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SUMMARY

Chromatin accessibility is integral to the process by which transcription factors (TFs) read 

out cis-regulatory DNA sequences, but it is difficult to differentiate between TFs that drive 

accessibility and those that do not. Deep learning models that learn complex sequence rules 

provide an unprecedented opportunity to dissect this problem. Using zygotic genome activation 

in Drosophila as a model, we analyzed high-resolution TF binding and chromatin accessibility 

data with interpretable deep learning and performed genetic validation experiments. We identify 

a hierarchical relationship between the pioneer TF Zelda and the TFs involved in axis patterning. 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Zelda consistently pioneers chromatin accessibility proportional to motif affinity, whereas 

patterning TFs augment chromatin accessibility in sequence contexts where they mediate enhancer 

activation. We conclude that chromatin accessibility occurs in two tiers: one through pioneering, 

which makes enhancers accessible but not necessarily active, and the second when the correct 

combination of TFs leads to enhancer activation.

In brief

Brennan and Weilert et al. combine experimental and computational genomics, deep learning 

models, and developmental genetics to investigate how transcription factors open chromatin during 

embryogenesis. They identify which DNA sequences predict chromatin accessibility in Drosophila 
and reveal that pioneers and activators modulate accessibility according to distinct mechanisms 

during enhancer activation.

Graphical abstract

INTRODUCTION

Cellular transitions during development are driven by enhancers, cis-regulatory DNA 

sequences that instruct genes to become expressed at the right time and place. Each 

enhancer contains a distinct combination and arrangement of sequence recognition motifs 

for transcription factors (TFs), such that only a specific combination of TFs, present at the 

right time and place in development, can stimulate activation.1,2 How exactly combinations 
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of TFs read out the cis-regulatory code to mediate enhancer activation is a fundamental 

question in biology.

An important layer of the cis-regulatory code is chromatin accessibility.3 Chromatin 

accessibility both informs and is impacted by the binding of TFs and is thus an integral 

part of the process by which enhancers become activated. Before activation, developmental 

enhancers are maintained in a state of intrinsically high nucleosome occupancy, such 

that they are inaccessible to most TFs.4–8 In the first step toward activation, so-called 

“pioneer” TFs make enhancers accessible. Pioneer TFs are typically expressed early during 

cellular transitions and can bind their motifs within nucleosomal DNA.9–11 Once accessible, 

additional TFs may bind to and activate enhancers, leading to the expression of target 

genes. However, TFs frequently cooperate in modulating accessibility,12–16 making it hard 

to differentiate between pioneer TFs and non-pioneer TFs and raising the possibility that any 

TF may function as a pioneer TF.17–19

Distinguishing between motifs of TFs that actively drive chromatin accessibility and those 

that follow it more passively is computationally challenging. A motif may be statistically 

over-represented in accessible regions, but whether it facilitates accessibility or contributes 

to enhancer activation once the region is accessible is not clear. Identifying pioneer TFs 

experimentally is also challenging. In in vitro experiments, pioneer TFs have an affinity for 

nucleosomes and tend to be structurally capable of binding their motif on nucleosomal 

DNA,20–24 but the general rules by which pioneers may read out nucleosomal DNA 

sequences are unknown.

To distinguish pioneer TFs from non-pioneer TFs, one possibility is to model chromatin 

accessibility data in a high-resolution and quantitative fashion while taking motif 

combinations and arrangements into account.19 This approach is very powerful when 

combined with interpretable convolutional neural networks (CNNs), which can learn 

complex DNA sequence rules embedded in the cis-regulatory code de novo.25 In this 

learning paradigm, the CNN learns to predict the experimental data directly from genomic 

sequences and thus learns motifs in their combinatorial contexts. The rules are general since 

the performance is evaluated based on a withheld subset of the data that the model does not 

train on. Once the model accurately predicts these test data, the learned sequence rules are 

extracted from the model using interpretation tools.26

This approach has been successfully used to predict assay for transposase-accessible 

chromatin with sequencing (ATAC-seq) data,27–31 revealing TF motifs predicted to 

contribute to chromatin accessibility in different experimental systems. However, since not 

all TFs and their binding motifs are known under these conditions, it is difficult to evaluate 

whether the discovered motifs belong to known TFs with characterized properties.32 

Likewise, the models can predict synergistic effects between TF motifs,29,30 but the exact 

rules and the underlying mechanisms are not known. This makes it very challenging to 

connect the rules extracted from deep learning models with known biology.

To better leverage this approach, we decided to learn both TF binding data and chromatin 

accessibility data in the early Drosophila embryo, a well-studied model system with a 
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wide range of data from genetics, biochemistry, and imaging experiments. Studying early 

embryogenesis has the advantage that chromatin accessibility is established de novo as the 

zygotic genome is activated, and the first gene expression programs are established along the 

anteroposterior and dorsoventral axes.33–35 Although the emerging heterogeneity of the cells 

could make it more challenging for the CNN to learn the sequence rules from bulk data, it 

is easy to test and validate the learned rules because of the available mutants and detailed 

knowledge of TFs and enhancers.36

The major driver of Drosophila zygotic genome activation is the maternally provided 

zinc-finger TF Zelda.37 Within one hour into development, or by the embryo’s eighth 

nuclear cycle, Zelda binds the majority of its motifs genome-wide, which are highly 

enriched among developmental enhancers.38–40 At these regions, Zelda binding is required 

for nucleosome depletion and chromatin accessibility6,41,42 and facilitates the binding of 

patterning TFs, including the binding of the dorsoventral patterning TFs Dorsal43,44 and 

Twist,45 and the anteroposterior patterning TFs Bicoid46–48 and Caudal.5 Furthermore, in 
vitro experiments suggest that Zelda can bind to nucleosomes.20,49 Taken together, Zelda 

has the characteristics of a pioneer TF.

