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Abstract

The lack of standardization and consistency of acquisition is a prominent issue in magnetic 

resonance (MR) imaging. This often causes undesired contrast variations in the acquired images 

due to differences in hardware and acquisition parameters. In recent years, image synthesis-based 

MR harmonization with disentanglement has been proposed to compensate for the undesired 
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contrast variations. The general idea is to disentangle anatomy and contrast information from MR 

images to achieve cross-site harmonization. Despite the success of existing methods, we argue 

that major improvements can be made from three aspects. First, most existing methods are built 

upon the assumption that multi-contrast MR images of the same subject share the same anatomy. 

This assumption is questionable, since different MR contrasts are specialized to highlight different 

anatomical features. Second, these methods often require a fixed set of MR contrasts for training 

(e.g., both T1-weighted and T2-weighted images), limiting their applicability. Lastly, existing 

methods are generally sensitive to imaging artifacts. In this paper, we present Harmonization 

with Attention-based Contrast, Anatomy, and Artifact Awareness (HACA3), a novel approach 

to address these three issues. HACA3 incorporates an anatomy fusion module that accounts 

for the inherent anatomical differences between MR contrasts. Furthermore, HACA3 can be 

trained and applied to any combination of MR contrasts and is robust to imaging artifacts. 

HACA3 is developed and evaluated on diverse MR datasets acquired from 21 sites with varying 

field strengths, scanner platforms, and acquisition protocols. Experiments show that HACA3 

achieves state-of-the-art harmonization performance under multiple image quality metrics. We 

also demonstrate the versatility and potential clinical impact of HACA3 on downstream tasks 

including white matter lesion segmentation on people with multiple sclerosis and longitudinal 

volumetric analyses for normal aging subjects. Code will be publicly available upon paper 

acceptance.
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1. Introduction

Magnetic resonance (MR) imaging is a widely used and flexible imaging modality for 

studying the human brain. By modifying underlying pulse sequences, multiple MR tissue 

contrasts can be acquired in a single imaging session, revealing different tissue properties 

and pathology (Prince and Links, 2006). For example, T1-weighted (T1-w) images typically 

show balanced soft tissue contrast between gray matter (GM) and white matter (WM). T2-

weighted (T2-w) fluid-attenuated inversion recovery (FLAIR) images can detect WM lesions 

(Brown and et al., 2014). However, the flexibility of MR imaging also introduces drawbacks, 

most notably the lack of standardization and consistency between imaging studies. Changes 
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in pulse sequences, imaging parameters, and scanner manufacturers often cause undesired 

contrast variations in acquired images. These contrast variations are frequently observed 

in multi-site and longitudinal studies, where acquiring images with identical protocols and 

platforms is challenging. It has been shown that directly processing these images without 

compensating for contrast variations can lead to biased and inconsistent measurements, also 

known as the domain shift problem (Biberacher et al., 2016; He et al., 2020; Zuo et al., 

2021b).

Efforts from various aspects have been made to mitigate domain shift caused by 
inconsistent MR acquisition.

One approach is to standardize acquisition, such as the CMSC 2021 MRI guideline for 

multiple sclerosis (MS) study (Wattjes et al., 2021), which recommends core MR sequences 

for clinical practice. However, compliance with this guideline is not optimal, and even 

for sites following this guideline, manufacturers and protocols can still vary significantly 

across sites (Clark et al., 2022; Dewey et al., 2021). Another approach is statistical image 

harmonization, which focuses on a specific measurement, such as volumetric measurements, 

and uses statistical models to mitigate the effect of batches and sites (Beer et al., 2020; 

Fortin et al., 2018; Johnson et al., 2007; Newlin et al., 2023). However, a downside of 

statistical harmonization methods is that they often rely on specific assumptions about the 

statistical properties of the images being harmonized. These assumptions may not hold true 

for all imaging modalities or for all types of data (Cetin-Karayumak et al., 2020; Hu et al., 

2023). Additionally, statistical methods may not be effective at harmonizing images with 

large differences in image quality or contrast, as they are designed to adjust for batch effects 

rather than address the underlying imaging artifacts (Dewey et al., 2019; Zuo et al., 2021b).

Harmonization through image synthesis is an emerging technique to alleviate domain 
shift.

In recent years, image synthesis-based MR harmonization techniques (Beizaee et al., 2023; 

Dewey et al., 2019, 2022; Gebre et al., 2023; Liu et al., 2021; Zuo et al., 2021a,b, 2022) 

have emerged to mitigate the lack of standardization in MR imaging. These methods 

are a special type of image-to-image translation (I2I) (Huang et al., 2018; Park et al., 

2020; Liu et al., 2023; Roy et al., 2013; Zhu et al., 2017; Zuo et al., 2020), where the 

source and target images x and y come from different sites, such as two different T1-w 

images from separate sites. In this context, we assume that images acquired with the 

same hardware and software come from the same (imaging) site. These harmonization 

methods learn a function, f( ⋅ ), that translates x from a source site to a target site, i.e., 

ŷ = f(x) while preserving the underlying anatomy. Depending on the required training 

data, existing harmonization methods can be categorized into supervised and unsupervised 

methods. Supervised harmonization methods (Dewey et al., 2019; Tian et al., 2022) require 

a sample population to be imaged at multiple sites. The acquired images across sites 

(i.e., inter-site paired data), as shown in Fig. 1(a), are then used to train f( ⋅ ). Although 

supervised harmonization generally exhibits superior performance due to the explicit voxel-

level supervision provided by the inter-site paired data, its utility is limited to sites visited by 

traveling subjects. Conversely, unsupervised harmonization methods do not require inter-site 
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paired data, thereby offering broader applicability. Most existing unsupervised methods for 

natural image I2I, such as CycleGAN (Zhu et al., 2017), UNIT (Liu et al., 2017), MUNIT 

(Huang et al., 2018), and CUT (Park et al., 2020) can be used to achieve unsupervised 

harmonization by translating MR images across imaging sites, as shown in Fig. 1(b). Even 

though cycle-consistency loss (assuming an identity transformation after a forward and a 

backward I2I) is typically used in these methods to encourage the preservation of anatomical 

features during I2I, geometry shift remains a significant issue due to the absence of direct 

supervision on anatomy across sites. Recent studies have shown that the cycle-consistency 

constraint is insufficient for unsupervised I2I in medical imaging (Gebre et al., 2023; Yang 

et al., 2018; Zuo et al., 2021b).

