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Abstract

Background: Nearly 1 million Americans are living with multiple sclerosis (MS) and 30–50% 

will experience memory dysfunction. It remains unclear whether this memory dysfunction is due 

to overall white matter lesion burden or damage to specific neuroanatomical structures. Here we 

test if MS memory dysfunction is associated with white matter lesions to a specific brain circuit.
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Methods: We performed a cross-sectional analysis of standard structural images and verbal 

memory scores as assessed by immediate recall trials from 431 patients with MS (mean age 49.2 

years, 71.9% female) enrolled at a large, academic referral center. White matter lesion locations 

from each patient were mapped using a validated algorithm. First, we tested for associations 

between memory dysfunction and total MS lesion volume. Second, we tested for associations 

between memory dysfunction and lesion intersection with an a priori memory circuit derived 

from stroke lesions. Third, we performed mediation analyses to determine which variable was 

most associated with memory dysfunction. Finally, we performed a data-driven analysis to derive 

de-novo brain circuits for MS memory dysfunction using both functional (n=1000) and structural 

(n=178) connectomes.

Results: Both total lesion volume (r=0.31, p<0.001) and lesion damage to our a priori memory 

circuit (r=0.34, p<0.001) were associated with memory dysfunction. However, lesion damage to 

the memory circuit fully mediated the association of lesion volume with memory performance. 

Our data-driven analysis identified multiple connections associated with memory dysfunction, 

including peaks in the hippocampus (T=6.05, family-wise error p=0.000008), parahippocampus, 

fornix and cingulate. Finally, the overall topography of our data-driven MS memory circuit 

matched our a priori stroke-derived memory circuit.

Conclusions: Lesion locations associated with memory dysfunction in MS map onto a 

specific brain circuit centered on the hippocampus. Lesion damage to this circuit fully mediated 

associations between lesion volume and memory. A circuit-based approach to mapping MS 

symptoms based on lesions visible on standard structural imaging may prove useful for 

localization and prognosis of higher order deficits in MS.
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Introduction

Nearly 1 million Americans are living with multiple sclerosis (MS) and around 30–50% 

will experience memory dysfunction.[1–4] Focal central nervous system lesions, primarily 

in the white matter, are the hallmark diagnostic marker of MS[5] and the main imaging 

surrogate used to monitor disease progression and assess treatment responsiveness.[6] 

White matter lesions (WML) are easily visualized on standard brain MRI and correspond 

with areas of demyelination and axonal injury.[4] Accumulation of WMLs is associated 

with both worsening cognition in general and worsening memory;[7–15] however, this 

finding is not specific to memory as total lesion burden has also been associated with 

worsening fatigue,[16] depression[17] and gait dysfunction.[18, 19] Efforts to relate lesion 

locations visible on standard MRI to memory have produced conflicting results.[7–15, 

20–26] Previous studies have associated memory dysfunction with lesions in the temporal 

lobe[25, 26], hippocampus[13], and at least 10 other brain regions not typically associated 

with memory[7, 10–12, 15, 20–24] leading to questions as to whether there is any 

neuroanatomical relationship between MS lesion location and memory dysfunction.[10, 27] 

This is in contrast to other brain diseases where symptoms associated with a lesion location 
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often align with the known function of that region[28, 29] leaving a gap in understanding the 

relationship between MS lesion locations and memory dysfunction.

One advance that has helped with symptom localization in ischemic stroke is the ability 

to test whether different lesions causing a common symptom map to a connected brain 

circuit rather than a single brain region.[30] This technique, termed lesion network mapping 

(LNM), uses an atlas of normative brain connectivity to identify brain regions connected 

to each lesion location.[30–38] Connections associated with a specific symptom can then 

be identified. In a recent study[36], stroke lesions causing memory dysfunction occurred 

in many different brain locations, but they were all part of a functionally connected brain 

circuit centered on the hippocampus.[36] This lesion-based memory circuit aligned with 

neuroanatomical models of memory[39], including the classic circuit of Papez. Intersection 

of lesion locations with this memory circuit also correlated with memory dysfunction in 

independent lesion datasets.[36] As such, this stroke-based memory circuit provides an a 

priori template that may be useful for investigating MS memory dysfunction.