Although Zelda is well studied, whether it cooperates with other early-acting TFs in the 

embryo to induce chromatin accessibility is not known. GAGA factor (GAF) and CLAMP 

are additional pioneers important for zygotic genome activation, but whether they synergize 

with Zelda is not clear. They regulate largely distinct sets of regions from Zelda and tend 

to be more promoter-specific.50–54 Patterning TFs, on the other hand, strongly overlap in 

binding with Zelda, but it is unknown whether they cooperate with Zelda and can function 

as pioneer TFs.38–40,55,56 Bicoid has been reported to play a pioneering role in a subset of 

regions,57 but the underlying sequence rules have not been characterized. Likewise, whether 

other patterning TFs can increase accessibility is unknown.

To learn DNA sequence rules at the highest possible resolution in the early Drosophila 
embryo, we used ChIP-nexus, a chromatin immunoprecipitation technique that maps 

genome-wide TF binding footprints at base-resolution by virtue of a strand-specific 

exonuclease,58 and employed a CNN called BPNet, which directly predicts these data at 

base-resolution, allowing it to learn precise rules of TF cooperativity in vivo.59 We then 

generated time course chromatin accessibility measurements and applied a modified BPNet 

model, ChromBPNet,29 to predict ATAC-seq data bias-free at base-resolution. This allowed 

us to leverage the same CNN approach for both data types in a system where we could 

validate the learned rules experimentally. We identified a clear directional relationship in 

binding between Zelda and the patterning TFs and found that Zelda and the patterning TFs 

both increase accessibility but through distinct modes. Although Zelda acts as a bona fide 
pioneer TF, even at low-affinity motifs, the patterning TFs increase accessibility through 

transactivation. These results show that chromatin accessibility during zygotic genome 

activation follows complex sequence rules and is driven both by pioneers and transcriptional 

activators in distinct steps.
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RESULTS

Neural networks predict Zelda’s role in helping other TFs bind

To determine the binding and cooperativity of TFs in the early embryo, we performed 

high-quality ChIP-nexus experiments on staged embryos (Figure 1A). We chose the two 

best-known pioneers, Zelda and GAF, the main dorsoventral patterning TFs Dorsal and 

Twist, and the main anteroposterior patterning TFs Bicoid and Caudal. We then trained a 

BPNet model to predict ChIP-nexus data from DNA sequence and interpreted the sequence 

rules as previously described.59 This approach models cis-regulatory sequences in their 

native genomic contexts and learns TF binding in an inherently combinatorial motif space. 

Motifs are learned de novo, and the genomic instances to which they match are defined not 

only by a sequence match but also by a contribution score toward the binding predictions. 

To maximize the accuracy of the model’s learned sequence rules, we optimized the model to 

achieve high prediction accuracy and confirmed the results through cross-validation (Figures 

S2A–S2C).

The discovered motifs included all known motifs for the BPNet-modeled TFs (Figure 1B), 

represented either as a frequency-based position weight matrix (PWM) or as the novel 

contribution weight matrix (CWM), which is the model’s extracted contribution of each base 

for TF binding (motif instances provided in Data S1). As expected, these motifs showed 

sharp ChIP-nexus binding footprints by the corresponding TFs, indicating direct TF-DNA 

interactions (Figure 1C). We manually inspected well-studied enhancers to ensure that the 

ChIP-nexus predictions matched the experimental data and that experimentally validated 

motifs were mapped accurately (Figures 1D and S3). For example, the neuroectodermal sog 
shadow enhancer had the expected motifs for Zelda, Dorsal, Twist, and Bicoid.43,44,60–65 

This enhancer is part of a withheld region set that was never seen by the model during 

training, highlighting how the model correctly predicts TF binding from DNA sequence 

alone (Figure 1D).

We then extracted the rules of TF cooperativity from the model. We first measured 

the average contribution of each motif toward the binding of each TF (Figure 1E). As 

expected, all motifs strongly contributed toward their own TF’s binding, but some motifs 

also contributed to the binding of other TFs, suggesting cooperativity between TFs. Most 

prominently, the Zelda motif is predicted to be important for the binding of all other 

TFs (Figure 1E), including Bicoid, Caudal, Dorsal, and Twist, which have been shown in 

previous genetic experiments to depend on Zelda.5,6,41,43,45,46 Additionally, BPNet predicts 

that Twist binding depends on the Dorsal motif. Dorsal and Twist have previously been 

reported to cooperate,61,66–69 but our result suggests that this cooperativity is directional, 

i.e., the Dorsal motif is more important for Twist binding than the Twist motif is important 

for Dorsal binding. This is also reflected in the experimental ChIP-nexus data, which show 

Twist accumulation over the Dorsal motif but not vice versa (Figure 1C). Interestingly, the 

motif for GAF did not strongly contribute to the binding of TFs other than GAF itself, 

although GAF is known to promote chromatin accessibility.50,53,54,70,71

To internally validate that BPNet learned different rules of cooperativity for Zelda and 

GAF, we used the trained model to predict TF binding when motif pairs are injected 
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into randomized sequences (Figure 1F). For each TF, we measured the in silico binding 

enhancement when the motif is flanked by a Zelda or GAF motif at a given distance (up 

to 400 bp). Consistent with our initial results, injecting a Zelda motif generally boosted the 

binding of all TFs, whereas the GAF motif only had a strong boosting effect on another 

GAF motif (Figure 1F). Notably, all observed cooperativity occurred when the motifs were 

spaced within nucleosome-range distances, consistent with an effect on nucleosomes.

