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Mounting evidence supports the connection between coronavirus disease 2019 (COVID-19) 

due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
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and neurological manifestations, such as cognitive dysfunction (“brain fog”), headache, 

and neuropsychiatric disorders [2, 6]. Autopsy studies on limited available cases have 

reported a spectrum of neuropathological changes in COVID-19 patients, in particular 

neuroinflammation and microvascular injury [3, 5, 11, 14]. However, there have been many 

caveats to these findings, including difficulty in determining whether these pathologies are 

a direct consequence of cerebral viral infection, or arise due to systemic complications of 

COVID-19 such as coagulopathy or ischemia [8, 14], or are associated with comorbidities 

such as neurodegenerative disease (NDD) [7]. Indeed, data thus far provide little evidence 

of SARS-CoV-2 in the brain in association with systemic infection [12, 14]. In particular, 

a recent comprehensive autopsy study of 44 patients died of COVID-19 observed limited 

evidence of inflammation or direct viral cytopathology in the central nervous system [12]. 

Accordingly, we performed post-mortem neuropathological studies to identify cerebral 

SARS-CoV-2 in cases with or without NDD and determine whether there was evidence 

of direct vascular injury in the form of blood-brain barrier (BBB) disruption.

Consecutive research brain donations fulfilling the requirements for each study group were 

identified within the archive holdings of the multi-center Collaborative Neuropathology 

Network Characterizing Outcomes from TBI (CONNECT-TBI) [10] as either: 1) COVID-19 

infection (COVID+, identified as patients with a known history of COVID-19 infection 

and/or confirmed at autopsy with positive SARS-CoV-2 qualitative PCR nasopharyngeal/

oropharyngeal swabs) and history of a known NDD clinical diagnosis (COVID+ NDD+, 

n=10); 2) COVID+ with no NDD (COVID+ NDD-, n=2); 3) no COVID-19 (COVID-, 

identified as patients died prior to October 2019) with NDD (COVID- NDD+, n=6), and 4) 

controls of similar age with no COVID and no NDD (COVID- NDD-, n=5) (Supplemental 

Table 1, Supplemental Table 2, and Supplemental Materials and Methods, online resource). 

A standard set of tissue sections was selected for microscopic evaluation, including cingulate 

gyrus, hippocampus, thalamus, and medulla. Using hybridization chain reaction (HCR) 

RNA fluorescence in situ hybridization (RNA-FISH), no SARS-CoV-2 viral RNA was 

detected in any brain region examined across all study groups, including those who were 

COVID+ (Fig. 1). These findings are consistent with recent RT-PCR and RNA-FISH 

based studies which, similarly, report no detectable SARS-CoV-2 RNA in brain tissue 

homogenates or brain sections [3, 5]. While these and our observations might suggest there 

is no penetration of SARS-CoV-2 into the brain, we still do not rule out the neuroinvasive 

capacity of SARS-CoV-2 due to the possibility of viral RNA replication clearance at the 

time of death [16].

The consistent observation of brain microvascular injury in patients with COVID-19 [5] 

led us to suspect that blood-brain barrier (BBB) disruption might contribute to cerebral 

consequences of infection. To investigate this, we used immunohistochemistry to examine 

and evaluate potential extravasation of the serum protein fibrinogen, which does not 

normally cross the BBB [1]. Immunostaining of fibrinogen in each case was assessed and 

semi-quantitatively scored in line with published experience [1]. In all cases with COVID-19 

infection (COVID+ NDD+ and COVID+ NDD-), we observed evidence of widespread BBB 

disruption. Specifically, in all regions examined, widespread perivascular and parenchymal 

fibrinogen staining was present (Fig. 2 and Supplemental Table 1, online resource). In 
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comparison, in non-infected control cases (COVID-NDD-) there was typically no or at most 

minimal fibrinogen staining.

