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Abstract

Clinicians need improved prediction models to estimate time to kidney replacement therapy (KRT) 

for children with chronic kidney disease (CKD). Here, we aimed to develop and validate a 

prediction tool based on common clinical variables for time to KRT in children using statistical 

learning methods and design a corresponding online calculator for clinical use. Among 890 

children with CKD in the Chronic Kidney Disease in Children (CKiD) study, 172 variables related 

to sociodemographics, kidney/cardiovascular health, and therapy use, including longitudinal 

changes over one year were evaluated as candidate predictors in a random survival forest for 

time to KRT. An elementary model was specified with diagnosis, estimated glomerular filtration 

rate and proteinuria as predictors and then random survival forest identified nine additional 

candidate predictors for further evaluation. Best subset selection using these nine additional 

candidate predictors yielded an enriched model additionally based on blood pressure, change in 

estimated glomerular filtration rate over one year, anemia, albumin, chloride and bicarbonate. 

Four additional partially enriched models were constructed for clinical situations with incomplete 
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data. Models performed well in cross-validation and the elementary model was then externally 

validated using data from a European pediatric CKD cohort. A corresponding user-friendly online 

tool was developed for clinicians. Thus, our clinical prediction tool for time to KRT in children 

was developed in a large, representative pediatric CKD cohort with an exhaustive evaluation of 

potential predictors and supervised statistical learning methods. While our models performed well 

internally and externally, further external validation of enriched models is needed.

Graphical Abstract

Lay Summary

We aimed to construct a prediction tool for doctors to estimate when children with chronic kidney 

disease (CKD) might require kidney replacement therapy (KRT). Using statistical (machine) 

learning methods, we analyzed 172 common clinical variables from 890 children with CKD 

in North America as predictors of time to KRT to identify the best model. The optimal 

model included type of CKD, eGFR, proteinuria, blood pressure, anemia, albumin, chloride, 

and bicarbonate; additional models were constructed to accommodate incomplete data. The tool 

performed well in testing and the simplest model was externally validated in a European pediatric 

CKD cohort. By integrating two complementary statistical learning methods with the rich CKiD 

database, we developed a powerful predictive tool that is adaptive to scenarios with incomplete 

data. We further designed a corresponding online calculator that is simple to use and provides 

valid predictions to guide clinical planning and treatment for pediatric CKD patients.
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Introduction

Chronic kidney disease (CKD) in children precedes end stage kidney disease (ESKD)1,2, 

and disease severity and rate of progression are heterogeneous and based on many factors3,4. 

Identifying clinical profiles associated with varying rates of CKD progression and predicting 

time to kidney replacement therapy (KRT), defined as dialysis or kidney transplant, is 

clinically useful for stratifying patient risk, as well as for preparatory efforts by clinicians, 

patients and their families. Decades of research in children and adults demonstrated that 
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underlying CKD etiology, glomerular filtration rate (GFR) levels at early stages of disease, 

and proteinuria are strong predictors of progression to ESKD3–8, and these variables were 

used to construct previously proposed pediatric risk prediction models3,4 using data from the 

Chronic Kidney Disease in Children (CKiD) study.

We recently demonstrated weak calibration of the adult Kidney Failure Risk Equation 

(KFRE) when applied to children with CKD which highlighted the need for improved 

pediatric-specific calculators9. In 2015, we presented a multivariable model to estimate 

times to first occurrence of KRT or a 50% decline in GFR in children with CKD3. Inclusion 

of the latter event can weaken inference because it is a surrogate endpoint of disease 

progression rather than a clinical endpoint. While surrogate endpoints like GFR decline can 

be useful in randomized clinical trials10, the clinical endpoint of KRT alone is superior. 

In addition, this model required complete data for 5 or 9 predictors for valid prediction 

which may not always be clinically available. In 2017, we proposed a simpler model4 

based on a larger dataset combining CKiD and European Study Consortium for Chronic 

Kidney Disorders Affecting Pediatric Patients (ESCAPE) cohorts11. This equation used only 

underlying CKD etiology (hereafter, referred to as “diagnosis”), estimated GFR (eGFR), and 

proteinuria but was limited because the prediction was a composite of the surrogate endpoint 

of 50% eGFR decline or KRT and it did not incorporate BP, a well-recognized risk factor for 

disease progression.