To test whether these rules also apply to the enhancers critical for embryonic patterning, 

we computationally mutated the sequence of TF motifs at the well-known enhancers and 

predicted the effects on TF binding using BPNet (Figures 1G and S3). As expected, 

mutating Zelda motifs consistently had a strong effect on the binding of other TFs, in 

agreement with experimental evidence.5,6,38,43,45,46 In contrast, the effects of mutating 

patterning TF motifs were more enhancer-specific. At the dpp enhancer, mutating Dorsal 

motifs affected Dorsal and Twist binding, as expected (Figure S3A, right). However, at the 

sog shadow enhancer, mutating a Dorsal motif also had an effect on the binding of other 

TFs (Figure 1G). These results suggest more complex rules at some enhancers and raise the 

question of whether chromatin accessibility plays a role in the observed cooperativity.

The sequence rules for chromatin accessibility reveal motif-driven pioneer TFs

To understand the relationship between TF binding and chromatin accessibility, we 

performed ATAC-seq experiments72,73 in a developmental time course of four 30-min 

intervals during the maternal-to-zygotic transition. This allowed us to measure how 

enhancers transition from a naturally closed state within a homogeneous cell population in 

the embryo to a more accessible, primed, or active state during pattern formation.51,74–78 

The first embryo collection (1–1.5 h after egg laying [AEL]) covers the time when 

Zelda binds throughout the genome in the eighth nuclear cycle.39 In later stages, zygotic 

transcription begins, and the patterning TFs become active.35,79,80 In agreement with 

previous studies, we find that genome-wide chromatin accessibility increases over the four 

time points51 (Figure 2A).

Chromatin accessibility is generated by multiple TFs and could differ in different parts of 

the embryo. To precisely learn the cis-regulatory sequence rules underlying these complex 

data, we adapted ChromBPNet, a variation of BPNet that predicts ATAC-seq data at the 

highest resolution.29 Rather than training on whole fragment coverage, the model predicts 

the cut sites made by the Tn5 transposase, which more accurately represent accessibility 

measured by ATAC-seq (Figure 2B). Since Tn5 transposase possesses a strong sequence 

preference in its cut sites,81,82 ChromBPNet first explicitly learns the Tn5 bias rules by 

training on closed genomic regions (i.e., with low counts and non-peak ATAC-seq signals) 

(Figure 2B). In a second training step alongside the now-frozen bias model, an additional 

BPNet model learns the residual sequence rules of the ATAC-seq accessible regions beyond 

the Tn5 bias (Figures S2D and S2E). After the second training step, the bias model is 

removed, and the residual model is interpreted to extract the biologically relevant sequence 

rules that predict chromatin accessibility.

We trained separate ChromBPNet models for each of the ATAC-seq time points, omitting 

regions with annotated promoters to ensure that the sequence rules learned were specific for 
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enhancers and not strongly driven by core promoter motifs. As with BPNet, we computed 

performance metrics, conducted hyperparameter tuning, and trained cross-validation models 

to ensure that model training was successful (Figures S2F–S2H).

To visually inspect ChromBPNet’s predictions, we used the sog shadow enhancer as an 

example (Figure 2C; additional enhancers in Figure S4). The observed cut site coverage 

from the original ATAC-seq data closely matched the combined model’s prediction (Figure 

2C), consistent with the high-performance metrics (Figures S2F–S2H). When using only the 

residual model, the predicted chromatin accessibility was more evenly distributed over the 

entire enhancer, suggesting that the Tn5 cut site bias was successfully removed (Figure 2C).

As with BPNet, we extracted base-resolution contribution scores for all sequences and 

summarized the de novo-learned motifs. The motifs for Zelda and GAF were robustly 

rediscovered at all time points, consistent with them being pioneer TFs that open chromatin 

(Figure S2I). The motifs for the patterning TFs were, however, not as clear-cut. We 

discovered Caudal-like, Dorsal-like, and Twist-like motifs, which deviated from those 

learned by the TF binding model but nevertheless showed the expected ChIP-nexus binding 

footprints, confirming their identity (Figure S2I). It did not return the Bicoid motif despite 

previous evidence that Bicoid plays a role in chromatin accessibility.57 This points to 

limitations either in the sequence rules learned by the model or in our ability to extract 

the rules. For example, multiple TFs often compete for binding to similar motifs, including 

Bicoid,83,84 which could make it difficult to correctly discover and aggregate motifs for 

individual TFs.

To evaluate how well the sequence rules were learned, we first inspected the contribution 

scores at known enhancers. Although Zelda motifs consistently stood out with high scores, 

the motifs for the patterning TFs showed a much smaller contribution and only in some 

instances (Figures 2C and S4, top). This nevertheless confirmed that the motifs were learned 

and suggested that the Bicoid motif may also weakly contribute to chromatin accessibility 

in context-specific instances (Figures S2K and S4). In silico mutagenesis confirmed these 

results (Figures 2D and S4, bottom). Mutating a Zelda motif in the sog shadow enhancer 

strongly reduced the predicted accessibility for all time points, but mutating a Dorsal 

motif also weakly reduced the predicted accessibility (Figure 2D), especially at the later 

time points when patterning TFs bind most strongly.5,79 Likewise, mutating the Bicoid 

motif weakly decreased chromatin accessibility at the Kr enhancer (Figure S4H). Taken 

together, the interpretations suggest that patterning TFs contribute to accessibility in a 

manner consistent with the TF binding model and previous knowledge.

We next systematically compared the rules of binding with those of accessibility. We 

selected regions that are accessible and contain TF motifs mapped by the binding model, 

which ensures that the motifs are of high quality and unambiguously mapped to the TF 

through a direct sequence-to-binding relationship. We confirmed that the Zelda and GAF 

motif instances had a high contribution to accessibility at all time points, whereas those of 

the patterning TFs had a much smaller contribution (Figure 2E). Similar effect sizes were 

predicted when each TF motif was injected into randomized sequences (Figure S2J). Using 
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these mapped motif instances, we then plotted the predicted contribution to accessibility as a 

function of the predicted binding contribution (Figure 2F).