Despite the success of lesion network mapping to map the connectivity of stroke-associated 

lesions, there are many differences between stroke lesions and MS lesions, and the network 

mapping approach that has worked well for stroke may not work well in MS. Unlike stroke 

lesions, MS lesions are more distributed, multi-focal, progressive, and can be clinically 

silent.[40] Though MS is radiologically defined primarily by white matter lesions,[5] 

cognitive deficits may come from more subtle grey matter injury rather than the white matter 

lesions.[1, 41] Finally, it’s unclear whether fMRI signal fluctuations at white matter lesion 

locations have sufficient signal for network mapping [42]. However, there are also reasons 

to think that a network mapping approach could be successful in MS, as it has worked well 

in other conditions with progressive, multi-focal lesions such as tuberous sclerosis [35] and 

worked well in a recent lesion network mapping study of MS depression.[43]

Materials and Methods

Patient population and testing

Patient data for the current study is a retrospective, cross-sectional analysis of data from 

“Systems Biology Study of Clinical, Radiological, and Molecular Markers in Subjects 

with Multiple Sclerosis” (SysteMS). The SysteMS study is a broader, prospective, clinical, 

MRI and biomarker study of patients with MS designed to identify factors associated with 

MS disease severity and progression conducted at Brigham and Women’s Hospital from 

September 2015-December 2019.[44] All patients within SysteMS were included the present 

study who: 1) met McDonald criteria for MS or clinically isolated syndrome (CIS), 2) 

completed memory testing and 3) structural MRI brain suitable for lesion segmentation. 

We included the earliest imaging scan and verbal memory assessment. We also completed 

subgroup analyses limited to: 1) patients imaged on the same scanner type (Siemens Skyra) 

within 90 days of cognitive testing and 2) patients with relapsing-remitting MS (RRMS). 

We employed the California Verbal Learning Test-II (CVLT-II) total immediate recall trials 

1–5 as a marker of verbal memory since immediate recall trials are recommended to 

detect verbal memory dysfunction in MS [45–47] and initial learning/acquisition seem most 
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impacted.[48] Memory scores were inverted for the analysis so a higher score reflects worse 

performance.

Structural neuroimaging

Structural neuroimaging was performed primarily on Siemens Skyra 3T MRI scanner 

(98.8% of images); however, three images were on Siemens Verio and two on Siemens 

Avanto scanners. (See Supplementary Table 1 for further specifications.)

The automated segmentation pipeline has been described in detail previously[49] and, in 

brief, employs structural brain MRI to parcellate T2 hyperintense WMLs employing a dual-

sensitivity approach for lesion segmentation to reduce false positives. (See Supplementary 

Table 1.) This lesion segmentation technique also incorporates a region growing approach 

sensitive to local contrasts. Brain lesion masks were then warped into normalized space 

using bspline registration to MNI152 2mm atlas[50] resulting in a binary mask of MS WML 

locations for each patient for subsequent analyses. (Figure 1A and Supplementary Figure 1.)

Lesion volume & memory network damage score

First, we tested for a correlation between verbal memory score and total WML volume 

calculated as the number of voxels in each patient’s MS lesion mask. Then, we tested for 

correlation between verbal memory score and MS lesion damage to an a priori memory 

circuit derived from stroke lesions[36] taken from our recent paper on stroke-induced 

memory dysfunction;[36] the memory circuit consists of positive T values that reflect 

the strength of functional connectivity between each brain voxel to our circuit hub in the 

subiculum. For each MS patient, we computed a “network damage score” by summing 

all voxels in our memory circuit intersecting the patient’s MS lesion mask.[36, 51, 52] 

These values were then used in a Pearson correlation with the individual memory scores, 

controlling for lesion volume, controlling for Symbol Digit Modality Testing (SDMT), 

controlling for lesion volume and brain parenchymal fraction, and controlling for lesion 

volume, age, sex and disease duration. (Figure 1B.) Brain parenchymal fraction is a measure 

of normalized whole brain volume and a well-established estimate of brain atrophy in 