The availability of new equations to estimate GFR12, updated pediatric blood pressure (BP) 

guidelines13, more data within CKiD focused on KRT as a clinical endpoint2 and powerful 

machine learning methods14,15 presented a timely opportunity to enhance KRT-specific risk 

prediction for children with CKD under treatment by pediatric nephrologists. For improved 

clinical use, a new proposed model should provide valid estimates even if some predictors 

are missing or not available and be conveniently accessible online.

The purpose of this analysis was to construct and validate a suite of predictive models for 

time to KRT for children with CKD based on commonly available clinical data, statistical 

learning methods, and parametric survival models. Statistical learning methods were used 

to assess commonly measured candidate predictors and to specify equations to address 

clinical instances of incomplete data. Lastly, we developed a web-based tool to interpret 

these complex equations for clinical applications.

Methods

Study population

Initiated in 2005, the CKiD study is a longitudinal cohort of children with CKD and 

eGFR <90/ml/min|1.73m2 at entry from 56 clinical sites in the United States and Canada. 

Participants contributed data at annual study visits, including biomarkers of CKD severity, 

cardiovascular and metabolic health, questionnaires for general health, medical history, and 

sociodemographic characteristics. All participants and families provided informed consent/

assent, and the study protocols were approved by local institutional review boards. A 

complete description of the study design has been previously published.16
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Time scale and outcome

The time origin for this analysis was the second study visit (i.e., Visit 2) in order to evaluate 

and identify longitudinal predictors of KRT incidence (i.e. risk factor changes over the 

first study year). For this analysis, 890 of 1098 participants contributed the first two study 

visits prior to KRT with complete data and were included for analysis (exclusions: 146 

had no follow-up data; 47 missed Visit 2 (time origin); 15 initiated KRT prior to time 

origin; see Supplementary Figure S1). The primary outcome was the time to first occurrence 

of KRT. Date of dialysis or transplant was extracted from medical records, or participant/

family-reported with confirmation. Participants who were event-free at the last available 

study visit were considered censored. Administrative censoring was performed at 10 years 

due to limited data availability.

Predictors

Supplementary Table S1 presents all candidate predictors evaluated for the prediction model. 

These included sociodemographic (sex, age, maternal education, household income, family 

history of kidney disease), CKD severity (U25 eGFR, urine protein:creatinine ratio [UPCR], 

years with CKD, anemia, BP stage based on 2017 American Academy of Pediatrics 

[AAP] guidelines13), birth history (prematurity, low birth weight, small for gestational age), 

laboratory markers (metabolic, blood and lipid panels), and medication use (antihypertensive 

therapy, alkali therapy, growth hormone, among many others). For time-varying variables, 

we also investigated change over approximately 1 year from Visit 1 to Visit 2 (i.e., divided 

by the duration in years for annualized change) for continuous variables and for binary 

variables (i.e., diagnoses, therapy use), the four different possible responses between two 

visits (no/no; no/yes; yes/no; yes/yes).

CKD diagnosis type (glomerular or non-glomerular), U25 eGFR12, and UPCR were 

considered essential variables a priori for the simplest “elementary” model2–4. A full list 

of diagnoses is presented in Supplementary Table S2. All serum and urine biomarkers were 

measured centrally (University of Rochester, PI: GJ Schwartz), except for bicarbonate which 

was measured locally.

Statistical methods

Prediction model development process—Briefly, the development of the clinical 

KRT prediction models comprised three steps, followed by a cross-validation step. The first 

step was to develop an elementary model using the most fundamental established predictors 

of KRT: eGFR, UPCR and diagnosis. Various functional forms of these variables were tested 

in a parametric survival model. The second step was to identify the best additional candidate 

predictors out of 172 selected CKiD variables using a random survival forest (RSF). The 

third step brought the first two together, exploring an enriched set of models based on adding 

the important variables identified from the RSF to the elementary model. Lastly, the entire 

three-step process was validated using 10-fold cross-validation.