A unique aspect of MR imaging motivates better unsupervised harmonization.

A distinctive feature of MR imaging is the routine acquisition of multi-contrast images of 

the same subject within a single imaging session (i.e., intra-site paired data) to highlight 

different anatomical properties. For example, the publicly available IXI (Biomedical Image 

Analysis Group, 2007) dataset includes T1-w, T2-w, and proton density-weighted (PD-w) 

images from different imaging sites. The OASIS3 (LaMontagne et al., 2019) dataset 

has intra-site paired T1-w and T2-w images. In recent years, unsupervised harmonization 

methods with disentanglement have been proposed to utilize intra-site paired data for 

improved harmonization. Figure 1(c) illustrates the training data used by these methods, 

where multi-contrast images of the same subject within each imaging site are employed. 

The core concept is to learn disentangled representations of anatomy and contrast (i.e., 

acquisition related) using intra-site paired images during training, so that the anatomy 

information and a desired contrast can be recombined at test time to achieve inter-site 

harmonization. For instance, Zuo et al. (2021a,b) disentangled anatomical and contrast 

information given intra-site paired T1-w and T2-w images. In their work, disentanglement 

was achieved with adversarial training and a similarity loss, assuming that the intra-site 

paired images share the same anatomical information. Ouyang et al. (2021) learned 

disentangled anatomy and contrast representations based on intra-site paired data with a 

margin hinge loss. The authors reported superior performance over existing unsupervised I2I 

methods such as CycleGAN (Zhu et al., 2017), due to supervision in geometry provided by 

the intra-site paired data.

However, current unsupervised harmonization methods miss an important consideration.

Most disentangling methods assume that intra-site paired images share identical underlying 

anatomy while only differing in image contrast (Chartsias et al., 2019; Dewey et al., 2020; 

Liu et al., 2022; Zuo et al., 2021a,b). This assumption is commonly used as an inductive 

bias, which is fundamental to learn disentanglement, according to Locatello et al. (2019). 

However, an overlooked aspect is that different MR contrasts are specifically designed to 

better reveal different tissue types and pathologies, which implies that the commonly used 
assumption of identical anatomy is not strictly accurate in MR imaging. For example, the 

images in Fig. 2 show that, although the two images come from the same subject, different 

MR contrasts reveal slightly different anatomical information. Specifically, the T1-w image 

shows better contrast between GM, WM, and cerebrospinal fluid (highlighted by the green 

box), while the FLAIR image shows clearer boundaries for the WM lesions (highlighted by 
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the orange circles). In this sense, these intra-site paired data are not perfect due to inherent 

anatomical differences between contrasts in MR imaging. Recent work by Träuble et al. 

(2021) have both theoretically and practically identified trade-offs between disentanglement 

and the quality of synthetic images when using imperfect paired data during training. 

Follow-up works in the medical domain by Ouyang et al. (2021) and Zuo et al. (2022) have 

reported on the negative impact of enforcing identical anatomies of intra-site paired data 

during image synthesis.

Several unresolved problems persist with training a harmonization model that respects the 

anatomical differences between MR images with different acquisitions. First, the observable 

anatomy of intra-site paired images should be considered different, necessitating a new 

inductive bias to achieve disentanglement. Second, given different MR contrasts from the 

source site, the choice of source images has an impact on harmonization. Ideally, the model 

should choose an appropriate combination of contrasts to produce better harmonization. 

Third, imaging artifacts and missing contrasts should be handled to improve robustness and 

applicability.

In this paper, we propose harmonization with attention-based contrast, anatomy, and artifact 

awareness (HACA3), a novel harmonization approach to address these three issues. The 

contributions of the paper are as follows:

• We challenge the common assumption of identical anatomy for MR 

disentanglement and propose a new inductive bias to learn disentanglement 

from MR images. As a result, HACA3 respects the inherent anatomy difference 

between MR contrasts.

• We design a novel contrast and artifact attention mechanism to produce an 

optimal harmonized image based on the contrast and artifact information of each 

input image.

• HACA3 can be trained and applied to any set of MR contrasts by using a special 

design to handle missing contrasts.

HACA3 outperforms existing harmonization and I2I methods according to multiple image 

quality metrics. We use diverse MR datasets to demonstrate the broad applicability 

of HACA3 in downstream tasks including WM lesion segmentation and longitudinal 

volumetric analyses.

2. Methods

2.1. General framework

HACA3 follows an “encoder–attention–decoder” structure. In constrast to existing 

frameworks that disentangle anatomy and contrast (Dewey et al., 2020; Liu et al., 2022; 

Ouyang et al., 2021; Zuo et al., 2021b), HACA3 has an additional encoder—the artifact 

encoder—to assess the extent of artifacts present in the input MR images. Additionally, we 

introduce an attention module that analyzes the learned representations of contrast, anatomy, 

and artifacts to inform the decoder for better harmonization. Figure 3 shows the schematic 

framework of HACA3, which comprises three major components: 1) encoding, 2) anatomy 
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fusion with attention, and 3) decoding. In this section, we provide an overview of HACA3’s 

general ideas. We offer detailed explanations of the encoding and attention components in 

Secs. 2.2 and 2.3, respectively. Implementation details, including network architectures and 

training losses, are described in Secs. 2.4 and 2.5.