MS.[53] We control for brain parenchymal fraction to help validate the association of 

lesion connectivity with memory dysfunction rather than brain atrophy[54] and we control 

for SDMT to correct, to some degree, for the role of processing speed,[55] attention 

and working memory processes[56] in verbal immediate recall trials and strengthen the 

specificity to verbal memory. We use the term ‘network damage’ to refer to the voxelwise 

intersection between MS lesion locations and our a priori memory network. This is 

consistent with the use of this term in prior lesion network mapping studies by our group 

and others. [36, 51, 52] However, it is important to note that our MS lesion locations are 

predominantly based on T2 hyperintensities, which may miss other MS lesion types (e.g. 

T1 lesions) or damage to brain networks than might be seen with more advanced imaging 

modalities (e.g. DTI).

Because we found independent relationships between memory and both overall lesion 

volume and lesion network damage, we performed a mediation analysis to test whether 

one variable mediated the effect of another variable. First, we tested whether network 
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damage mediated the relationship between lesion volume and memory dysfunction 

employing PROCESS[57] software. To ensure validity, the inverse analysis was also 

performed, assessing for mediation of the relationship between network damage and 

memory performance by lesion volume. A 95% confidence interval and 5000 bootstrap 

samples for confidence intervals not crossing zero were used to determine significance.

We also compared the memory network damage score in patients with memory scores 1 

standard deviation above the mean to those with memory scores 1 standard deviation below 

the mean from our sample by two-sample t-test.[58] To ensure the validity of this analysis 

we also repeated the analysis and grouped by 1 standard deviation below T score norms (40 

or less) versus 1 standard deviation above T score norms (60 or more).

To ensure lesion damage to the memory circuit was specific to memory we also tested for 

association between damage to the memory circuit and other symptoms associated with 

increasing lesion burden including depression and fatigue (Neuro-QoL, collected on 287/431 

participants) and gait (timed 25-foot walk).

Data-driven functional LNM—LNM with each patient’s MS lesion mask was performed 

using the same methods previously described for stroke lesions.[30–33, 35, 36] In brief, 

resting state functional connectivity between each patient’s lesion mask and all other brain 

voxels was computed using a large functional connectome database from healthy young 

individuals (n=1000, mean age 21.3, 42.7% male, 2×2×2mm)[59]. The strategy of Fox et 

al.[60] was employed to process resting state fMRI data and the processed connectome data 

and code are publicly available.[59] Functional connectivity results were combined across 

the 1000 subjects using a random effects analysis, producing a single-subject functional 

connectivity map for each patient’s WML location. Unthresholded lesion network maps 

were then used for voxel-wise permutation testing in FSL PALM[61] to identify connections 

associated with verbal memory score. (Figure 1C.) A family-wise error (FWE) threshold 

p<0.05 was used for significance. Local maxima were identified by thresholding (FWE 

p<0.005), identifying peak clusters of >20 voxels, with 4 local maxima. We then used spatial 

correlation to assess the topographic similarity between the MS-derived memory circuit and 

our stroke-derived memory circuit. We tested the significance of the correlation between 

the two networks with a permutation testing approach.[37] The spatial correlation between 

the stroke-derived memory network and the MS-derived memory network was repeatedly 

computed after randomly re-assigning each patient’s memory score with a different patient’s 

neuroimaging. We performed 10,000 permutations and set our significance threshold so the 

true spatial correlation should be more similar to the stroke network than the randomly 

re-assigned score in more than 95% of permutations which would match p<0.05.

Data-driven structural LNM—We also performed LNM using a structural connectome. 

Structural connectivity maps were produced using BCBtoolkit “Disconnectome”[62] to 

calculate disconnection probability of lesions to white matter tracts from normalized 

diffusion tensor imaging (n=178, mean age 29.5, 38.8% male, 1×1×1mm resolution) from 

the Human Connectome Project.[63] We utilized diffusion-weighted imaging from controls, 

identified white matter fibers passing through each lesion location, then transformed these 

fiber maps into binarized visitation maps in MNI152 space and summed these maps across 
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subjects.[62] This process results in single-subject structural connectivity maps for each 

patient’s WMLs and reflects the probability of structural disconnection between lesion 

locations and each brain voxel.[62] Unthresholded structural disconnection maps were then 

used for voxel-wise permutation based testing in FSL PALM[64] to identify connections 

associated with verbal memory score (FWE p<0.05 threshold for statistical significance). 