Parametric survival models—Elementary and enriched parametric survival models used 

the generalized gamma (GG) family and maximum likelihood methods to estimate predicted 

time to KRT17. The GG distribution is defined by 3 parameters: location (β; linked to the 
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median), scale (σ; linked to the interquartile ratio) and shape (κ; linked to the positions of 

the first and third quartiles relative to the median18), and is denoted as GG(β, σ, κ). All 

predictors were allowed to modify the location parameter; type of CKD diagnosis (described 

below) was allowed to additionally modify the scale and shape. These models were used to 

estimate the time at which the 10th, 25th and 50th percentiles for a given profile are expected 

to experience KRT.

Functional form of CKD diagnosis, eGFR, and UPCR for development of the 
elementary prediction model—To develop the elementary model, we first investigated 

classification of diagnoses. We previously reported distinct risk functions for those with 

glomerular non-hemolytic uremic syndrome (HUS) diagnoses, HUS diagnoses, and non-

glomerular diagnoses2. Since we did not have sufficient data for HUS-specific prediction 

(n=48), we fit two GG models with HUS combined with glomerular diagnoses and then 

non-glomerular diagnoses. This approach determined which diagnostic group those with 

HUS resembled in terms of time to KRT. The Akaike’s Information Criterion (AIC) values 

were 1490.287 and 1479.916, respectively, indicating that HUS disease should be grouped 

together with non-glomerular diagnoses.

To flexibly model eGFR and UPCR as continuous variables (natural log-transformed) and 

overcome limitations associated with broad groupings of GFR and UPCR by category for 

predictive modeling, we investigated three continuous functional forms of each variable 

(linear, natural cubic spline, and linear spline, with a single knot at 45 ml/min|1.73m2 

for eGFR or 0.5 mg/mgCr for UPCR), along with interactions of diagnosis with eGFR 

and/or UPCR. This analysis compared 36 models (=32 functional forms × 22 interaction 

possibilities); the model with the lowest AIC was selected as the elementary model, 

enabling prediction with the minimum number of variables and serving as the foundation for 

subsequent enriched models incorporating more predictors.

Random survival forest to identify candidate predictors—To broadly evaluate a 

pool of variables for enhancement of the elementary model, we used RSF, a supervised 

statistical learning method designed to classify outcomes (with censoring) using regression 

trees19 (randomForestSRC package in R). In brief, RSF is a bootstrapped regression tree 

method to identify variables most closely associated with progression to KRT as candidate 

predictors, including potentially identifying predictors not previously known or suspected 

to be important. Two key metrics assessed the value of each predictor: variable importance 

(VIMP), which evaluates how much classification error would be introduced if the predictor 

were unavailable; and minimal depth of the maximal subtree, which evaluates how early in 

the branching process a variable is generally selected. We used 1000 trees in each forest and 

the number of variables explored per node was 172 , or 14 variables.

Development of enriched models—To build upon the elementary model which 

included diagnosis, eGFR, and UPCR as predictors, we a priori decided to include blood 

pressure (categorized as a binary variable defined as normal vs. elevated/Stage 1/Stage 

2 according to AAP guidelines13) in all enriched models as a modifier of the location 

parameter, since it was previously identified as a key clinical variable associated with 
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CKD progression20–22. Beyond these four variables, we investigated 9 additional candidate 

predictors (modifying the location parameter) using best subset selection, a supervised 

statistical learning method that evaluates all possible combinations of predictors to identify 

sets of variables that yield the lowest AIC (a measure of training error and goodness-of-

fit)15. A total of 512 (= 29) models were evaluated including the null (elementary + BP) 

model in this procedure. The model with the lowest AIC in the best subset analysis was 

selected for use as the fully enriched model.