During training, HACA3 encodes the intra-site T1-w, T2-w, PD-w, and FLAIR images 

(x1, x2, x3, and x4, respectively) of the same subject into anatomy representations β, contrast 

representations θ, and artifact representations η using three corresponding encoders 

Eβ( ⋅ ), Eθ( ⋅ ), and Eη( ⋅ ), respectively. Note that HACA3 does not require all four contrasts 

for training; it can be trained with any combination of MR tissue contrasts, as we describe 

in Sec. 2.3. Contrast and artifact representations (θt and ηt) of the target image yt are also 

calculated during encoding. Following Chartsias et al. (2019); Dewey et al. (2020); Ouyang 

et al. (2021); Zuo et al. (2021a, 2022), HACA3 conducts intra-site I2I (e.g., intra-site T1-w 

to T2-w synthesis) with disentangled representations θ and β during training. At test time, θ
and β from different sites are recombined to achieve inter-site harmonization. The anatomy 

representation β has the same spatial dimension as images x with five distinct intensity 

levels, calculated from a five-channel one-hot encoded map using Gumbel softmax Jang 

et al. (2017). This choice of anatomy representation has been explored and validated in 

multiple disentangling works (Chartsias et al., 2019; Dewey et al., 2020; Liu et al., 2020; 

Zuo et al., 2021b, 2022). The contrast representation θ and artifact representation η are 

two-dimensional variables (i.e., θ, η ∈ ℝ2). HACA3 then employs an attention module (we 

describe in Sec. 2.3) to process the learned representations θ and η of both source and target 

images and find the optimal anatomy representation β* for harmonization. The decoder 

subsequently recombines β* and θt to generate a harmonized image x̂t with the desired 

contrast as yt while preserving the anatomy from the source images. Since ηt is processed by 

the attention module to calculate β*, it is not directly used by the decoder as input.

2.2. Encoding: contrast, anatomy, and artifacts

2.2.1. A new inductive bias to disentangle anatomy and contrast—We 

introduce a novel way to disentangle anatomy and contrast while respecting the natural 

anatomy differences between MR contrasts. The core concept of our anatomy encoder is 

based on contrastive learning (Park et al., 2020), which learns discriminative features from 

query, positive, and negative examples. Here, the query, positive, and negative examples are 

small image patches denoted as pq, p+, and p−, respectively. As shown in Fig. 4, intra-site 

paired images of different MR contrasts are individually processed by the anatomy encoder 

to learn anatomical representations, where i, j ∈ {1,2, 3,4} (i ≠ j) are randomly selected 

contrasts. The query patch, pq, is selected at a random location of βi, i.e., the anatomical 

representation of contrast i. The positive patch p+ is selected at the corresponding locations 

of βj, where j ≠ i. Negative patches p−
(n) are sampled at the same locations as pq from the 

original MR images as well as random locations from the learned β’s. Previous works 

(Chartsias et al., 2019; Dewey et al., 2020; Liu et al., 2022; Zuo et al., 2021a,b) have 

attempted to enforce identical anatomical representations between different MR contrasts. In 

other words, the query patch pq equals to the positive patch p+ at every location. However, as 
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we discussed in Sec. 1, this assumption is not entirely true. In our work, instead of enforcing 

pq to be identical to p+, we encourage pq to be more similar to p+ than to the p−
(n)’s using the 

following loss function (Park et al., 2020)

ℒC(pq, p+, p−
(n)) = − log exp(pq ⋅ p+)

exp(pq ⋅ p+) + 1
N ∑n = 1

N exp(pq ⋅ p−
(n))

. (1)

Our inductive bias for disentanglement is that no matter how similar pq and p−
(n)’s are, the 

positive patches p+ should always be more similar to pq, but not necessarily identical. The 

intuition is that pq and p+ are representations of the same subject, while p−
(n)’s either represent 

different anatomical information or the same subject with weighted contrasts. Choosing 

p−
(n)’s from different locations of β’s ensures that the anatomical representations β capture 

distinctive anatomical features at different locations, while choosing p−
(n) from original MR 

images of the same location encourages contrast information to be removed from β. Because 

our decoder takes both β and θ as direct inputs to generate a harmonized image during 

training, contrast information is pushed to the θ branch, which we adopt from Zuo et al. 

(2021b).

2.2.2. Learning representations of artifacts—Our artifact encoder Eη( ⋅ ) is designed 

to capture imaging artifacts that commonly occur in MR images and can negatively affect 

harmonization performance. By learning artifact representations η from source MR images 

x, i.e., η = Eη(x), the harmonization model is informed to avoid using images with high levels 

of artifacts. Eη( ⋅ ), based on (Zuo et al., 2023), is also trained with contrastive learning, 

with query, positive, and negative examples being MR image slices denoted as xq, x+, and 

x−
(m), respectively. We prepare xq and x+ by selecting 2D image slices from the same 3D MR 

volume, assuming they have similar levels of artifact. Negative examples x−
(m) are prepared 

in two ways: 1) by augmenting xq with simulated artifacts, such as motion and noise, and 

2) by selecting 2D image slices from different volumes than xq. In both cases, we assume 

x−
(m)’s and xq have different levels of artifact. Since both simulated and real MR images are 

used as negative examples, E(η) after training captures various artifacts beyond just motion 

and noise, as we demonstrated in our previous work Zuo et al. (2023). As shown in Fig. 5, 

query, positive, and negative images are processed by our artifact encoder Eη( ⋅ ) to calculate 

the corresponding artifact representations η. The final loss to train Eη( ⋅ ) is given by the 

contrastive loss ℒC ηq, η+, η−
(m)  in Eq. 1, where m = {1, …, M} and M is the total number of 

negative example images.

