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Abstract

Background: Variants in the DMD gene, that encodes the cytoskeletal protein, dystrophin, cause 

a severe form of dilated cardiomyopathy (DCM) associated with high rates of heart failure, heart 

transplantation, and ventricular arrhythmias. Improved early detection of individuals at risk is 

needed.

Methods: Genetic testing of 40 male probands with a potential X-linked genetic cause of 

primary DCM was undertaken using multi-gene panel sequencing, multiplex polymerase chain 

reaction, and array comparative genomic hybridization. Variant location was assessed with respect 

to dystrophin isoform patterns and exon usage. Telomere length was evaluated as a marker of 

myocardial dysfunction in left ventricular tissue and blood.

Results: Four pathogenic/likely pathogenic DMD variants were found in 5 probands (5/40: 

12.5%). Only one rare variant was identified by gene panel testing with 3 additional multi-exon 

deletion/duplications found following targeted assays for structural variants. All of the pathogenic/

likely pathogenic DMD variants involved dystrophin exons that had percent spliced-in scores 

>90, indicating high levels of constitutive expression in the human adult heart. 15 DMD variant-

negative probands (15/40: 37.5%) had variants in autosomal genes including TTN, BAG3, LMNA, 

and RBM20. Myocardial telomere length was reduced in patients with DCM irrespective of 

genotype. No differences in blood telomere length were observed between genotype-positive 

family members with/without DCM and controls.

Conclusions: Primary genetic testing using multi-gene panels has a low yield and specific 

assays for structural variants are required if DMD-associated cardiomyopathy is suspected. 

Distinguishing X-linked etiologies of DCM from autosomal genes that show sex differences in 

clinical presentation is crucial for informed family management.
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X-linked dilated cardiomyopathy (DCM) was first described by Berko and Swift in 1987 

as a rapidly progressive form of DCM affecting males in their late teens or early 20s, 

with milder and late-onset manifestations in carrier females.1 It has been associated with 

variants in the DMD gene, that encodes the cytoskeletal scaffolding protein, dystrophin. 

However, knowledge of the genetic underpinnings of this disorder is incomplete since DMD 
variants have been identified in a minority (up to 14%) of males with suspected X-linked 

DCM.2–4 Moreover, most studies have only undertaken limited screening of the DMD gene 

using hybridization techniques to detect large structural variants or focussed evaluation 

of mutation hotspots. X-linked DCM is often phenotypically indistinguishable from DCM 

due to other causes and there is increasing awareness that disease manifestations may 

not be restricted to young males.5 These factors confound reliable differentiation between 

X-linked and autosomal dominant inheritance patterns, especially in sporadic cases and 

small families.
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DMD mutations have been widely studied as a cause of Duchenne and Becker muscular 

dystrophies (MD), both of which are complicated by cardiac dysfunction. The varying 

severity of skeletal myopathy in Duchenne and Becker MD has been attributed to mutation 

impact (frameshift vs in-frame) and differences in the quantity and quality of dystrophin 

produced.6 Why some DMD variants result in a primary cardiomyopathy (X-linked DCM) 

with absent or subclinical skeletal muscle involvement is unclear.

Restrepo-Cordoba and colleagues5 recently evaluated 223 DMD variant carriers without 

severe skeletal myopathy and showed that 22% of individuals experienced end-stage 

heart failure or sudden cardiac death. These findings highlight the clinical importance 

of this disorder and the need for early recognition of genotype-positive cases. Here we 

report genetic analyses of a cohort of males with a potential X-linked cause of DCM 

using contemporary gene panel-based next generation sequencing in the first instance. 

We evaluated new bioinformatics methods to inform DMD variant interpretation based on 

dystrophin isoform expression and exon usage. We also investigated telomere length as a 

biomarker of cardiac dysfunction. Collectively our data highlight the spectrum of genetic 

variation underpinning DMD-associated DCM and the phenotypic overlap with forms of 

autosomal dominant DCM that show sex differences in clinical presentation. Our findings 

have implications for medical surveillance, risk stratification, and genetic counselling of 

probands and relatives.

Methods

An expanded Methods section is provided in the Supplemental Material. Study data 

and materials are available from the corresponding author upon reasonable request. All 

participants provided informed written consent and protocols were approved by the Human 

Research Ethics Committee of St Vincent’s Hospital and the Stanford Institutional Review 

Board.