(Figure 1D.) Local maxima in the resulting map were identified by thresholding the map 

(FWE p<0.0005), identifying peak clusters of >160 voxels, allowing 4 local maxima. 

Different parameters were used for the different connectomes due to inherent differences 

in the data types, including spatial resolution and the method to derive individual maps.

Results

We included a total of 431 patients with MS (mean age 49.2 years, 71.9% female) from the 

SysteMS study. (See Table 1.)

MS lesion damage to memory circuit

Consistent with the existing literature, we found an association between total lesion volume 

and memory scores (r=0.31, p<0.001). Using an a priori memory circuit derived from focal 

strokes[36], we found that MS lesion damage to this circuit was correlated with memory 

scores (r=0.34, p<0.001, Figure 2). This relationship was still significant when controlling 

for lesion volume (r=0.153, p=0.001), controlling for lesion volume and brain parenchymal 

fraction (r=0.133, p=0.006), controlling for lesion volume and SDMT (r=0.113, p=0.019) 

and after controlling for lesion volume, age, sex and disease duration (r=0.128, p=0.008). 

The results were also similar when controlling for lesion volume and employing normalized 

CVLT T scores (r=0.127, p=0.008), limiting the analysis to subjects imaged on a Skyra 

scanner within 90 days of cognitive testing (n=419, r=0.158, p=0.001) or just those with 

RRMS (n=349, r=0.108, p=0.044).

Mediation analysis found that damage to our a priori memory circuit fully mediated 

(bootstrap CI 0.0011 to 0.0039), the relationship between lesion volume and memory scores 

(p=0.85, bootstrap CI −0.0018 to 0.0015). Conversely, when the mediation analysis was 

flipped, we found no mediation of the relationship between circuit damage and memory 

scores (p=0.0014, bootstrap CI 0.0002 to 0.0007) by lesion volume (bootstrap CI −0.0003 to 

0.0002).

There was also a significant difference in MS lesion damage to the a priori stroke-derived 

memory circuit by comparing groups of patients with low (n=64) versus high (n=70) 

memory performance (t=4.7, p=0.000007) (Figure 2) based on standard deviation cutoffs 

from within our large MS cohort. Results were similar when grouped into low (n=46) versus 

high (n=173) memory performance (t=4.58, p=0.000028) using CVLT T score population 

based norms for memory dysfunction.

Lesion damage to the memory circuit was not associated with other symptoms that often 

worsen with increasing lesion burden such as worsening gait (r=0.06, p=0.26), depression 

(r=0.06, p=0.32) or fatigue (r=−0.01, p=0.93).
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Data-driven functional LNM

In our data driven analysis, we found that functional connectivity between MS lesion 

locations and a distributed brain circuit was significantly associated with memory 

dysfunction (FWE p<0.05) (Figure 3A). This circuit included peaks in the bilateral 

hippocampi, fornix, precuneus, cingulate and retrosplenial cortex (Supplementary Table 2).

The topography of this data-driven MS memory circuit was similar after controlling for 

age, sex, disease duration and lesion volume (Supplementary Figure 2A). Results were also 

similar after controlling for lesion volume, brain parenchyma fraction, MS subtype, SDMT 

score and when the analysis was limited to patients with relapsing-remitting MS (n=349) 

or to patients imaged on a Skyra scanner within 90 days of cognitive testing (n=419) 

(Supplementary Figure 2B-G)

The topography of the data-driven MS memory circuit matched the topography of our 

previously published memory circuit derived from focal strokes (Figure 3B, spatial r=0.52, 

p<0.05 after permutation testing). The results were similar when including only subjects 

imaged on a Skyra scanner within 90 days of cognitive testing (n=419, spatial r=0.51, 

p=0.045) or limiting the analysis to patients with a diagnosis of RRMS (n=349, r=0.58, 

p=0.021).