Evaluation of models—For internal model validation, we also calculated optimism-

corrected c-statistic for discrimination23 and the Greenwood-Nam-D’Agostino (GND) 

goodness-of-fit test24,25 for calibration comparing 2-year and 5-year risk of KRT (with at 

least 5 events per bin25 and the χ2 critical value has n bins −1 degrees of freedom). The 

GND null hypothesis is that the observed risk equals the predicted risk; lower values of 

the test statistic indicate improved calibration. These metrics were compared across models 

from elementary to fully enriched in which we expected validation measures to improve 

with additional predictors. We also compared model fit for nested models relative to the 

elementary model and enriched model using likelihood ratio tests (LRTs).

Cross-validation and external validation—We conducted 10-fold cross-validation of 

the entire model-building process26,27. In this procedure, 10 random samples comprising 

90% of the data were used to develop the elementary and enriched model with the 

concatenation of the remaining 10% per fold used to evaluate model fit. In the model 

development stage of the cross-validation, we executed the same three-step process 

described above so the results from the functional forms of elementary model predictors, the 

RSF, and best subset selection were allowed to vary. For the concatenation of the excluded 

data, standardized residual times from the model were compared to the standard exponential 

distribution to evaluate over-fitting (full details in Supplement)2 and calibration curves with 

slope (based on a regression without an intercept) using the GND method. Significance 

testing was not included because cross-validation sets are not independent.

External validation of the elementary model used data from the ESCAPE cohort which 

was part of Furth et al.4 To account for regional differences in KRT initiation28,29, the 

outcome of KRT or eGFR<20ml/min|1.73m2 was used (which is about the GFR at which 

KRT is initiated in this North American population). We assessed standardized residual 

times, calculated Harrell’s c-statistic and performed the GND test (full description in the 

Supplement) estimated the calibration slope (based on a regression without an intercept). 

Statistical significance was assessed at p<0.05.

All analyses and graphs were conducted in R 3.6.3 (R Core Team, Vienna, Austria).

Results

Cohort description

Table 1 describes the demographic and clinical characteristics of the cohort at the time 

origin, approximately 1 year after the baseline visit. In this sample, the median age was 11.4 

years [interquartile range (IQR): 6.7, 15.3] years, 63% were boys, and 21% were of self- or 
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parentalreported Black race. Only 48 participants (5%) had a diagnosis of HUS, and 21% 

had glomerular, non-HUS diagnoses; the remainder had non-glomerular diagnoses (74%). 

The median eGFR at the time origin was 50.4 ml/min|1.73m2 [IQR: 35.0, 64.6] and the 

median UPCR was 0.32 mg/mgCr [IQR: 0.13, 1.00]. There was substantial heterogeneity in 

change of these biomarkers in the year between study entry and the time origin: the median 

change per year was 1.3% decline in eGFR and 1.3% increase in UPCR, but the IQR for 

eGFR was −10.3% to +7.8% per year, and was −32.6% to +51.4% per year for UPCR. The 

median duration of follow-up was 5.2 [IQR: 2.2, 7.9] years and 29% initiated KRT (56% 

dialysis and 44% kidney transplant). The cumulative incidence function of KRT is presented 

in Supplementary Figure S2.

Development of the elementary parametric survival model for prediction

Supplementary Table S3 presents the AIC for the parametric models investigating the 

functional forms of diagnosis, eGFR, and UPCR. The best model included eGFR with a 

linear spline at 45 ml/min|1.73m2 with an interaction with diagnosis, UPCR with a linear 

spline at 0.5 mg/mgCr, and diagnosis modifying the location parameter, as well as diagnosis 

modifying both the scale and shape parameters (AIC= 1476.477). This elementary model 

represents the fewest variables required to predict time to KRT and was substantially lower 

than the null model with no covariates (AIC= 2021.164).

Random survival forest and development of enriched models

Figure 1 depicts the most important variables by VIMP and minimal depth of the 

maximal subtree from the RSF analysis; variables towards the top and right are stronger 

predictors. The results identified eGFR and UPCR as the most important predictors of 

KRT, affirming our prior decision to build the elementary model around these variables. 