Strikingly, we observed a strong correlation for both Zelda and GAF motifs between 

accessibility and binding contributions (Pearson correlations for Zelda 0.59–0.64), despite 

being learned by different models on different types of data (Figure 2F). When we derive 

a simple score for motif strength (rank percentile of the PWM match scores), we see 

that with increasing motif strength, binding and accessibility contributions also increase. 

This three-way association suggests that the accessibility generated by Zelda and GAF is 

motif-driven and not strongly reliant on the surrounding enhancer context, which agrees with 

the conventional model that pioneer TFs come first and mediate the initial step in enhancer 

activation.

In contrast, the same plots for the patterning TFs show weaker correlations between TF 

binding and chromatin accessibility (Figure 2F). Here, stronger measures of motif strength 

are associated with stronger binding contributions but not accessibility contributions. One 

exception is Dorsal, where the binding and accessibility contributions correlate more highly 

at the last time point (with a Pearson correlation value of 0.32) and show an association with 

motif strength. Taken together, our binding and accessibility models suggest an operational 

definition of pioneer TFs in which pioneer TFs open chromatin in a motif-driven fashion, 

whereas other TFs may also play a role in increasing chromatin accessibility but do so in a 

weaker and more context-dependent manner.

Zelda’s effect on opening chromatin depends on motif affinity

The correlation between motif strength, TF binding, and chromatin accessibility suggests 

that pioneer TFs read out motif affinities. This is surprising since the thermodynamic 

differences between high and low-affinity sequences are very small at approximately −3 

kcal/mol,85 and pioneering is expected to occur through TF binding on nucleosomes, where 

sequence recognition is structurally more constrained than on naked DNA.10,20,21,23,24,86–88 

Furthermore, this suggests that ChromBPNet learned relative motif affinities quite 

accurately despite being trained on data with complex sequence rules. This would be 

consistent with previous studies showing that relative motif affinities can be extracted from 

CNN models.89–91

To validate that our models learned motif affinities for Zelda, we first took all bound 

Zelda motifs mapped by BPNet and plotted their sequences ordered by contribution to 

Zelda binding (Figure 3A). The motif that contributed most to binding was the canonical 

CAGGTAG motif, whereas low-affinity binding motifs included motifs where the last 

base was not a G (CAGGTAH) or the first base was a T (TAGGTAG). These results are 

consistent with the Zelda motif affinities determined previously by gel shift studies and 

mutant data37–39,92,93 and correlate with the observed chromatin accessibility across these 

motifs (Figure S5A).

To more comprehensively test how well relative Zelda motif affinities were learned, 

we performed in vitro protein-binding microarray (PBM) experiments94,95 for Zelda 

(Figure 3B). PBM-extracted affinities have been shown to correlate with Kd affinity 
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measurements.91,96–98 We calculated the median Z score of the binding signal and its 

corresponding median E score for all relevant Zelda motif 7-mers, as well as a negative 

control sequence (TATCGAT) used previously in gel shift experiments.38 Strikingly, the 

simple BPNet-derived motif strength scores used earlier closely matched the PBM data 

(Figures 3B and S5B). For example, both the PBM and BPNet-derived motif strength scores 

show on average a 3-fold difference in affinity between the CAGGTAG and TAGGTAG 

sequences.

Relative motif affinities for genomic motif instances can also be extracted from models 

without deriving their motif representations first. This is done by predicting TF binding on 

individual motif instances stripped from the surrounding genomic context.89–91 To test this 

approach, we “marginalized” each Zelda motif by injecting it into randomized sequences 

and measuring the effects on binding and chromatin accessibility. The log-transformed 

measurements were very similar to our previous BPNet-derived motif strength scores and 

closely matched with the PBM-binding Z scores (Figure 3B). These results collectively 

confirm that the BPNet and ChromBPNet models have accurately learned relative Zelda-

binding affinities.

We next performed experiments on Zelda-depleted embryos6 to test whether the pioneering 

effect of Zelda depends on motif affinity. We confirmed that the zld− embryos had no 

detectable Zelda by immunostaining (Figure 3C) and performed ATAC-seq time course 

experiments. Consistent with previous observations,6,41,57 Zelda-bound regions showed a 

global decrease in accessibility in zld− embryos compared with wild type, whereas regions 

without a Zelda motif remained unchanged (Figures 3D and S5C).

We then asked whether individual low-affinity Zelda motifs by themselves influence 

chromatin accessibility. We selected regions with either a single high-affinity (CAGGTAG) 

or a single low-affinity (TAGGTAG) Zelda motif and no other BPNet-mapped motif nearby. 

At regions with the high-affinity Zelda motif, a clear reduction in chromatin accessibility 

was observed in zld− embryos (Figure 3E, left). At regions with the low-affinity TAGGTAG 

motifs, we observed the same effect but weaker (Figure 3E, middle). To quantify this 

difference, we selected the genomic regions with the 250 highest- and lowest-affinity Zelda 

motifs. To minimize confounding effects, these regions had no other mapped motifs nearby 

and did not overlap promoters. As expected, the regions with the high-affinity Zelda motifs 

had more Zelda binding in the ChIP-nexus data than those with the low-affinity motifs 

(Figure S5D). Using these regions, we found that the low-affinity Zelda motifs had on 

average a 5-fold weaker effect on chromatin accessibility than the high-affinity Zld motifs, 

although control regions with a single GAF motif were unchanged (Figures 3F and S5E). 

These differences were strikingly similar to those predicted by ChromBPNet upon mutating 

the Zelda motifs (Figure 3G). These results demonstrate that low-affinity Zelda motifs can 

promote accessibility, but to a lesser extent than high-affinity CAGGTAG motifs.