2.3. Decoding with attention

Given that βi’s (i = {1, 2, 3, 4}) from different images of the same subject should be similar 

but not necessarily identical, the choice of βi during decoding is crucial for successful 

harmonization. When harmonizing an MR contrast from a target site, it is intuitive to choose 

β of the same contrast from the source site since similar pulse sequences usually reveal 

similar underlying anatomical information. However, this approach may not always be 
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optimal when dealing with imaging artifacts and poor image quality. Alternatively, one can 

calculate β’s from all the available contrasts of the source images, which provides increased 

robustness against imaging artifacts and poor image quality. Previous works (Chartsias 

et al., 2019; Ouyang et al., 2021; Zuo et al., 2021a) have used either of the two ways 

separately, but HACA3 takes a step further by combining the advantages of both methods. 

Specifically, we propose a novel attention mechanism that takes both contrast and artifact 

into consideration when fusing anatomy from multiple source images. To do so, we use 

fully connected networks (FCNs) to learn keys K = k1, k2, k3, k4  and queries Q (Vaswani 

et al., 2017), from the encoded θ and η of both source and target images, as shown in 

Fig. 3. We then obtain attentions α ∈ ℝ4 by measuring the similarity between K and Q
(Vaswani et al., 2017). The learned attentions highlight source images with similar contrast 

and image quality as the target image yt and guide the decoder to use the corresponding β’s 

for harmonization. Here, we assume that the target image yt has good image quality. The 

optimal anatomical representation, β*, is then obtained by conducting a weighted average 

with attention, i.e., β* = ∑i = 1
4 αiβi, where αi is the i-th dimension of α. Finally, the decoder 

combines both β* and θt to generate a synthetic image x̂t.

To enable HACA3 to handle an arbitrary number of MR contrasts during training, we 

introduce an attention dropout mechanism. When there are missing contrasts during training, 

the corresponding αi is set to zero and the remaining αi’s are renormalized. This ensures that 

∑i = 1
4 αi = 1 and β of the missing contrasts will not be selected while calculating β*. Even 

when all four contrasts are available during training, one or more of the αi’s still have a 

chance to be randomly dropped out (set to zero), and the remaining αi’s are renormalized 

accordingly. During application, HACA3 handles missing contrasts in source images in a 

similar manner by setting the corresponding αi to zero.

2.4. Network architectures

Network architectures are shown in Fig. 6. Our anatomy encoder and decoder are both 

U-Nets (Ronneberger et al., 2015) with four downsampling layers. The decoder has double 

the channels of the anatomy encoder, because we believe it needs larger network capacity to 

generate various MR contrasts. The contrast encoder is a fully convolutional network with 

four “Convolution–InstanceNorm–LeakyReLU” modules. The first convolutional kernel of 

our contrast encoder has a large kernel size. Because we believe contrast information of 

an MR image should be relatively global, using a large convolutional kernel to reduce the 

spatial dimension can help the model capture contrast information. Our artifact encoder has 

a DenseNet structure with four convolutional layers adopted from Zuo et al. (2023).

2.5. Implementation details and loss functions

The framework of HACA3 is a conditional variational autoencoder (CVAE). θ is the CVAE 

latent variable, and β* is the condition. The CVAE loss to train HACA3 is given by

ℒCVAE = |xt − yt|1 + λ1DKL[p(θ ∣ yt) p(θ)], (2)
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where DKL is the KL divergence and p(θ) is a standard normal distribution, similar as 

most CVAE works. To further regularize HACA3, the synthetic image x̂ is reanalyzed 

by the encoders Eθ( ⋅ ) and Eη( ⋅ ) and a cycle consistency loss is calculated, i.e., 

ℒcyc = Eθ x̂t − θt 1 + Eη x̂t − ηt 1. The overall loss to train HACA3 includes ℒCVAE, contrastive 

losses for anatomy and artifact encoders (see Eq. 1), and ℒcyc, i.e.,

ℒtotal = ℒCVAE + λ2ℒC(pq, p+, p−
(n)) + λ3ℒC(ηq, η+, η−

(m)) + λ4ℒcyc, (3)

where λ’s are hyperparameters. In our implementation, λ1 through λ4 are 10−5, 0.1, 0.1, 

and 0.1, respectively, which were chosen from the following reasons. Except for the KL 

divergence loss, the other loss terms have approximately equal magnitude after weighting 

by the λ’s. The KL divergence loss is lightly penalized in training, because previous works 

(Higgins et al., 2017) have reported that when the KL divergence loss in a VAE model 

is heavily weighted, synthetic images tend to be blurry. We also want to keep the KL 

divergence term, since this allows HACA3 to generate MR images with various contrasts 

by sampling θ space. Dropping the KL divergence term will make HACA3 a conditional 

autoencoder, thus losing the ability to do variational sampling.

During training, target image yt is first randomly selected from intra-site paired images x1

to x4. In this case, HACA3 is trained to conduct intra-site I2I with disentanglement. We 

also select yt from a different site than the source images during training. In this case, only 

ℒcyc is calculated to train the attention module with inter-site I2I. Our code will be publicly 

available upon paper acceptance.

3. Experiments and Results

3.1. Datasets and preprocessing

As we show in Table 1, HACA3 is developed and evaluated with highly variable MR 

datasets acquired from 21 sites, including healthy subjects (Sites S1 to S10) and people with 

MS (Sites S11 to S21). Out of the 21 sites we used in our training and evaluation, sites S13 

to S21 are clinical centers and have more variability in image acquisition parameters. For 

these sites, a small percentage of images acquired from the same site may have different 

acquisition parameters, leading to different image contrasts.