Results

Study subjects

174 probands with suspected heritable cardiomyopathies (60% males; aged 41± 15 years at 

diagnosis) were recruited for genetics research at a single site (Supplemental Methods). A 

subset of 40 male probands was selected for detailed evaluation of DMD variants. Selection 

criteria included: primary clinical presentation of DCM at <60 years of age, no identified 

acquired cause of DCM, and a family history at the time of study entry that was consistent 

with an X-linked etiology or indeterminate. Thirty-nine probands (98%) had self-reported 

European ancestry. Clinical features and genetic results for the 40 probands and their 

relatives are summarized in Supplemental Table III.

DMD Genotypes

Single nucleotide variants.—Multi-gene panel sequencing of proband DNA samples 

identified 22 protein-altering DMD variants, of which 3 were rare (MAF <0.1%; 

Supplemental Table IV; pedigrees shown in Figure 1). The latter included a splicing variant, 

c.31+1G>T, found in two probands, AI-IV-2 and DB-IV-6, that has been reported in several 
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kindreds with DCM.4,7–9 Delving further into the family history, it was ascertained that 

Families AI and DB had an unrecognized distant common ancestor. The remaining 2 rare 

variants, p.S738L and p.M1576I, were both missense and classified as variants of uncertain 

significance (VUS). Four additional X-chromosome genes associated with DCM (EMD, 

FHL1, LAMP2, TAZ) were evaluated but none of the 13 variants identified in these genes 

met ACMG criteria for pathogenicity. Sequence data for the remaining 134 probands with 

suspected autosomal dominant disease were reviewed, with no additional DMD single 

nucleotide variants identified.

Structural variants—Using multiplex PCR to identify DMD structural variants we 

identified 1 deletion extending from exon 4 to exon 9 in ER-II-5 that was subsequently 

confirmed by aCGH (Supplemental Table V; pedigree shown in Figure 1). Two further 

exonic variants were found by aCGH. This included a duplication spanning exons 3 to 

12 in EC-II-3, one of a set of previously-reported monozygotic triplets.10 This was a de 
novo variant that was present in the other living affected triplet, EC-II-4, but absent in both 

unaffected parents and an older unaffected sibling. A deletion in the C-terminal region, 

involving exons 75 and 76, was identified in AJ-II-2. In addition to these 3 pathogenic/

likely pathogenic (P/LP) structural variants, we found an exon 74 duplication in Q-II-3 

that was classified as a VUS. Seven intronic variants were found in 10 probands, including 

duplications in introns 2, 62, 67 and deletions in introns 7, 29, 60, 64, all of which were 

VUS. Specific assays for structural variants were not performed in the 134 probands with 

suspected autosomal dominant disease. However, no variants of this type were evident in the 

50 individuals (37%) who had undergone whole-genome sequencing.

DMD Variant Phenotypes

In the 5 families with P/LP DMD variants (total 22 individuals), there were 13 affected 

males (mean age 31 ± 18 years), many of whom had a rapidly progressive downhill course 

culminating in early heart transplantation (<25 years age, n=4), or premature death (n=5) 

(Supplemental Table III). Creatine kinase levels were elevated in a subset of males, and 

this had led to a diagnosis of atypical Becker MD in some cases. Three of the 7 adult 

genotype-positive females were affected, all of whom had relatively mild cardiac disease and 

absent skeletal muscle involvement. Two of these women had DCM onset aged >60 years, 

with the third being diagnosed with peripartum cardiomyopathy aged 34 years.

Reported DCM-Associated DMD Variants

To better understand the spectrum of DMD genetic variation associated with a primary 

clinical presentation of DCM, we undertook a literature review and identified 71 variants 

in 116 reported probands. Inclusion of variants in the present study yielded a total of 

77 variants in 126 probands (Supplemental Table VI). Following re-curation of variant 

pathogenicity using ACMG criteria, only 59 (77%) variants were classified as P/LP: 36 

large (>1 exon) variants, 21 small (<1 exon) variants, 2 intronic variants (Table 1). When 

compared to variants seen in Duchenne MD,11 P/LP DCM-associated variants were less 

likely to be multi-exon structural variants (61% vs 79%) and more likely to be small 

deletions/insertions, splice-site or nonsense variants (36% vs 20%, Table 1). Of these, 35 

(59%) variants (15 large, 20 small) were predicted to result in a shift of the reading frame. 
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39 (66%) P/LP variants were located in the 2 hotspots reported for Duchenne MD in exons 

2–20 and exons 45–56, respectively (Figure 2;12). Outside of these hotspots, there were 9 

variants (15%, all small) in the M promoter/exon 1 region, 10 variants (17%, 1 large, 9 

small) in the proximal rod (exons 21–44) and 1 variant (large) in the C-terminus.