Data-driven structural LNM

Intersection between MS lesion locations and a distributed set of white matter 

connections was also significantly associated with memory dysfunction, with peaks in the 

parahippocampus, hippocampus and cingulum. (Figure 4A and Supplementary Table 2.)

The topography of this circuit was similar after controlling for age, sex, disease duration 

and lesion volume, brain parenchymal fraction, MS type, SDMT score or when limiting 

the analysis to patients with relapsing-remitting MS (n=349) or to patients imaged on a 

Skyra scanner within 90 days of cognitive testing (n=419) (Supplementary Figure 3.) We 

cannot directly compare circuit topography using spatial correlation, as the two results 

were derived from different connectomes and datatypes; however, the topography of our 

data-driven structural MS memory circuit was qualitatively similar to our a priori memory 

circuit derived from stroke lesions using the functional connectome with shared anatomical 

peaks. (Figure 4B and Supplementary Table 2.)

Discussion

In this study we show that memory dysfunction in multiple sclerosis is associated with 

lesions to a specific human brain circuit. Lesion damage to this brain circuit fully mediated 

the often-reported relationship between total lesion burden and memory dysfunction. Data-

driven circuits for MS memory dysfunction could be derived using either functional or 

structural connectivity and align with the neuroanatomy of memory dysfunction due to 

stroke.

Increasing WML burden has been consistently associated with worsening memory 

dysfunction in MS[10–14] but lesion burden is also associated with other common MS 
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symptoms including fatigue,[16] depression[17] and gait dysfunction.[18, 19] Attempts 

to understand MS memory dysfunction by lesion location have been heterogenous, with 

different studies implicating different brain regions.[11, 13, 20–22, 25, 27] By applying a 

circuit-based localization approach our results help reconcile these heterogenous findings by 

showing that MS memory dysfunction is associated with damage to a distributed memory 

circuit, not just individual brain regions.[65]

Our work also lends potential insight into why increasing MS lesion burden is associated 

with memory dysfunction, suggesting that this may occur because more lesions are more 

likely to hit the memory circuit. Once memory circuit damage was accounted for in 

the analysis, total lesion burden was no longer an independent determinant of memory 

dysfunction. This circuit-based localization approach could be employed to other MS 

symptoms commonly associated with lesion burden such as fatigue or depression to clarify 

symptom localization.

Connecting stroke and MS

An important finding is that MS and ischemic stroke lesions causing a common symptom 

(memory dysfunction) map to a common brain circuit. We showed this convergence in 

multiple ways, including MS lesion damage to our stroke-derived memory circuit and spatial 

correlation in the topography of the two circuits. Similarities between the MS and stroke-

based memory circuits includes peaks in the bilateral hippocampi,[66] parahippocampi, 

fornix, posterior cingulate/retrosplenial cortices and precuneus.[67] These regions form 

the key nodes of Papez circuit and the posterior default mode network which have been 

repeatedly implicated in episodic memory.[67] This convergence between MS lesions and 

ischemic stroke lesions may seem surprising given the many differences in pathophysiology, 

lesion etiology, and lesion location. However, this result is consistent with a growing body of 

evidence suggesting that a specific brain circuit is associated with the same symptom across 

different pathologies.[30, 33]

It is worth noting that the MS and stroke-based memory circuits were not identical. The peak 

of the stroke-based memory circuit was in the gray matter of the subiculum while the peak 

of the MS-based memory circuit was at the junction of the fornix and the white matter of 

the hippocampus. MS memory dysfunction related to WMLs may show greater disruption 

of white matter connections at the fornix-hippocampal junction[68]. In addition, the MS 

derived memory network was more limited to the posterior hippocampus with relatively 

little involvement of the more anterior hippocampus. There are several possible reasons 

for this difference including our reliance on verbal immediate recall trials which may bias 

towards memory registration and retrieval of very recent memories,[69] the reliance on 

repeated lists[70] or may be due to the distinct memory dysfunction in MS where acquisition 

is more impacted.[48]

