled for COPD and smoking. Primary 

descriptive analyses of these subtypes were performed in the MESA Lung Study. Cardiac 

scans in MESA were labelled for the Event Analyses in MESA. GWAS Discovery was 

performed in SPIROMICS; replication of genetic results occurred on labelled cardiac scans 

in MESA and MESA SHARe and in COPDGene.
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Figure 2. 
Representative visual illustrations of the six CT emphysema subtypes. Coronal views 

of lungs on CT scans and the corresponding labelled masks with the discovered CT 

emphysema subtypes on predominantly affected sample cases (i.e. with proportion of 

a certain CT emphysema subtype being much larger than any other). Color coding 

of CT emphysema subtypes is the same across examples; grey labelling denotes non-

emphysematous regions. Abbreviation: CPFE=combined pulmonary fibrosis/emphysema
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Figure 3. 
Distributions of the six discovered CT emphysema subtypes in SPIROMICS and the MESA 

Lung Study. Mean percentages of CT emphysema subtypes in SPIROMICS, a COPD 

case-control study of 2655 participants with 20 or more packyears of smoking (median 

packyears 43.0; 66.2% with COPD) and 198 non-smoking controls, and in the MESA Lung 

Study, a population-based study of 2,949 participants, 54.2% of whom had ever smoked 

cigarettes (median packyears 14.5) and 16.9% with COPD. Abbreviations: CPFE=combined 

pulmonary fibrosis/emphysema, COPD=chronic obstructive pulmonary disease
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Figure 4: 
Multivariable associations of CT emphysema subtypes with symptoms, physiology, lung 

structure, and lung function decline in the MESA Lung Study.* β estimates for continuous 

outcomes show the effect size per 10% increment in CT emphysema subtype, except 

for percent emphysema, which is per 1% increment in CT emphysema subtype. The 

β estimates for chronic bronchitis and interstitial lung abnormalities are the log(odds 

ratios). All results adjusted for age, sex, race/ethnicity, height, weight, smoking status, 

pack-years, scanner manufacturer and other CT emphysema subtypes. Abbreviations: 

CPFE=combined pulmonary fibrosis/emphysema; FEV1= Forced expiratory volume in one 

second; FVC=Forced expiratory volume in one second.
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Figure 5. 
Manhattan and local association plots for the three genome-wide significant, replicated gene 

variants for three CT emphysema subtypes in SPIROMICS. The red lines show the level of 

statistical significance (P = 5×10–8). The genome-wide significant SNP for the Combined 

Bronchitis-Apical Emphysema subtype replicated among Whites (P=0.01) and the entire 

replication sample (P=0.04). The genome-wide significant SNP for the restrictive CPFE 

subtype replicated among Whites (P=0.01) and the entire replication sample (P=0.04). The 

first genome-wide significant SNP for the obstructive CPFE subtype on chromosome 19 had 
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variance only among Black participants and replicated in this sample (P=0.046). The second 

genome-wide significant SNP for the obstructive CPFE subtype on chromosome 16 did not 

replicate. There were no significant replicated genetic associations for the diffuse and senile 

CT emphysema subtypes (not shown).* Results are shown for the lowest attenuation (most 

severe) of the three preliminary subtypes that comprise the Combined Bronchitis-Apical 

Emphysema subtype. Abbreviation: CPFE=combined pulmonary fibrosis/emphysema
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Table 1.

Characteristics of participants in SPIROMICS and the MESA Lung Study

SPIROMICS (n=2853) MESA Lung (n=2949)

Age - years 63.0 ± 9.2 69.4 ± 9.3

Male sex - no. (%) 1515 (53.1%) 1417 (48.1%)

Race/ethnicity, no. (%)

 White 2087 (74.1%) 1123 (38.1%)

 Black 550 (19.3%) 803 (27.2%)

 Hispanic 148 (5.2%) 631 (21.4%)

 Asian 33 (1.2%) 392 (13.3%)

Height - m 1.7 ± 0.1 1.65 ± 0.10

Weight - kg 80.9 ± 18.0 78.1 ± 17.4

BMI - kg/m2 28.0 ± 5.3 28.4 ± 5.4

Smoking status - no. (%)

 Never 198 (6.9%) 1341 (45.8%)

 Former 1609 (56.4%) 1371 (46.8%)

 Current 1046 (36.7%) 219 (7.5%)

Pack-years, among ever-smokers - median 43.0 14.5

(IQR) (31.0, 60.0) (3.0, 33.0)

FEV1, percent-predicted 75.1 ± 26.7 94.9 ± 22.9

FVC, percent-predicted 91.7 ± 18.0 97.2 ± 22.5

FEV1/FVC 0.59 ± 0.16 0.74 ± 0.09

COPD – no. (%) 1760 (61.7%) 446 (16.9%)

 GOLD 1 380 (21.6%) 239 (53.6%)

 GOLD 2 787 (44.8%) 182 (40.8%)

 GOLD 3 412 (23.5%) 25 (5.6%)

 GOLD 4 178 (10.1%) 0

Total lung volume - ml 5871 ± 1454 4791 ± 1283

Percent emphysema - % 7.5 ± 10.1 2.5 ± 3.3

Traditional emphysema subtype - no.(%)*

 Centrilobular emphysema 804 (93.7) 530 (18.0)

 Panlobular emphysema 44 (5.1) 90 (3.1)

 Paraseptal emphysema 754 (88.0) 384 (13.0)

Airway wall thickness - mm 1.44 ± 0.42 1.02 ± 0.24

Diasynapsis (CT-assessed airway-to-lung ratio) 0.032 ± 0.004 0.033 ± 0.004

Small airway count (N) -- 30.8 ± 14.9

Interstitial lung abnormalities - no. (%)* 252 (25.3) 276 (12.1)

Total Pulmonary Vascular Volume Percent 2.91 ± 0.36 2.70 ± 0.27

Abbreviations: BMI=Body mass index, IQR=Interquartile range, FEV1=Forced expiratory volume in 1 second, FVC=Forced vital capacity, 
COPD=Chronic obstructive pulmonary disease, GOLD=Global initiative for chronic obstructive lung disease.

*
Traditional emphysema subtypes and interstitial lung abnormalities read in SPIROMICS for a subset of 804–857 and 999 participants, 

respectively
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