Derivation of Dystrophin PSI Scores and Impact of Variant Location

For genes that produce numerous isoforms via alternative splicing, percent spliced-in 

(PSI) scores represent the frequency in which individual exons are included across the 

range of transcripts, with variants in exons with high PSI scores having greater potential 

for functional effects.13 To derive PSI scores for DMD, we first needed to characterize 

dystrophin isoforms in the heart. An analysis of DMD transcript promoters using bulk 

RNA sequencing data showed that Dp427m was the predominant transcript in human left 

ventricle (LV), right atrium (RA), and skeletal muscle, followed by the shorter C-terminal 

isoform, Dp71 (Figure 2, Supplemental Table VII). Nuclear sequencing of unaffected human 

heart tissue confirmed that most Dp427m transcripts occurred in ventricular (70%) or atrial 

(21%) cardiomyocytes (38% and 7% of the total assigned cell population, respectively), 

while 83% of Dp71 transcripts were located in pericytes (18% of the total assigned cell 

population; Supplemental Table VIII). In the GTEx data, DMD exons showed a high level 

of constitutive expression in adult heart, pediatric/fetal heart, and skeletal muscle, with 

the exception of exons 71 & 78, that had intermediate PSI values (10 < PSI < 90), with 

exon 71 uniquely showing significant differences between cardiac chambers: exon 71: LV, 

PSI=66, RA, PSI=60, p=1.7×10−11; exon 78: LV, PSI=75, RA, PSI=75, p=0.41 (Figure 2, 

Supplemental Table IX, Supplemental Figure I). All of the P/LP DMD variants involved 

exons with high (>90) PSI scores.

Phenocopies of DMD-Associated DCM

Sequencing data from the 40 study probands were also interrogated for other genetic causes 

of DCM. Fifteen probands in whom DMD variants were undetected had heterozygous P/LP 

variants in TTN (n=8), BAG3 (n=2), DES (n=1), LMNA (n=1), MYH7 (n=1), RBM20 
(n=1), and SCGB (n=1) (Supplemental Table X; pedigrees shown in Supplemental Figures 

II & III). This yield of autosomal gene variants (37.5%) was similar to that observed in 

the remaining 134 probands who were evaluated with the same gene set (25.4%, p=0.16; 

Supplemental Table XI). In these 15 families (total 67 individuals), the mean age at DCM 

diagnosis in affected males (32 ± 15 years, n=29; unknown age in 4 males) was significantly 

younger than in females (50 ± 17 years, n=19; p=0.0003) but equivalent to males with 

DMD variants (n=13; p=0.86). 25 family members (21 males) had heart transplantation 

(n=11), or premature death (n=14). The prevalence of these major adverse events (25/67 

[37.3%] individuals) was also similar to the DMD variant group (9/22 [40.9%] individuals; 

p=0.80). Three affected females with TTN (n=2) and BAG3 (n=1) variants respectively, had 

an accelerated disease onset due to peripartum cardiomyopathy, with two of these women 

needing heart transplantation and one dying suddenly. In Family CK, individuals with the 

BAG3 nonsense variant also carried two common DMD VUS, p.E2910V and p.N2912D 

that together, have been shown to alter biophysical properties of the dystrophin rod, with 

potential phenotype-modifying effects (Supplemental Table IV).14
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Telomere Length as a Biomarker of Disease Severity

Telomere shortening has been associated with accelerated cardiac dysfunction in Duchenne 

MD.15 We investigated telomere length in LV tissues from 10 individuals undergoing heart 

transplantation who carried variants in DMD (Families AI & DB, n=3), TTN (Families 

AV & N, n=3) and LMNA (n=4). All samples showed a marked reduction in telomere 

length when compared to control hearts, with no genotype differences (ANOVA p<0.0001; 

Supplemental Figure IVA). Blood telomere length was also evaluated in 80 individuals 

from families with DMD and TTN variants. There were no differences in the T/S ratio 

between variant-positive individuals with DCM (G+P+, n=30), variant-positive individuals 

without DCM (G+P-, n=11), and variant-negative individuals without DCM (G-P-, n=39) 

groups (ANOVA p=0.78; Supplemental Figure IVB). These data suggest that: (i) telomere 

shortening in heart tissue is driven mainly by disease severity rather than by genotype, and 

(ii) assessment of telomere length in blood is unlikely to be a useful biomarker for early 

detection of myocardial disease.