The next set of important variables included annual change in UPCR, albumin, phosphate, 

potassium, and chloride. The third set of important variables included annual change 

in eGFR, bicarbonate, calcium, hematocrit, red blood cell count, anemia, and initiation 

of erythropoietin stimulating agent (ESA). These were conceptually grouped as markers 

of CKD progression (change in eGFR and proteinuria over the past year), markers of 

CKD comorbidities: anemia (since hematocrit, erythrocyte count, present anemia, persistent 

anemia, and ESA use may be summarized by a single diagnosis); hypoalbuminemia 

(serum albumin), and metabolic derangement (bicarbonate, chloride, phosphate, potassium, 

calcium); for a total of 9 additional variables. Supplementary Table S4 presents the full 

rankings of the top variables.

Best subset selection was used to evaluate which combination of these 9 additional candidate 

variables yielded the best predictive model by AIC. Supplementary Figure S3 presents AIC 

values for the 512 (= 29) models evaluated. The elementary model was the base model 

(AIC= 1476.477); adding BP as a binary variable (i.e., normal vs. elevated, Stage 1 or 

Stage 2 hypertension) yielded an AIC of 1471.702. Substantial improvements in minimum 

AIC were observed as models included up to 5 additional variables, while models with 

combinations of 6 or more additional variables yielded higher (worse) AIC than the best 

model with 5 additional variables. This enriched model included annual change in eGFR, 
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anemia, albumin, chloride and bicarbonate in addition to eGFR, UPCR, diagnosis, and BP 

stage.

Table 2 presents the coefficients for the GG model parameters and model fit statistics 

and calibration for the elementary model, the enriched model, and four partially enriched 

models, for circumstances in which data may be unavailable. The evaluation of each model 

was the test error quantified by AIC and this decreased with the inclusion of additional 

variables. Enriched models had significantly better fit relative to the elementary model by 

LRT; the fully enriched model had significantly better fit than less enriched models, with 

the exception of Partially Enriched Model 4 (p= 0.080). There was improved discrimination 

in the enriched models (c-statistic= 0.868 for the elementary model to 0.880 for Partially 

Enriched Model 4 and the enriched model). The GND test statistic for 2-year risk decreased 

from 2.201 (elementary) to 1.526 (Partially Enriched Model 4) and for 5-year risk decreased 

from 4.123 (elementary) to 2.643 (enriched) and there were no significant differences 

between predicted and observed risk. The integration of these models into a unified adaptive 

tool is presented as a decision tree in Figure 2, describing logic based on available data that 

leads to the model with the lowest AIC.

Cross-validation and external validation results

Figure 3 presents results from the cross-validation of the fully enriched model. Figure 

3a presents the calibration plot for bins of predicted 5-year estimated risk which was 

very close to the observed risk (i.e., 1- KM(t)) and the c-statistic for the cross-validation 

sample was 0.868. The calibration slope was 1.019 (slope for perfect agreement= 1) and 

was very close to the average calibration slopes over the 10-fold calibration (1.017). The 

survival function of expected standardized residual times closely aligned with the standard 

exponential distribution (Figure 3b). Cross-validation of the elementary model was similar 

in terms of calibration, discrimination (c-statistic= 0.861) and standardized residual times.

To externally validate the elementary model using European ESCAPE data (descriptive 

statistics in Supplementary Table S5 and cumulative incidence in Supplementary Figure 

S4), the GND test for 5-year risk did not demonstrate significant differences between 

the predicted risk and observed risk (χ4
2 = 6.926; p= 0.140), the calibration slope was 

0.996 (95%CI: 0.903, 1.088, p= 0.90), and the c-statistic was 0.854 (95%CI: 0.835, 

0.873) indicating strong discrimination. The standardized residual times were congruent 

with the standard exponential distribution. Full results and further interpretation are in 

Supplementary Figure S5.