Since low-affinity Zelda motifs have a smaller effect on chromatin accessibility, we expected 

them to also have a weaker effect on promoting the binding of patterning TFs. To test this, 

we performed in silico motif injections and measured the average predicted binding of each 

TF with and without the presence of different Zelda motif variants. For all TFs, the resulting 
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fold-change binding enhancement was indeed higher for the high-affinity CAGGTAG motif 

than for the low-affinity TAGGTAG motif, but the latter still had a measurable effect 

(Figure 3H). Likewise, ChromBPNet predicted that both high- and low-affinity Zelda motifs 

boosted the effect of patterning TF motifs on chromatin accessibility, but to a different 

extent (Figures S5G and S5H). These effects corroborate the role of Zelda’s motif affinity in 

opening chromatin and helping patterning TFs bind.

Patterning TFs contribute to chromatin accessibility

Thus far, the results suggest that patterning TFs do not have the same pioneering capabilities 

as Zelda but could increase chromatin accessibility in some contexts, perhaps depending 

on which other motifs are present within that region. To systematically investigate motif 

combinations, we used a “motif island” approach in which genomic regions are grouped 

according to their motif combinations (Figure 4A). An island is initially defined as a 200-bp 

region centered on a TF-bound motif, but if there is an overlap with other islands, the islands 

get merged and classified by their motif combinations (islands provided in Data S2). Most of 

these multi-motif islands are between 200 and 300 bp wide and thus are the size of typical 

enhancers99 (Table S1).

To better characterize the enhancer states for different motif combinations, we used staged 

embryos and performed micrococcal nuclease digestion with sequencing (MNase-seq) and 

ChIP-seq experiments for the histone modifications H3K27ac and H3K4me1. We then 

analyzed the properties of each island combination and calculated their overlap with a 

curated list of enhancers that have been identified as being active in the early embryo74 

(Figure 4B; individual examples in Figure 4C).

The results are not only consistent with Zelda’s role in pioneering but also reveal the 

role of patterning TFs. Islands without a Zelda motif typically have very low accessibility 

and histone modifications, coupled with higher nucleosome occupancy. Islands that only 

have Zelda motifs and no other motif (Figure 4B, red box) show an increase in chromatin 

accessibility over time, with an effect proportional to the number of Zelda motifs (Figure 

S5F). Nevertheless, these regions overall show a modest effect on chromatin accessibility, 

have low levels of histone modifications, and are not enriched for active enhancers.74 

By contrast, the highest levels of enhancer accessibility and activity are found at islands 

that also have motifs for patterning TFs. Islands containing motifs for both Zelda and 

patterning TFs show much higher levels of accessibility, nucleosome depletion, and histone 

modifications than Zelda-only islands. Taken together, these results suggest that it is the 

combination of Zelda motifs and patterning TF motifs that generates the highest levels of 

accessibility, which would explain why it has been challenging to causally link individual 

TFs such as Bicoid to increased levels of chromatin accessibility beyond those generated by 

pioneer TFs.57

To detect the effect of patterning TFs on chromatin accessibility experimentally, we used 

our zld− ATAC-seq data. Upon Zelda depletion, the patterning TFs are still expressed38,43,46 

but show strongly reduced binding to the genome.6,46 If the patterning TFs contribute to 

chromatin accessibility, then their effect should also be lost in zld− embryos, in addition 

to the loss of accessibility mediated by Zelda. Indeed, we found that depleting Zelda had 
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a stronger effect on regions with motifs for both Zelda and patterning TFs compared with 

those with only Zelda motifs (Figure 4D). For example, islands with Zelda, Dorsal, and 

Twist motifs had a much more pronounced fold-change loss in accessibility than Zelda-only 

islands. These experimental results support the model in which high levels of chromatin 

accessibility are established in a hierarchical manner by a combination of motifs for the 

pioneer Zelda and downstream patterning TFs.

Patterning TFs contribute to accessibility when mediating activation

Our results suggest that patterning TFs increase chromatin accessibility when their motifs 

are present in specific combinations that include Zelda motifs. Enhancers with such motif 

combinations also tend to be active enhancers, raising the question of whether enhancer 

activity and accessibility are directly functionally coupled. This would be consistent with 

previous observations that the highest levels of accessibility and TF binding are often 

found at active enhancers.74–76,78,100,101 Alternatively, it is possible that the binding of 

patterning TFs also consistently contributes to the accessibility, but that their dependence 

on Zelda motifs for binding creates the requirement for motif combinations. To distinguish 

between these possibilities, we focused on Dorsal since this allowed us to leverage available 

mutants and extensive existing knowledge on bona fide Dorsal target enhancers that mediate 

transcriptional activation.

Dorsal is present in the early embryo as a ventral-to-dorsal nuclear concentration gradient. 

At high levels of nuclear Dorsal, the nuclei acquire mesodermal identity; at low levels of 

Dorsal, they acquire neuroectodermal identity; and in the absence of Dorsal, they acquire 

dorsal ectodermal identity61 (Figure 5A). The key to Dorsal’s ability to specify three tissue 

types is its ability to function as a dual TF that can activate mesoderm and neuroectoderm 

genes and repress dorsal ectoderm genes. This switch in function is possible because the 

repressed enhancers have Dorsal motifs that are flanked by low-affinity motifs for the 

repressor Capicua (Cic).102–105

If Dorsal consistently contributes to chromatin accessibility by binding to target enhancers, 

we would expect that the loss of Dorsal would lead to decreased accessibility at all its 

target genes. To test this, we performed ATAC-seq time course experiments on gastrulation 
defective (gd7) mutant embryos, where Dorsal remains cytoplasmic and inactive in the entire 

embryo (Figure S6A), resulting in dorsal ectoderm fate throughout the embryo.78,106–108 

We then used DESeq2109 to analyze the differential accessibility upon loss of Dorsal (gd7) 

compared with wild type (Figures 5B and S6B).