Discussion

Recent data have highlighted DCM-associated DMD variants as an important cause of 

morbidity and mortality in males, thus making early recognition of genotype-positive cases a 

clinical imperative.5 This requires a high level of clinical suspicion for a potential X-linked 

etiology, appropriate genetic testing and variant interpretation, and sensitive methods for 

detection and monitoring of myocardial dysfunction.

DMD-associated DCM is typically considered in young males with DCM ± raised creatine 

kinase levels, particularly in families where females are unaffected or have mild DCM in 

later life.5 Accumulating evidence that DCM can arise in older males and females of any 

age blurs clear distinction between X-linked and autosomal dominant inheritance and raises 

a clinical conundrum. Reflecting this, we found that 5/40 (12.5%) of males with sporadic or 

possible X-linked DCM carried DMD variants, while an additional 15/40 (37.5%) probands 

had P/LP variants in autosomal genes, several of which have been reported to show sex 

differences in age at DCM diagnosis or disease severity (Table 2).5,16–31 It is important 

to note that phenotypic manifestations are not determined solely by the underlying genetic 

variant and pinpointing a typical age at diagnosis within families may be confounded by 

extrinsic factors such as pregnancy, co-morbidities or lifestyle, that accelerate disease onset 

in individual cases. Phenotypic overlap may also occur with genes such as DES and LMNA 
in which DCM can be accompanied by skeletal myopathy (Table 2).

Historically, genetic testing for DMD-associated DCM focussed on evaluating large variants 

or sequencing known mutation hotspots rather than sequencing the whole gene. This biases 

against detection of small variants that may be deleterious. Contemporary genetic testing 

using multi-gene panel or exome sequencing introduces an opposite problem since large 

variants are generally unable to be assessed. Additional testing methods are required if an 

X-linked cause of DCM is suspected. Although much less common than in Duchenne MD, 

large variants comprise more than half of the P/LP variants reported in DMD-associated 

DCM (Table 1). We found only one P/LP DMD variant (c.31+1G>T) by sequencing, with 3 

further P/LP variants identified by multiplex PCR and aCGH. In this context, whole-genome 
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sequencing provides an attractive first-line genetic testing method since large and small 

variants can be detected in the same dataset.32 Following our re-curation of reported DMD 
variants, it was notable that none of the missense variants achieved P/LP status, and most 

were only classifiable as VUS due to insufficient clinical and functional data. The extent to 

which DMD missense variants might contribute to the burden of disease remains unresolved.

Truncating TTN variants (TTNtv) were the single most common cause of DCM, being 

present in 8 (20%) of our probands. Dystrophin and titin are both giant proteins that have 

key roles in cardiac structure and function. Experimental studies suggest that mutations in 

DMD and TTN share a number of pathophysiological mechanisms, including changes in 

force transmission, resistance to mechanical stress, cell signalling, myocardial energetics, 

and cell survival.33,34 Titin transcripts show extensive alternative splicing and assessing PSI 

scores has become a cornerstone of clinical variant interpretation for TTNtv.13 Here, for the 

first time, we derived PSI scores for cardiac dystrophin and found that unlike titin, most 

dystrophin exons are highly utilized across all transcripts. These findings indicate that exon 

PSI scores have limited application for prioritization of DMD variants.

It is unclear why DMD variants have tissue differences in phenotypic expression. Duchenne 

MD is characteristically associated with frameshift variants that abolish dystrophin 

expression while the relatively milder skeletal muscle phenotype of Becker MD is thought to 

result from persistent truncated protein associated with in-frame variants.6 Here we find that 

two thirds of reported DCM-associated P/LP variants arise in exonic hotspots for Duchenne 

MD and more than half of all P/LP variants are predicted to be frame-shifting. The “reading 

frame rule” thus incompletely explains the severe cardiac dysfunction that can occur in both 

Duchenne and Becker MD or a primary DCM phenotype. An important cluster of 9 DCM 

variants (representing 15% of P/LP cases) was seen in the M promoter/first exon region. The 

c.31+1G>T variant abolishes the 5’ splice site of the large 1st intron at its junction with exon 

1 and is an example of this variant type. Variants in this location have been associated with 

absent or very low levels of dystrophin expression in the heart, with the lack of overt skeletal 

muscle involvement attributed to selective up-regulation of brain and Purkinje isoforms.6 

Mechanisms for cardiac dysfunction associated with variants in other dystrophin regions 

remain to be elucidated but could involve perturbation of critical cardiac-specific protein 

interactions.