Enhancement of risk prediction by model enrichment

Figure 4 presents a visual comparison of the Elementary Model (based on diagnosis, GFR 

and UPCR) and Partially Enriched Model 1 (Elementary Model with current BP stage and 

GFR from the previous year) of predicted median times to KRT to demonstrate the enhanced 

risk prediction provided by blood pressure and longitudinal GFR as additional predictors. 

This hypothetical profile is a patient with non-glomerular or HUS diagnosis, current GFR= 

30 ml/min|1.73m2 and UPCR= 2mg/mgCr corresponding to the elementary model variables: 

the median predicted time to KRT (y-axis) is 3.3 years (black horizontal line); this estimate 
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does not incorporate GFR from 1 year ago (x-axis) and is thus invariant to it. The light and 

dark grey lines describe the predicted median time to KRT using Partially Enriched Model 

1 across a range of GFR values from 1 year ago, if the patient had normal BP or elevated 

BP/hypertension , respectively. The elementary model prediction was in between the lines 

contrasting BP categories, which is reasonable when BP data is not available. The predicted 

time to KRT was longer for normal BP compared to elevated BP/hypertension reflecting the 

well-established relationship of accelerated CKD progression with higher BP. In addition, 

for Partially Enriched Model 1, the time to KRT was shorter when the annual GFR decline 

was faster. This reflects higher risk associated with accelerated progression over the course 

of 1 year.

Online tool for clinical use

Because individual predictions are not easily derived without specialized software, we 

developed an accompanying accessible online clinical tool to estimate times to KRT for 

individual patients. This tool requires input of U25 eGFR, UPCR, and diagnosis but 

additional optional variables can be entered (if available) for improved estimates. The best 

model (i.e., lowest AIC) based on available data computes the estimated time to KRT 

following the logic described in Figure 2. Estimated times are provided for the 10th, 25th 

and 50th percentiles in years rounded to the nearest month, with an upper limit of 10 years. 

The output provides the time by which the pth percentile of children with the same profile 

will experience KRT. For instance, if a patient has a U25 eGFR of 60, UPCR of 0.8 mg/

mgCr, glomerular diagnosis, hypertension, anemia, albumin level of 4.5, chloride level of 

105, CO2 level of 22, and experiences a 10% annual decline in eGFR, the output would 

state that 10% of children with this profile are expected to initiate KRT within 2.5 years, 

25% within 5.1 years, and 50% within 10.1 years (>10 years). R code of all models for 

this hypothetical profile is provided (Supplementary Appendix 1). The online calculator is 

available at: https://ckid-gfrcalculator.shinyapps.io/CKiD_KRT_Risk/.

Discussion

In this paper, we propose a predictive tool to estimate time to KRT initiation for children 

with CKD. This model is based on the largest observational cohort of children with CKD in 

North America and predicts the clinically meaningful outcome of KRT initiation rather than 

a composite outcome including KRT and accelerated disease progression. The predictors 

evaluated are commonly measured clinical variables, and multiple models allow for an 

adaptive prediction of risk depending on availability of patient data. Cross-validation of the 

model-building process and the external validation in a European cohort of the elementary 

model demonstrated strong discrimination and calibration and gives confidence that this 

suite of six unified models (presented in a corresponding online tool) will help with risk 

stratification as well as for dialysis and transplant planning for children.

The model development capitalized on statistical learning methods: the RSF agnostically 

evaluated candidate predictors and best subset selection evaluated all possible combinations 

to specify the optimal models. Crucially, our models were also informed by clinical insight, 

previous literature, and the culmination of numerous CKiD-specific risk factor studies. It 
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was somewhat surprising that BP was not identified as a key predictor in the RSF analysis, 

but because of its established importance in CKD progression11,20–22,30 it was included 

in the enriched models. BP is routinely assessed as part of clinic care so its inclusion is 

broadly applicable, although we encourage careful measurement for valid estimates of BP 

percentiles and classification of BP13.