All images were preprocessed with inhomogeneity correction (Tustison et al., 2010), super-

resolution for 2D acquired images (Zhao et al., 2019, 2020), registration to an MNI atlas 

with 0.8 mm3 resolution, and a WM peak normalization (Reinhold et al., 2019). For each 

site, ten training and two validation subjects were selected, each with two to four MR 

contrasts depending on availability. HACA3 was trained with 2D axial, coronal, and sagittal 

slices extracted from each 3D MR volume. We adopt the model introduced in Zuo et al. 

(2021b) to combine multi-orientation 2D slices into a 3D volume as our final harmonization 

result. Specifically, we use a 3D convolutional network that takes stacked 2D slices from 

axial, coronal, and sagittal orientations as input and generates a final 3D volume as output.
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3.2. Exploring the latent contrast, anatomy, and artifact space

The contrast encoder Eθ( ⋅ ) in HACA3 captures acquisition-related information from 

MR images. After training, we expect the learned representations in θ space to reflect 

information about site and MR contrasts . Figure 7(a) shows the learned contrast space of 

T1-w, T2-w, PD-w, and FLAIR images from ten representative sites. Each point in the plot 

corresponds to a 3D MR volume, and the θ value of each MR volume is calculated by 

averaging the θ’s of the center 20 axial slices per volume. The results demonstrate that the 

four MR contrasts are separated in θ space. Furthermore, we observe that the θ values of 

PD-w and T2-w images are located next to each other, which is consistent with the fact that 

these two contrasts are often acquired simultaneously with different echo times.

To investigate the impact of sites on the learned θ values, we plotted the θ values of T1-w 

images from the ten sites in Fig. 7(b). The results reveal several interesting observations. 

First, the θ values of images from the same site are generally closer to each other than those 

from different sites. Second, images with overlapping θ clusters share similar echo time, 

inversion time, and image contrast, as demonstrated in cases ④ and ⑤ of Figs. 7(b) and 

(c). Third, we observed several outliers with θ values deviating from their main clusters, as 

showcased by ① and ② of Fig. 7(b). Upon examination, we discovered that case ② is a 

post-gadolinium T1-w (post T1-w) image that had erroneous header information identifying 

it as a pre-gadolinium T1-w (pre T1-w). This error is evident from inspection of ② in 

Fig.7(c). With respect to case ③, the image was acquired using different parameters than the 

other images from Site S12.

Figure 8 shows the learned anatomical representations β of intra-site paired T1-w, T2-w, 

PD-w, and FLAIR images. Generally, β’s of the four images are visually similar, suggesting 

that they capture similar anatomical information. However, there are subtle differences 

highlighted by the orange boxes, indicating that each MR contrast reveals slightly different 

anatomical information. This observation supports our motivation behind developing 

HACA3—that different MR contrasts reveal slightly different anatomical information.

In our previous work (Zuo et al., 2023), we demonstrated that the artifact encoder captures 

various cases of poor quality images. However, it is also crucial to ensure that our 

attention mechanism works properly in highlighting similar contrast source images and 

downplaying the role of poor quality source images. To investigate this, we present three 

harmonization scenarios where T1-w, T2-w, PD-w, and FLAIR images from Sites S13 or 

S17 are harmonized to a FLAIR image from Site S12—i.e., Sites S13 or S17 are the source 

and Site S12 is the target. Figure 9(a) shows the scenario where all four source modalities 

have good image quality, resulting in most of the attention (77%) being on the FLAIR 

image of the source site S13—see the attention column in Fig. 9. This makes sense since 

the attention α is computed from representations of contrast and artifacts and then used 

to select the corresponding anatomical representation β during harmonization. Figure 9(b) 

depicts another harmonization scenario where the FLAIR image from the source site S17 has 

higher noise levels. Here, the attention on the source FLAIR image has decreased, while the 

other three MR contrasts have increased. The attention model seeks anatomical information 

from other contrasts to compensate for the lower quality of the source FLAIR. As a result, 

Zuo et al. Page 10

Comput Med Imaging Graph. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the harmonized FLAIR image has a better quality appearance while preserving anatomical 

details such as the WM lesions. Figure 9(c) presents an extreme scenario in which the source 

FLAIR image has even higher noise levels and motion artifacts. In this case, the attention 

α on the source FLAIR image further decreases to seek alternative anatomical information 

from other contrasts. As a result, the harmonized FLAIR image demonstrates improved 

image quality and anatomical fidelity. It is important to note that the decrease in attention 

from Figs. 9(b) to (c) is likely due to differences in image quality rather than contrast, as the 

images in Figs. 9(b) and (c) come from the same source site.

3.3. Numerical comparisons of multi-site MR image harmonization

3.3.1. Comparing with supervised and unsupervised harmonization methods
—In this experiment, we seek a harmonization model that translates T1-w images from a 

source site to a target site. We used a held-out dataset with 12 subjects traveling across 

Sites S11 (source) and S12 (target) to quantitatively evaluate HACA3 and other methods. The 

same traveling dataset was also used in Dewey et al. (2019) for evaluation. These methods 

come from three broad types: 1) unsupervised I2I including CycleGAN (Zhu et al., 2017) 

and CUT (Park et al., 2020), 2) two unsupervised harmonization methods based on intra-site 

paired data (Adeli et al., 2021; Zuo et al., 2021b), and 3) supervised harmonization (Dewey 

et al., 2019). Structural similarity index (SSIM) (Wang et al., 2004) and peak signal-to-noise 

ratio (PSNR) are used to quantitatively evaluate all methods. Throughout the paper, both 

SSIM and PSNR are calculated on the MR image.

Comparison with unsupervised I2I with cycle consistency constraint in anatomy:  As 

shown in Fig. 10, we compared HACA3 (pink) with CycleGAN (green) and CUT (red). 