Functional and structural connectomes

A strength of the present study is the inclusion of both a functional and structural 

connectome to investigate MS memory dysfunction. To date, the majority of LNM studies 

have utilized either a functional or structural connectome, with few studies including both 
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and ongoing debate as to which might be better and in which situations.[71] Our positive 

results using both functional and structural connectomes, is consistent with increasing 

evidence that white matter has BOLD signal fluctuations which can be used to map 

relevant neuroanatomy.[42, 72] Future work is needed to determine how best to combine 

the complementary information obtained from LNM using a functional versus structural 

connectome.

Limitations

A key limitation of our work is that the analysis was limited to analyzing the connectivity 

of T2-FLAIR hyperintense white matter lesions which was motivated by our interest in 

validating the technique in standard of care clinical scans. While our results add important 

new information regarding the role of the connectivity of white matter lesions in MS 

memory dysfunction, it is surely not the whole picture. We didn’t evaluate T1 hypointense 

lesions, which may be more destructive and have different relative contributions to memory 

dysfunction[24] or gray matter lesions which are challenging to define on standard MRI 

imaging. Recent work has also highlighted the association between cerebral gray matter 

atrophy, especially of the thalamus and hippocampus, and memory dysfunction[3], but we 

focused on WMLs to particularly address whether specific lesion locations disrupt a memory 

circuit. The exact relationship between white matter injury and gray matter atrophy in MS 

remains uncertain[20] with emerging evidence that in early disease stages, white matter 

damage is a contributor to gray matter atrophy [73] highlighting the need for better tools 

to predict symptom specific deficits based on WML location. Different types of white 

matter injury, gray matter lesions and atrophy, as well as inflammation in general, likely all 

contribute in some way to memory dysfunction in MS.[1] Future work is needed to assess 

the relative contribution of the connectivity of gray matter and white matter lesions and 

atrophy patterns.

Another limitation is our cognitive testing which was limited to verbal memory with 

reliance on the CVLT immediate recall trials. While initial learning/acquisition trials[48] 

are considered a valid metric for assessing memory in MS[45–47] this is by no means a 

complete method for assessing episodic memory. In MS, memory encoding is significantly 

impacted[48] and immediate recall trials have shown sensitivity for memory dysfunction.

[47] For this reason we relied on immediate recall trials as a marker of memory. Brief 

MS batteries recommend employing the immediate recall trials of the CVLT as a marker 

of verbal memory[45] partly due to the prominence of these encoding difficulties. Word 

learning on immediate recall assesses verbal memory function as demonstrated by the fact 

that the first five immediate recall trials on CVLT has a high degree of interdependence with 

the other parts of the CVLT.[45, 46] Many clinical neuropsychologists and cognitive studies 

employ immediate recall/learning over successive trials as a marker of episodic memory[74, 

75] while other studies have questioned this.[76] We have controlled for SDMT scores to 

help to increase the specificity of our findings for verbal memory (rather than other elements 

of learning such as processing speed, attention and working memory) but our reliance on 

immediate recall is indeed a limitation of our results. Future work is planned that will 

directly test both immediate and delayed verbal and visual memory paradigms applying 

lesion network mapping.
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We also used of a normalized connectome from healthy controls rather than one constructed 

from people with MS. However, previous LNM studies have shown little benefit from 

using a disease specific versus normative control connectome[31, 35, 38] and prior work 

using resting-state fMRI in MS from the patients themselves to explore memory has led to 

conflicting results.[77, 78] Of note, most patients in our study did not have frank memory 

impairment by standardized scores which in some ways strengthens our results.[9] By 

demonstrating that memory function in MS associates with the connectivity of WMLs even 

in people with normal range functioning on cognitive tests, we add important information to 

the role of WMLs across the range of cognitive function.