Major strengths of the study included a population with a wide spectrum of kidney 

function at study entry and centrally measured biomarkers as predictors. Furthermore, CKiD 

collected data from 2005 and there are now enough observed KRT events to develop a 

robust predictive model for a clinical endpoint, which overcomes previous limitations of 

models based on a weaker surrogate endpoint of GFR decline. In addition, this analysis 

used the latest U25 GFR estimating equations12 and updated AAP BP guidelines13. The 

longitudinal data collection offered an opportunity to explore the predictive value of annual 

measurements (specifically, between the first and second visit). The rich longitudinal data 

was a major feature of this analysis, although only annual GFR change was identified in the 

RSF and included in two enriched models.

Using an adaptive approach based on six models overcame a limitation of previous 

risk calculators requiring complete data3. Even if data are limited, clinicians should be 

confident of a good prediction of KRT risk using only elementary predictors. Additional 

data will enhance risk prediction, as evidenced by improvement in training error rate 

for partially and fully enriched models. The custom-designed online calculator translates 

multiple underlying GG models into a simple user interface. This adaptive tool provides 

an interpretable output of estimated median times to KRT initiation: in the absence of 

other data, a reasonable estimate for individual patients is the 50th (average) percentile. To 

provide estimated variability, we report the 10th and 25th percentiles. For many profiles, 

there could be substantial variability in the percentiles and we note that the risk prediction is 

not deterministic.

While we dealt with independent variables from a purely predictive framework, rather 

than etiologic or causal perspective, many predictors are established etiologic risk factors 

for pediatric CKD progression, including diagnosis7, eGFR3,4, proteinuria6,31,32, blood 

pressure20–22,30,33, anemia34–36 and bicarbonate37. Chloride, which was included in two 

partially enriched models and the fully enriched model, represents a metabolic derangement 

that is likely linked to bicarbonate, but future work should investigate chloride as a risk 

factor for CKD progression.

We caution about interpreting the Table 2 coefficients directly. In general, negative values 

indicate shorter time to KRT (increased risk) and positive values denote longer time to KRT 

(protective). However, when looking at the GFR coefficient, the intertwined relationship 

between GFR and diagnosis (which also modifies the scale and shape parameters) 

obfuscates direct interpretation of any one individual coefficient. In addition to interaction, 

linear splines for GFR and proteinuria further complicate coefficient interpretation. We 

provide R code for readers wishing to explore these models further (Supplementary 

Appendix 1), but we emphasize that the goal was to develop the best prediction tool that 
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offered the lowest test error quantified by AIC. While it may be useful to inspect the 

coefficients for face validity, the primary unit of evaluation was the prediction model itself.

There are important limitations to this analysis. We were not able to estimate diagnosis-

specific risk beyond two broad diagnostic categories, nor could we incorporate response 

to specific therapies, for example treatments for glomerular diseases like FSGS, lupus 

nephritis or atypical HUS. Second, while CKiD offers broad representation of a pediatric 

CKD population, extreme patient characteristics (compared to Table 1) may yield invalid 

estimates. Third, we were only able to externally validate the elementary models but 

cross-validation methods demonstrated sound calibration, discrimination and model fitting 

for the enriched models. Other potentially important predictors, such as ambulatory blood 

pressure22,30 and uric acid38, did not have complete data for analysis; though these may also 

not be as readily available clinically.

In summary, using data from the CKiD study, we developed a predictive tool for time 

to KRT to aid clinical decision making and KRT planning in children and adolescents 

with CKD. We presented a series of equations to predict time to KRT based on routinely 

measured data in an adaptive way and designed a website for applied use by clinicians 

managing children with kidney diseases. While this predictive model was internally 

validated using cross-validation methods and with an external validation of the elementary 

model, future studies are necessary for additional external validation of the enriched models 

in other pediatric CKD cohorts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Results from random survival forest plotting metrics of predictive value (minimum depth of 

maximal subtree versus variable importance) to identify candidate predictors for parametric 

survival models. Minimum depth of maximal subtree indicates how early in the branching 

process a predictor is selected, on average; smaller values correspond to earlier selection 

and thus greater predictive value (y-axis is descending). Importance measures how much 