Both CycleGAN and CUT were trained on unpaired T1-w images from Sites S11 and 

S12. HACA3 outperforms both methods with statistical significance (p < 0.01 in a 

paired Wilcoxon signed-rank test). Surprisingly, CycleGAN and CUT did not show much 

improvement compared to the unharmonized images (blue), even though the synthetic 

images are visually fine, as shown in Fig. 10. We hypothesize that this may be due to 

the issue of geometry shift, as indicated by the orange arrows in Fig. 10. This observation 

supports the findings in previous studies (Gebre et al., 2023; Yang et al., 2018) that the cycle 

consistency constraint for anatomy alone is not sufficient for MR harmonization.

Comparison with unsupervised harmonization based-on intra-site paired data:  We 

then compared HACA3 to existing unsupervised harmonization methods that are also based 

on intra-site paired data, including Adeli et al. (Adeli et al., 2021) and CALAMITI (Zuo 

et al., 2021b). Both methods were trained on intra-site paired T1-w and T2-w images 

with disentanglement. As shown in Fig. 10(a), HACA3 (pink) outperforms these methods 

(purple and brown) with statistical significance (p < 0.01 in a paired Wilcoxon signed-rank 

test). Given that all three methods are based on intra-site paired images for training, we 

believe that the superior performance of HACA3 comes from its ability to use multiple MR 

contrasts during application. In Sec. 3.3.2, we further explore the impact of this ability with 

various cases of input MR contrasts. Interestingly, all three methods have better performance 

than unsupervised I2I methods, which demonstrates the benefits of using intra-site paired 

data in harmonization.
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Comparison with supervised harmonization:  Given that HACA3 can be trained 

on a wide variety of data, we finally ask ourselves whether it could potentially 

outperform supervised harmonization methods. To test this hypothesis, we compared 

HACA3 with DeepHarmony (Dewey et al., 2019), a supervised harmonization method 

that was specifically trained on inter-site paired images from S11 and S12. The same 

evaluation dataset as Dewey et al. (2019) was used here to evaluate HACA3 and other 

comparison methods. A paired Wilcoxon signed rank test shows that HACA3 outperforms 

DeepHarmony (orange) in SSIM (see Fig. 10) with statistical significance (p < 0.01). This 

result highlights the potential of HACA3 as a versatile and effective harmonization method.

3.3.2. Ablation: HACA3 handling missing contrasts—HACA3 is designed to 

handle any number of source MR contrasts during both training and application. To 

investigate this ability and the impact of each source contrast on the final harmonization 

result, we conducted an ablation study on all possible scenarios during application. 

Specifically, we used the same inter-site traveling dataset as Sec. 3.3.1 in our ablation 

study (N = 12 subjects traveled between Sites S11 and S12 with T1-w, T2-w, PD-w, and 

FLAIR images). We then applied HACA3 to harmonize images from S11 to S12 and reported 

the SSIM values between the harmonized image and the real S12 image for each of T1-w, 

T2-w, PD-w, and FLAIR being the target contrast. Results in Figs. 11(a)–(d) demonstrate 

HACA3’s robust performance across various combinations of input contrasts. The best 

performance is typically achieved when all four contrasts are used as input, however, the 

results are similar when only two or three input contrasts are used as input. For our target 

contrasts of T1-w, T2-w, and FLAIR, we observed that missing the corresponding source 

image often has an negative impact on the harmonization results. However, when PD-w is 

the target contrast, the performance deviates from this pattern. In this case, missing PD-w as 

the source image actually improves the results. We hypothesize that this is due, in part, to 

the generally lower resolutions of PD-w and T2-w images. Lastly, when FLAIR is the target 

contrast, the harmonization performance is lower compared to the other target contrasts. 

This can be attributed to the challenges in reproducing WM lesions, which are harder to 

replicate accurately. HACA3 heavily relies on information from T1-w and FLAIR images to 

achieve this task. Overall, our study highlights the robustness of HACA3 in handling various 

input contrasts and sheds light on the factors influencing its performance.

3.4. Evaluating HACA3 in downstream tasks

To validate HACA3’s ability to alleviate domain shift, we showcase two different 

downstream image analysis tasks: 1) WM lesion segmentation and 2) whole brain 

parcellation. The first task is based on multi-site cross-sectional data and the second task 

focuses on longitudinal analyses with scanner change and upgrades.

3.4.1. WM lesion segmentation on multi-site data—As shown in Fig. 12(a), two 

MS datasets acquired from sites S11 and S12 were used in this experiment. The training data 

(S12) for MS lesion segmentation include T1-w (not shown), FLAIR, and expert delineations 

of WM lesions of 10 subjects. The testing data (S11) to evaluate lesion segmentation come 

from ILLSC 2015 (Carass et al., 2017), which is publicly available. A 3D U-Net with four 
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downsampling layers was trained with MR images and delineations from S12 using a Dice 

similarity coefficient (DSC) loss.

The 3D U-Net achieved a DSC of 0.593 ± 0.072 (similar to the best results reported in 

Tohidi et al. (2022) and close to the inter-rater variability of Carass et al. (2017)) in a 

five-fold cross validation on S12, which it was trained on However, when the 3D U-Net was 

applied to S11, the DSC dropped to 0.348 ± 0.089 due to domain shift. HACA3 was then 

applied to harmonize images from Site S11 to S12 aiming at alleviating domain shift, and the 

lesion segmentation was reevaluated. As shown in Fig. 12(b), DSC has improved to 0.590 ± 

0.075, which is similar to the performance on the training site. It is worth noting that WM 

lesions are particularly difficult to synthesize and characterize due to the large variation in 

lesion size and location. It is encouraging that HACA3 generates high fidelity images that 

show effectiveness in WM lesion segmentation both qualitatively and quantitatively.