Emerging genetic correction strategies appear to ameliorate skeletal muscle dysfunction in 

Duchenne MD but their impact on cardiac function remains unproven.35,36 Several drug 

therapies have also been used in animal models, including treatment with antioxidants to 

improve mitochondrial function and preserve telomere length.15 Telomere shortening has 

been documented in hearts of patients with genetic cardiomyopathies37 and was also present 

in heart tissues from affected individuals with DMD, TTN, and LMNA variants in our study. 

Although telomere shortening appears to be a nonspecific effect of DCM, these data suggest 

that protection of disease-related telomere erosion could be beneficial. Use of telomere 

length as a biomarker of disease progression is hampered by the lack of readily available 

serial myocardial tissue samples and inability of assessment of telomere length in blood to 

act as an informative surrogate.
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There are several limitations of this study, including incomplete family member participation 

and small family sizes. The yield of DMD variants may be under-estimated due to 

insufficient supportive family segregation and functional data, particularly for the exon 74 

duplication and intronic structural variants. Although we did not find DMD variants in any 

of the 134 probands in whom autosomal dominant disease was suspected at the time of 

study entry, structural variants were not evaluated in two-thirds of these cases. Collectively, 

however, our data suggest that the yield of DMD variants in unselected patients with familial 

DCM is low (<3%). These results highlight the need for a high index of clinical suspicion, 

given the significant consequences of P/LP DMD variants in variant carriers. Since our study 

subjects were predominantly European, further investigation is warranted to determine the 

applicability of our findings to other ancestry groups.

Our data provide fresh perspectives on the spectrum of variant types and phenotypic features 

of DMD-associated DCM and show how this disorder can mimic autosomal dominant forms 

of DCM and vice versa. If DMD-associated DCM is suspected, tailored genetic testing 

strategies are needed that include evaluation of structural variants. Accurate delineation of 

genetic causes of DCM is crucial for informed precision approaches to family management.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations and Acronyms

aCGH array comparative genomic hybridization

ACMG American College of Medical Genetics and Genomics

LP likely pathogenic

MAF minor allele frequency

MD muscular dystrophy

P pathogenic

PSI percent spliced-in

Q-FISH quantitative fluorescent in situ hybridization

VUS variant of uncertain significance
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Figure 1. 
Pedigrees for families with P/LP DMD variants. Phenotypes denoted as: affected (solid 

symbols: black = affected at time of study entry; blue = unaffected at time of study entry), 

unaffected (open symbols) or unknown (gray symbols), deceased (diagonal line); probands 

are indicated by arrows. The presence (+) or absence (−) of DMD variants are shown.
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Figure 2. 
Human full-length dystrophin and its isoforms. (A) Schematic of the 79 exons of the DMD 
gene (not to scale) and corresponding protein structural domains (to scale) including two 

calponin-homology domains (CH1 & CH2), four hinges (H1 to H4), central rod comprised 

of 24 spectrin repeats (R1 to R24), cysteine-rich domain (CRD) encompassing a WW 

domain, two EF-hands and a ZZ domain, and carboxy-terminal domain (CTD). Arrows 

indicate the multiple intronic DMD promoters. Full-length dystrophin protein (Dp427) 

is generated from three tissue-specific promoters mainly expressed in brain, muscle and 

Purkinje cells (B, M, and P), with each promoter driving a transcript that utilizes a unique 

first exon. Four internal promoters give rise to shorter dystrophin isoforms (Dp260, Dp140, 

Dp116 and Dp71) adjacent to exons 30, 45, 56, and 63, respectively. Locations of mutational 

hotspots for Duchenne MD (orange) and DMD variants identified in this study (red) are 

shown. Below protein schematic, dystrophin binding partners (black lines); lipid binding 
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domain (LBD), partitioning-defective 1b (PAR1b), neuronal nitric oxide synthase (nNOS). 

(B) Graphical representation of DMD isoform composition (left) and expression (right) 

in human left ventricle (LV), right atrium (RA) and skeletal muscle (SK). (C) Graphical 

representation of percent spliced-in (PSI) scores derived from human adult LV and RA. 

Panel A was created using Illustrator of Biological Sequences.12
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