prediction error is introduced by randomly permuting the values of a predictor within the 

dataset; larger values indicate more such error, attributing greater importance to the correct 

ordering of the values. Groups of variables are denoted and variables listed were included in 

best subset selection methods of parametric survival models.
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Figure 2. 
Decision tree describing adaptive approach for model based on availability of data for use 

in the online calculator. Akaike’s Information Criterion (AIC) statistics for each model are 

presented and correspond to improved penalized model fit (i.e., lower corresponds to lower 

error).
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Figure 3. 
Model validation assessment based on 10-fold cross-validation of model building process 

for the Enriched Model including calibration plot depicting observed risk on predicted risk 

from at 5-year risk of kidney replacement therapy (3a) and survival function of standardized 

residual times for participants (3b). The calibration plot demonstrates close correspondence 

between observed and predicted 5-year risk and the survival function aligns closely with the 

expected standard exponential for strong model fit.
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Figure 4. 
Comparison of Elementary Model with Partially Enriched Model 1 including blood pressure 

and longitudinal GFR. The example profile is a child with non-glomerular or HUS 

diagnosis, a current GFR of 30 ml/min|1.73m2 and a urine protein:creatinine ratio (UPCR) 

of 2 mg/mgCr. The y-axis represents the median predicted time to KRT and the x-axis 

represents GFR from one year ago with the dashed line indicating no change. The three lines 

represent different models: the elementary model (light grey) is constant across previous 

GFR, and the partially enriched model 1 (dark grey) is depicted by blood pressure status 

(normal or elevated).
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Table 1.

Clinical and demographic characteristics of 890 CKiD participants at the time origin (i.e., second study visit). 

Longitudinal data of progression was characterized by the annualized percent change in GFR and proteinuria 

between the first and second study visit. Median [IQR] or n (%).

Characteristics Median [IQR] or n (%) n= 890

Demographics and clinical history

Age, years 11.4 [6.7, 15.3]

Male sex 557 (63%)

Self- or parental reported Black race 187 (21%)

Hispanic ethnicity 121 (14%)

Abnormal birth historya 261 (30%)

Kidney disease characteristics, severity and progression

 CKD diagnosis

  Glomerular, hemolytic uremic syndrome (HUS) 48 (5%)

  Glomerular, non-HUS 186 (21%)

  Non-glomerular, non-CAKUT 159 (18%)

  Non-glomerular, CAKUT 497 (56%)

 Age at disease onset

  Present at birth 605 (69%)

  <1 year old 41 (5%)

  1–5 years old 73 (8%)

  6–10 years old 73 (8%)

  ≥11 years old 89 (10%)

 Years with CKD 7.9 [4.5, 12.4]

 U25eGFR, ml/min|1.73m2 50.4 [35.0, 64.6]

 1-year annualized % change in U25eGFR −1.3% [−10.3%, +7.8%]

 Urine protein/creatinine (UPCR), mg/mgCr 0.32 [0.13, 1.00]

 1-year annualized % change in UPCR + 1.3% [−32.6%, +51.4%]

 Elevated blood pressure, Stage 1 or 2 hypertension 331 (37%)

Laboratory measures

 Serum albumin, g/dL 4.4 [4.2, 4.6]

 Serum potassium, mmol/L 4.4 [4.1, 4.7]

 Serum phosphate, mg/dL 4.6 [4.0, 5.0]

 Serum chloride, mmol/L 104 [102, 107]

 Serum bicarbonate, mmol/L 23 [21, 25]

 Total cholesterol, mg/dL 169 [147, 191]

 Anemia 228 (27%)

Follow-up and outcomes

 Duration of follow-up, years 5.2 [2.2, 7.9]
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Characteristics Median [IQR] or n (%) n= 890

 Total duration of follow-up, years 4596.8

 Any kidney replacement therapy 261 (29%)

  Dialysis 147 (17%)

  Transplant 114 (13%)

a
Defined as premature birth or small for gestational age or low birthweight (birthweight < 2500g)
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