3.4.2. Whole brain parcellation on longitudinal data.—We used two public 

longitudinal datasets, i.e., OASIS3 (Sites S3 to S6) (LaMontagne et al., 2019) and BLSA 

(Sites S7 to S10) (Resnick et al., 2000), to evaluate HACA3 for longitudinal analyses. The 

number of subjects and sessions of each dataset is shown in Table 2. The same preprocessing 

was applied here, followed by a whole brain parcellation on T1-w images using Huo et al. 

(2019). For the cortical GM (cGM), cerebral WM (WM), and lateral ventricles (LatV), a 

structure-specific linear mixed effects (LME) model yij = a0 + a1xij + bj + ϵij was fitted, where 

xij and yij are age and percentage structural volume (structural volume divided by total brain 

volume) of session i and subject j, respectively. We reuse the notations x, y, i, and j to be 

consistent with the LME literature (Erus et al., 2018). bj ∼ N 0, σb
2  is the subject-specific 

bias, and σb
2 models population variance. ϵij ∼ N 0, σϵ

2  is the error term modeling noise in 

observations. Based on the LME, longitudinal intra-class correlations (ICCs) were calculated 

to characterize the effect of harmonization in longitudinal analysis with ICC defined by,

ICC = σb
2

σb
2 + σϵ

2 × 100%,

where an ICC close to 0% means the noise in observations is the dominant factor over 

population difference. An ICC close to 100% indicates most variances are due to the natural 

population difference rather than noisy observations. Assuming the effect of scanner change 

and upgrades are alleviated with harmonization, we would expect increased ICCs after 

harmonization. Table 2 shows that the ICCs and σϵ
2 of all structures from both datasets were 

improved after harmonization.

4. Discussion and Conclusion

In this paper, we present HACA3, a novel harmonization approach with attention-based 

contrast, anatomy, and artifact awareness. We demonstrate the effectiveness of HACA3 

through extensive experiments and evaluations on diverse MR datasets. HACA3 learns a 

disentangled latent space of contrast and anatomy, allowing different MR contrasts and 

imaging sites to be differentiated in the contrast space θ. This demonstrates HACA3’s 
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capability to capture complex information about image acquisition and contrast, which 

is crucial for contrast-accurate MR image harmonization. Moreover, we show that the 

anatomical representations β of intra-site paired images, while generally similar, reveal 

slight different anatomical features. This finding is consistent with HACA3’s design, which 

respects the inherent anatomical differences between MR contrasts. HACA3’s capability to 

understand these nuanced anatomical features is essential for generating harmonized images 

with high anatomical fidelity. The learned artifact representations η not only inform HACA3 

for robust harmonization but also provide rich information for MR quality control, as we 

have demonstrated in previous work (Zuo et al., 2023). Our attention mechanism based on 

η and θ identifies poor quality images at the source site and learns to dynamically combine 

anatomical information.

By respecting contrast and artifacts, HACA3 produces harmonized images that are high 

quality and suitable for downstream image analyses. Numerical comparisons show that 

HACA3 significantly outperforms unsupervised I2I methods, unsupervised harmonization 

methods based on intra-site paired images, and a supervised harmonization method. We have 

also explored the impact of different source image availability on harmonization results, 

demonstrating HACA3’s robustness under varying input conditions.

Our study highlights the potential clinical impact of HACA3 through two different 

downstream tasks. In the WM lesion segmentation task, HACA3 provides high-quality 

synthetic FLAIR images with preserved lesion structure. We demonstrate improved lesion 

segmentation performance by alleviating domain shift. Accurate lesion detection is essential 

for making informed treatment decisions in MS. Specifically, clinicians may recommend 

stronger immune therapies if harmonization helps identify lesions that are otherwise missed 

by the lesion segmentation algorithm. Conversely, if harmonization helps correct false 

lesions, clinicians may not recommend changing or escalating therapies unnecessarily. 

For the longitudinal volumetric analysis task, HACA3 promotes consistent longitudinal 

volumetric analyses in terms of longitudinal ICCs and error residual. This can facilitate more 

meaningful longitudinal analyses of the normal aging process of the human brain.

Despite its strengths, we discuss some limitations and intriguing findings that may motivate 

future research. First, the imbalance of available MR contrasts in training data may have 

a negative impact on harmonization performance. Specifically, if a contrast is missing in 

many training sites, HACA3 may not be sufficiently trained due to the lack of training 

data of that particular contrast. It is worth noting that this issue of imbalanced training data 

is not specific to HACA3, but is present in most deep learning methods. We believe this 

issue can be mitigated by importance sampling training data based on the prevalence of 

each contrast, so each MR contrast would appear equally during training. Second, HACA3 

currently focuses on T1-w, T2-w, PD-w, and FLAIR images. While this covers a large range 

of MR contrasts in clinical applications, we believe HACA3’s capability is beyond that. As 

we show in Fig. 7, even though HACA3 was not trained on post T1-w, the theta-encoder 

is still able to capture this difference in contrast. This capacity should be explored in 

future research for potential extension of HACA3 to include more MR contrasts and even 

other imaging modalities (e.g., computed tomography (Chartsias et al., 2019)). Third, each 

attention variable αi is currently applied to the entire image with the i-th contrast, but these 
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variables could be extended in the future to be spatially variable as well. By allowing 

the attention to vary across spatial locations, it can better adapt to the local anatomical 

features and provide more fine-grained control over the harmonization process. This could 

potentially lead to better performance, especially in areas with complex or subtle anatomical 

differences, depending on the source images and target contrasts.

In conclusion, our work on HACA3 showcases its ability to address challenges in MR image 

harmonization and its potential to improve the quality and consistency of neuroimaging 

studies. By successfully disentangling contrast and anatomy, respecting inherent anatomical 

differences, and leveraging attention mechanisms for handling artifacts, HACA3 sets a new 

benchmark in MR image harmonization and promises to advance the field of harmonization. 