When we examined well-characterized Dorsal target enhancers, we noticed a striking 

difference in accessibility between enhancers that are activated by Dorsal and those that 

are repressed. Mesoderm enhancers (e.g., twi and sna) and neuroectoderm enhancers (e.g., 

sog and brk), which are activated by Dorsal, show significantly decreased accessibility upon 

loss of Dorsal (purples in Figure 5B). Conversely, the Dorsal-repressed enhancers do not 

show decreased accessibility and even show a slight increase, despite losing Dorsal binding 

(orange in Figure 5B). These results suggest that Dorsal’s ability to increase chromatin 

accessibility is tied to its role as a transcriptional activator.
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To confirm this effect more broadly, we used a validated set of dorsoventral enhancers.108 

We plotted the ATAC-seq signal for each time point and found that the mesoderm enhancers 

showed decreased chromatin accessibility in both zld− and gd7 embryos (Figure 5C), as did 

neuroectodermal enhancers (Figure S6C). Dorsal ectoderm enhancers also lose accessibility 

in zld− embryos but gain accessibility in gd7 embryos from the earliest time points on, 

suggesting that this is mediated by the loss of Dorsal repression (Figure 5D). This further 

corroborates that the loss of Dorsal binding does not always lead to the loss of accessibility 

but rather depends on the Dorsal’s ability to activate these enhancers.

To test this hypothesis more directly, we specifically manipulated the ability of Dorsal 

to repress without affecting its ability to activate. In cic6 mutant embryos, Cic has a 

small deletion in its interaction domain (N2) with the co-repressor Groucho and no 

longer functions as a repressor102 (Figure 5E). As a result, Dorsal can still activate 

mesoderm and neuroectoderm enhancers, but it can no longer repress dorsal ectodermal 

enhancers, where it is now expected to function as a weak activator.102 Thus, in cic6 

embryos, the Dorsal-activated enhancers should be unchanged compared with wild type, 

whereas enhancers normally repressed by Dorsal (e.g., tld, zen, and dpp102,104,105) 

should have higher accessibility. Indeed, when we performed ATAC-seq experiments in 

cic6 mutant embryos (Figure S6D), we found that dorsal ectoderm enhancers showed 

statistically significant increased accessibility (Figure 5E, orange), whereas mesoderm and 

neuroectoderm enhancers not regulated by Cic generally remained unchanged (Figure 

5E, purples). These results demonstrate that the chromatin accessibility at Dorsal target 

enhancers depends on the activation state induced by Dorsal rather than the binding of 

Dorsal.

The finding that Dorsal’s effect on chromatin accessibility is dependent on the sequence 

context and coupled to its transactivation effect suggests that Bicoid might operate in 

the same way. In support of this, we found the regions where Bicoid is required for 

accessibility57 to be strongly bound by Bicoid, to have a higher predicted contribution to 

accessibility in the ChromBPNet model, and to have the histone marks of active enhancers 

(Figures S2L–S2N). In addition, we found that Bicoid-regulated enhancers that are repressed 

by high-affinity Cic motifs (e.g., hkb, tll, and hb)102,110–112 also increased in accessibility 

in cic6 mutant embryos (Figures S6E and S6F), further supporting the model that the 

accessibility of Bicoid target enhancers depends on their activation state.

In summary, our results suggest that chromatin accessibility levels depend on both the 

consistent pioneering effect of Zelda and the combinatorial effect that patterning TFs have 

on enhancer activation. Since the patterning TFs depend on Zelda for binding, this could 

mean either that Zelda’s effect is much stronger than that of patterning TFs, perhaps due 

to its high concentration, or that the patterning TFs mainly function at a step downstream 

of pioneering. In support of the latter model, patterning TFs such as Dorsal and Bicoid do 

not have a weak effect but play a critical role in the activation of their target genes in a 

manner that is different from Zelda.38,43,46,60,113,114 To illustrate this difference, we directly 

compared the accessibility of the known tld and sog shadow enhancers with their target gene 

expression across various mutants (Figure 5F). The target gene expression was visualized by 

multiplexed in situ hybridization experiments using hybridization chain reaction.115
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These results confirmed that chromatin accessibility and target gene expression do not 

always correlate (Figure 5F). In zld− embryos, accessibility is dramatically reduced at both 

the tld and sog enhancers due to the loss of pioneering. Compared with this strong and 

consistent effect upon the loss of Zelda, the loss of Dorsal (gd7) led to a modest decrease 

in accessibility, only at the Dorsal-activated enhancer sog and not at the Dorsal-repressed 

enhancer tld or in cic6 mutants where Dorsal can still be activated (Figures 5F and S6G 

for more enhancers). Thus, Dorsal’s effect on accessibility is weaker than that of Zelda 

and depends on its transactivation effect. The reverse is true for gene activation: Dorsal’s 

effect on gene expression is stronger than that of Zelda (red box, Figure 5F). In zld− 

embryos, sog is still expressed after some delay in cells with high concentrations of Dorsal 

(red box, Figure 5F). This effect is specific to the examined sog enhancer since the same 

expression pattern is obtained when the enhancer is part of a reporter.43,60 In contrast, 

sog expression is completely abolished in the absence of Dorsal, consistent with previous 

results.113 Thus, Zelda has a stronger effect on accessibility, whereas Dorsal has a stronger 

effect on activation, arguing that they involve functionally separable processes that both have 

effects on chromatin accessibility.