In summary, our results demonstrate that memory dysfunction in multiple sclerosis 

associates with the functional and structural connectivity of WMLs and anatomically aligns 

with the well-defined neuroanatomy of episodic memory.
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connectivity maps is available at: https://storage.googleapis.com/bcblabweb/index.html and 

the structural connectivity data is available at: https://www.humanconnectome.org/study/

hcp-young-adult/document/1200-subjects-data-release. Statistical analyses were performed 

in MatLab (version 2019b) or SPSS (version 27.0.1.0). MS lesion data is available for 

review upon reasonable request.
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Figure 1: Methodology to test if MS memory dysfunction is associated with disruption of 
memory circuits.
A) Structural imaging, lesion segmentation and memory assessment collected on patients 

with MS showing two representative lesion maps from a patient with normal and a patient 

with low memory score. Lesion maps and memory testing are used in subsequent analyses. 

B) Determine if MS lesion damage to the a priori stroke-derived memory circuit associates 

with memory dysfunction. B1. Assess lesion overlap with stroke derived memory circuit and 

then B2. analyze association of MS lesion overlap with stroke derived memory circuit to 

memory scores C) Derive a unique MS memory circuit based on lesion location employing 

a functional connectome. C1. Compute lesion connectivity using normative database of 

resting-state functional connectivity and then C2. perform voxelwise permutation testing 

to determine functional connections significantly associated with verbal memory scores. 

D) Derive a unique MS memory circuit based on lesion location employing a structural 

connectome. D1. Compute lesion connectivity using normative database of structural 

connectivity and then D2. perform voxelwise permutation testing to determine functional 

connections significantly associated with verbal memory scores.
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Figure 2: MS lesion locations associated with memory dysfunction overlap an a priori memory 
circuit.
In purple is the a priori stroke derived memory circuit (Ferguson et. al. 2019) and in red 

are MS lesions grouped by A) lower memory performance and B) normal range memory 

performance. Intersection between MS lesion locations and our a priori memory circuit was 

correlated with memory performance (p<0.001). Inset) Box plot of MS lesion damage to 

the a priori stroke-derived memory circuit comparing patients with lower memory scores (1 

standard deviation below mean of the group) versus patients with higher memory scores (1 

standard deviation above mean of the group) (t=4.7, p<0.001).
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Figure 3: 
Lesion network mapping of memory dysfunction in multiple sclerosis using a functional 

connectome. A) Functional connections with MS lesion locations significantly associated 

with verbal memory. Voxels displayed are p<0.05 on voxelwise family-wise error correction. 

B) Comparison of the topography of the MS lesion derived functional memory circuit from 

4A (warm colors) to the stroke derived memory circuit from Ferguson et. al. 2019 (purple). 

The high threshold for the stroke-based memory circuit in 4B was chosen to facilitate 

comparison to the MS-based circuit topography.
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Figure 4: 
Lesion network mapping of memory dysfunction in multiple sclerosis using a structural 

connectome. A) Structural connections with MS lesion locations significantly associated 

with verbal memory. Voxels are displayed after voxelwise family-wise error p<0.0005 B) 

Comparison of the topography of the MS lesion derived structural memory circuit from 4A 

(warm colors) to the stroke derived memory circuit from Ferguson et. al. 2019 (purple).
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Table 1.

Patient demographic, disease and cognitive performance data.

MS patients (n=431)

Age, y, mean (range, SD) 49.2 (20–80, 10.7)

Female, n (%) 310 (71.9)

Disease duration, y, mean (range, SD) 17.6 (0.5–60, 10.2)

Multiple sclerosis type

 CIS, n (%) 13 (3.0)

 RRMS, n (%) 349 (81.0)

 SPMS, n (%) 54 (12.5)

 PPMS, n (%) 15 (3.5)

EDSS, mean score (range, SD) 2.4 (0–8.5, 1.8)

Memory performance

 CVLT immediate recall trials 1–5 total (range, SD) 53.9 (18–78, 11.4)

 CVLT immediate recall trials T score (range, SD) 55.7 (12–87, 11.9)

(CVLT = California Verbal Learning Test, EDSS = Expanded Disability Status Scale, CIS = clinically isolated syndrome, RRMS = relapsing-
remitting MS, SPMS = secondary progressive MS, PPMS = primary progressive MS.)
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