Future research should focus on addressing the limitations and further expanding the 

applicability of HACA3 to a wider range of MR contrasts and imaging scenarios.
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Highlights

• A unified harmonization approach that disentangles contrast and anatomy, 

while respecting inherent anatomical difference between MR contrasts.

• A novel attention mechanism optimally processes anatomical information 

based on image contrast and artifacts.

• Extensive evaluations on 21 imaging sites with diverse acquisition parameters 

and image quality.
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Figure 1: 
Training data required of the three types of harmonization methods. (a) Supervised 

harmonization methods (Dewey et al., 2019; Tian et al., 2022) require a sample group of 

subjects to be imaged across sites (i.e., inter-site paired data) for training. (b) Unsupervised 

methods developed for natural image I2I (Huang et al., 2018; Liu et al., 2018; Park et al., 

2020; Zhu et al., 2017) can be trained with different subjects across sites. (c) Unsupervised 

harmonization methods with disentanglement (Ouyang et al., 2021; Zuo et al., 2021a,b) 

utilize the routinely acquired intra-site paired data for training.
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Figure 2: 
T1-w and FLAIR images of a MS subject reveal slightly different anatomical features. The 

T1-w image shows better contrast between GM, WM, and cerebrospinal fluid (highlighted 

by the green box), while the FLAIR image shows clearer boundaries for the WM lesions 

(highlighted by the orange circles).
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Figure 3: 
Schematic framework of HACA3. Networks with the same color share weights. Synthetic 

image x̂t has the same contrast as the target image yt while preserving the anatomy from 

source images. Networks to process keys and queries are both fully connected networks 

(FCNs).

Zuo et al. Page 21

Comput Med Imaging Graph. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Learning anatomical representations β with contrastive learning. pq, p+, and p−

(n) are query 

patch, positive patch, and negative patches, respectively. In previous works, pq is encouraged 

to be equal to p+. In our work, pq is encouraged to be more similar to p+ than to p−
(n) using Eq. 

1, where n = {1, …, N} and N is the number of negative patches.

Zuo et al. Page 22

Comput Med Imaging Graph. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 

Learning artifact representations η ∈ ℝ2 with contrastive learning. xq and x+ are assumed 

to have the same level of artifacts, while xq and x−
(m) have different levels of artifacts. The 

contrastive loss is applied to encourage η to preserve this relationship.
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Figure 6: 
Network architectures of HACA3. The anatomy encoder and decoder are both U-Nets.
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Figure 7: 
Contrast representations θ of 10 representative sites. (a) θ’s of T1-w, T2-w, PD-w, and 

FLAIR images. (b) θ’s of T1-w images from different sites. Circled numbers show θ values 

of six representative images. Corresponding MR images are shown in (c).
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Figure 8: 
Anatomical representations β of intra-site paired data. The top row shows T1-w, T2-w, PD-w, 

and FLAIR images, respectively, with the inset being a zoomed up version of the orange 

box. The bottom row shows the corresponding β’s of each contrast and the same zoomed in 

region.
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Figure 9: 
The learned attention α changes with three different harmonization scenarios. In all three 

scenarios, T1-w, T2-w, PD-w, and FLAIR images from sites (S13 or S17) are harmonized to a 

FLAIR image of a different site—S12 in this case.
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Figure 10: 
Numerical comparisons between HACA3 (proposed) and other methods using a held-out 

dataset of inter-site traveling subjects. SSIM and PSNR of T1-w images are calculated. 

Example T1-w images are shown on the right.
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Figure 11: 
HACA3 handling different availability of source images. From (a) to (d): target image being 

T1-w, T2-w, PD-w, and FLAIR images, respectively. Colored boxplots represent different 

numbers of source images. The panel below the boxplots indicates which images were used 

as input to the harmonization (with an empty circle indicating the absence of a particular 

contrast).
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Figure 12: 
(a) Training and testing sites for WM lesion segmentation with a 3D U-Net. (b) DSC 

showed improvements after harmonizing images from the testing site (Site S11) to the lesion 

training site (Site S12). Example images are shown on the right.
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Table 1

MR images acquired from 21 sites were used to train and evaluate HACA3. Out of the 21 sites, 11 are publicly 

available (Biomedical Image Analysis Group, 2007; LaMontagne et al., 2019; Resnick et al., 2000; Carass et 

al., 2017). Magnetic field strengths are reported in teslas.

Site ID S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13
S 
14

S 15
S 
16

S 17 S 18 S 19 S 20 S 21

Open data ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Manufacturer Philips Philips Siemens Siemens Siemens Siemens Philips Philips Philips Philips Philips Philips Siemens GE Siemens GE Philips Siemens Siemens Siemens Siemens

Field 1.5 3.0 3.0 3.0 3.0 1.5 1.5 3.0 3.0 3.0 3.0 3.0 3.0 1.5 3.0 3.0 3.0 3.0 3.0 1.5 3.0

Population Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy MS MS MS MS MS MS MS MS MS MS MS

T1-w ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T2-w ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PD-w ✓ ✓ ✕ ✕ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✓ ✕ ✓ ✕ ✓ ✕ ✓

FLAIR ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✓ ✓ ✓ ✓ ✓
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Table 2

Longitudinal ICCs and σϵ
2 of cGM, WM, and LatV before and after harmonization. Details about each dataset 

are shown in Table 1 (Sites S3 to S10). For longitudinal ICC higher values are better, while for σϵ
2 lower values 

are better.

Dataset # Subjects # Sessions Structure
ICC (%) ↑ σϵ

2 ↓

Before After Before After

OASIS3 721 1,117

cGM 81.95 95.13 83.6 44.8

WM 83.54 95.85 64.1 31.9

LatV 96.37 96.38 25.4 25.2

BLSA 1,037 2,655

cGM 86.98 96.49 106.9 52.1

WM 87.35 96.38 133.1 59.3

LatV 95.96 95.99 46.2 29.7
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