DISCUSSION

Here, by combining TF binding and chromatin accessibility data with deep learning models 

and using Drosophila genetics as a validation tool, we asked how TFs mediate chromatin 

accessibility in the Drosophila embryo. We investigated whether the role of opening 

chromatin is restricted to TFs axiomatically classified as pioneers or if TFs more generally 

contribute to chromatin accessibility. We find that there is a clear hierarchical relationship 

between the pioneer Zelda and the patterning TF and that both contribute to accessibility 

through distinct cis-regulatory sequence rules.

We therefore propose a model in which chromatin accessibility is governed by two distinct 

processes: pioneering and activation (Figure 6). Pioneers like Zelda consistently bestow 

basal accessibility by reading out motif affinity, whereas patterning TFs require an already 

accessible state for their binding and increase chromatin accessibility in a context-dependent 

manner. For example, when Dorsal motifs are flanked by motifs for the repressor Cic, no 

increase in accessibility is observed. This demonstrates that the increase in accessibility is 

not dependent on Dorsal binding per se but on the total effect that the TFs have on the 

activation of the enhancer and thus is governed by the cis-regulatory rules of activation. 

In contrast, Zelda consistently increases chromatin accessibility even in the absence of 

enhancer activation.

The functional separation between pioneering and activation is consistent with 

previous observations in the early Drosophila embryo. Zelda unambiguously generates 

chromatin accessibility very early on but is insufficient for the activation of most 

developmental enhancers and functions together with patterning TFs during zygotic genome 

activation.41,77,114,116,117 Although Zelda is essential for a small subset of genes that are 

expressed early and have Zelda motifs at their promoter,38,80,93 many patterning genes 

such as sog do not require Zelda for activation and eventually become expressed in zld− 

embryos.38 Zelda is, however, a strong potentiator of transcription.5,43,45,46,60 This suggests 
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that Zelda’s effect on chromatin accessibility is not required for activation but boosts the 

effect of activators. A similar potentiating effect of Zelda has been observed at the level of 

transcriptional bursting. Dorsal mainly affects burst frequency, whereas Zelda has additional 

effects on burst size.114

These functional differences are consistent with pioneering and activation being physically 

separate processes. Zelda binds its motifs in the presence of nucleosomes,20,49 whereas 

Dorsal, Twist, Caudal, and Bicoid require accessible DNA for binding.5,6,43,45,46,48,60 

Although Zelda could also bind to accessible regions, this may not occur to a large extent 

since Zelda binds to chromatin transiently on the order of seconds47 and does not co-localize 

with RNA Pol II or at the sites of active transcription.47,116 Thus, pioneering appears to 

be the process associated with nucleosome removal, whereas enhancer activation occurs on 

accessible DNA.

Remarkably, both processes appear to read out cis-regulatory information very precisely. 

Our deep learning models and experimental validations revealed that pioneering by Zelda 

depends on the motif’s affinity. However, how Zelda rapidly recognizes its motifs on 

nucleosomal DNA and opens chromatin is not clear. Zelda’s DNA binding domain is 

insufficient for pioneering in vivo,118 and although in vivo studies point to a constant 

involvement of ATP-dependent chromatin remodeling,119,120 how Zelda interacts with 

chromatin remodelers is not known. Furthermore, in vitro studies suggest that TF binding 

to nucleosomes is structurally constrained and may be preferred at certain positions on 

the nucleosome,20,21,86,87 which is at odds with Zelda’s ability to consistently read out 

motif affinity. We therefore speculate that pioneer TFs recognize their motifs in vivo more 

efficiently than in vitro, perhaps aided by chromatin remodelers.

Another interesting observation was that the pioneer GAF was not predicted to play the 

same role as Zelda. Although the GAF motif was correctly identified to play a strong 

role in chromatin accessibility and boost GAF binding to another GAF motif nearby, it 

was not predicted to strongly promote the binding of the patterning TFs. An explanation 

for the difference may be that GAF multimerizes on DNA and remains on chromatin 

on the order of minutes.121–124 Such stable binding makes sense in the light of GAF’s 

role in genome structure124–128 and transcriptional memory.122,129,130 GAF could generate 

accessible chromatin, but by binding to the newly opened DNA itself, it could partially 

occlude the binding of additional TFs.

How chromatin accessibility increases further when an activating combination of patterning 

TFs bind is also not clear. An attractive model is that the right cis-regulatory motif 

combination on accessible DNA seeds the formation of hubs.131–134 This would explain 

why this part of the cis-regulatory code is inherently context-specific and dependent on 

the balance between activators and repressors, their concentrations, and the motif affinities 

(Figure 6). Supporting this model, hubs have been observed via imaging studies for multiple 

TFs in the early Drosophila embryo, including Zelda, Dorsal, and Bicoid.47,48,60,116 Hubs 

containing either Dorsal or Bicoid were dependent on Zelda,48,60 which is consistent 

with DNA accessibility being a requisite for hub formation. Moreover, if hubs regulate 

transcriptional bursting, this could explain why Dorsal and Zelda have different effects.114 
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Dorsal may determine the burst frequency by regulating the speed of hub formation on 

already accessible DNA, whereas Zelda also facilitates chromatin accessibility and thus may 

affect the burst size by providing more time and space for hub formation.