Notably, disruption of BBB is a neuropathological feature in many NDDs (Supplemental 

Fig. 1) and even normal aging [13]. To address this, our study included both aged 

individuals and those with comorbid NDDs as controls when assessing COVID-19 related 

neuropathological changes. Nevertheless, the extensive fibrinogen extravasation we observed 

in context of SARS-CoV-2 infection was in excess of that observed in normal aging, with 

widespread and substantial fibrinogen extravasation in both brain gray and white matter in 

our youngest COVID+, aged just 41 years (Fig. 2b). While we observed limited evidence 

of microthrombi within some small vessels, most of the fibrinogen staining was present 

in regions without apparent microthrombi. Taken together, our findings suggest a plausible 

association between COVID-19 infection and BBB disruption. Nonetheless, our relatively 

small number of cases warrants a more extensive examination to confirm these findings.

It is unclear why the BBB might be compromised by COVID-19 infection, but 

neuroinflammation may play a role in promoting this disruption, as BBB disruption 

and neuroinflammation are commonly observed as comorbidities [5]. With regard to a 

potential specific mechanism, a previous study suggests that the spike protein attached 

to brain endothelial cells could further exacerbate the BBB disruption by triggering a 

pro-inflammatory response [15]. Nevertheless, despite a disrupted BBB, there is no direct 

evidence of SARS-CoV-2 entry into the brain in infected humans [3, 5], including in 

our cases. This is in contrast with experimental data showing that the spike protein of 

SARS-CoV-2 could be absorbed across the BBB in a mouse model [9], possibly through 

adsorptive-mediated transcytosis of the spike protein involving angiotensin-converting 

enzyme 2 (ACE2). In addition, treatment with anti-spike or anti-ACE2 antibodies has been 

shown to reduce the entry of SARS-CoV-2 into the BBB [4].

Overall, we find autopsy evidence of widespread BBB disruption in the brains of individuals 

with history of COVID-19 infection, but no detectable virus in tissue sections. Conceivably, 

BBB dysfunction may contribute to the neurological impairment during disease progression 

and the long-lasting cerebral symptoms in survivors. Nevertheless, we must acknowledge 

limitations in case numbers and clinical information in this series. More comprehensive 

studies of COVID-19 related BBB disruption, including neuropathology and advanced 

imaging studies, are required to explore the contribution of this pathology to immediate 

and late neurological consequences of COVID-19 outcomes.
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Fig. 1. No SARS-CoV-2 viral RNA detectable in the brain tissue.
(a) The presence of SARS-CoV-2 viral RNA in the lung tissue, potentially associated with 

epithelial cell infection, was revealed through hybridization with probes of SARS-CoV-2 

Orf1a (coupled with amplifier labeling Alexa Fluor 647 to Orf1a 1–12 and Alexa Fluor 

546 to Orf1a 13–23). Amplifier labeling Alexa Fluor 488 green was used as the negative 

control marking tissue autofluorescence to minimize false positivity. (b) In contrast, no 

SARS-CoV-2 viral RNA was detected in the brain tissue. Scale bars 4 mm for the top low 

power images, 5 μm for the below high power images.
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Fig. 2. Representative fibrinogen staining in COVID+ cases and in controls.
(a) Moderate (left, score of 2) to extensive (right, score of 3) fibrinogen immunoreactivity 

in cingulate gyrus was observed in COVID+ NDD+ cases. (b) Similarly, widespread, 

multifocal extensive fibrinogen immunoreactivity (score of 3) was identified in two 

COVID+ NDD- cases. (c) In contrast, absent (left, score of 0) to sparse (right, score of 

1) fibrinogen immunoreactivity was observed in COVID- NDD-cases. (d) Substantial and 

widespread microscopic fibrinogen immunoreactivity in cingulate cortex (upper panel) and 

corpus callosal white matter (lower panel) was identified in COVID+ NDD+ cases. (e) In 

COVID+ NDD- cases, multifocal fibrinogen immunoreactivity was also evident in cingulate 

cortical layers (upper panel) and associated white matter (lower panel). H&E staining 

(inset) shows clumps of red blood cells in certain small vessels associated with fibrinogen 

extravasation. (f) Only limited fibrinogen immunoreactivity was observed in COVID- NDD- 

cases. Scale bars a-c 5 mm, d-f 50 μm.

Song et al. Page 7

Acta Neuropathol. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	References
	Fig. 1.
	Fig. 2.