Taken together, our results suggest that TFs read out cis-regulatory sequences during two 

processes, pioneering and activation, and those follow distinct sequence rules. We likely 

discovered this in the early Drosophila embryo because the TFs there have distinct roles 

in each process. The pioneer Zelda creates basal chromatin accessibility throughout the 

embryo, which then allows the patterning TFs to activate genes in specific parts of the 

embryo. However, having two interdependent regulatory processes that both read out motif 

affinities could be a general principle of the cis-regulatory code, even if the same TFs 

mediate both pioneering and activation. From a theoretical perspective, having a process 

with an energy-expending step such as ATP-dependent chromatin remodeling and having 

TFs read out the same motifs twice represents an appealing explanation for the dynamic 

nature and high specificity of transcriptional regulation.135,136

Limitations of the study

Since we only examined one developmental context, it remains to be shown how the 

cis-regulatory sequence rules change when the TFs are present at different concentrations 

or with different TFs. The ability of Zelda and other Drosophila and mammalian TFs is 

concentration-dependent,17,18,118 and Zelda may not function as a strong pioneer in other 

developmental contexts.137 Furthermore, the distinction between pioneering and activation 

may not always be clear-cut, even in our system. At high concentrations, Dorsal could also 

function as a pioneer since the Dorsal motif contributed more consistently to chromatin 

accessibility at our last time point (Figure 2F). Indeed, it has been shown in mammals 

that a TF can function as both pioneer and activator with different concentration threshold 

requirements.138 Nevertheless, separate contributions of pioneering and enhancer activation 

toward chromatin accessibility are likely a general feature of the cis-regulatory code. 

In both Drosophila and mammals, the highest accessibility is typically found at active 

enhancers75,76,139–142; however, chromatin accessibility is often only a mediocre predictor 

for enhancer activity.143–147

Another limitation of the study is that the deep learning models are only as good as we 

can accurately train them and extract the learned sequence rules. Although such models are 

ideally suited for discovering cis-regulatory sequence rules de novo without prior biological 

assumptions, we may miss the learned features of the model. For example, it is unclear 

whether the models learned subtle sequence rules that contribute to nucleosome occupancy 

or positioning. Future studies will have to more specifically address additional layers of the 

cis-regulatory code.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Julia Zeitlinger (jbz@stowers.org).
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Materials availability—Antibodies generated in this study are available upon request.

Data and code availability—The raw and processed data for ChIP-nexus, ChIP-seq, 

ATAC-seq, MNase-seq, and protein binding microarray experiments have been deposited 

at GEO under series accession number GSE218852 (GEO: GSE218852) and are publicly 

available as of the date of publication. Original data, including microscopy images, can 

be accessed from the Stowers Original Data Repository (ODR: http://www.stowers.org/

research/publications/libpb-2357). Trained BPNet and ChromBPNet models are available at 

Zenodo (Zenodo: https://zenodo.org/record/8075860). All original code has been deposited 

at GitHub (GitHub: https://github.com/zeitlingerlab/Brennan_Zelda_2023) and is publicly 

available as of the date of publication. The DOI is listed in the key resources table. Any 

additional information required to reanalyze the data reported in this paper is available from 

the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila strains—Oregon-R flies were used as the wild type (wt) strain in all 

experiments. Embryos depleted for maternal Zelda (zld−) were generated by crossing UAS-
shRNA-zld females to MTD-Gal4 males as previously described6 and tested for embryonic 

lethality37 and Zelda depletion using immunostaining (Figure 3). Embryos lacking nuclear 

Dorsal were laid by gd7/gd7 mothers generated from a gd7/winscy, P{hs-hid}5 stock that 

was heat-shocked at the larval stage at 37°C for 1 h on two consecutive days to eliminate 

heterozygous mothers.6 Loss of the hs-hid sequence was confirmed using PCR with gd7 

heat shock primers on genomic DNA extracted from heat-shock survivors. The cic6/TM3, 

Sb1 stock was generated using CRISPR/Cas9 as previously described.102 Cic6 embryos 

were collected from cic6/cic6 mothers identified by wt bristles and were confirmed to be 

embryonic lethal.

Drosophila embryo collections, fixation, and sorting—All embryos were collected 

from population cages using apple juice plates with yeast paste, following two pre-clearings 

as previously described.58,80 For ChIP-nexus, ChIP-seq, and MNase-seq experiments, 

embryos were collected for 1 h and aged for 2 h at 25°C, yielding collections of 2–3 h 

after egg laying (AEL). For ATAC-seq, embryos were collected in 30-min windows and 

aged accordingly to generate the 1–1.5, 1.5–2, 2–2.5, and 2.5–3 h AEL time points. All 

embryos were dechorionated using 50% bleach for 2 min and sufficiently rinsed with 

water afterwards. For ATAC-seq, embryos were hand-sorted based on morphology in ice-

cold PBT immediately following dechorionation using an inverted contrasting microscope 

(Leica DMIL) as described.80 For ChIP-nexus, ChIP-seq, and MNase-seq, embryos were 

first fixed with 1.8% formaldehyde (final concentration in water phase) in heptane and 

embryo fix buffer (50 mM HEPES, 1 mM EDTA, 0.5 mM EGTA, 100 mM NaCl) while 

vortexing for 15 min. For ChIP-nexus and ChIP-seq, the vitelline membrane was removed 

using methanol/heptane and embryos were stored in methanol at −20°C until use. For 

these experiments, embryos were rehydrated using PBT and sorted to remove out-of-stage 

embryos using either hand-sorting or cytometry (Copas Plus, macroparticle sorter, Union 

Biometrica). For MNase-seq, embryos were spun down at 500 × g, 4°C, for 1 min, and 

fixation was quenched by adding 10 mL PBT-glycine (125 mM glycine in PBT) and 
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vortexing for 2 min. Embryos were hand-sorted based on morphology in ice-cold PBT and 

then used in MNase-seq experiments.

METHOD DETAILS

ChIP-nexus and ChIP-seq experiments—For each ChIP, 10 μg of antibody was 

coupled to 50 μL of Protein A Dynabeads (ThermoFisher, 10008D) and incubated overnight 

at 4°C prior to ChIP. All ChIP-nexus experiments were performed using antibodies custom 

generated by Genscript: Zelda (aa 1117–1327), Dorsal (aa 39–346), Twist (C-terminus), 

Bicoid (C-terminus), Caudal (aa 1–214), GAF (aa 1–382). ChIP-seq experiments were 

performed with the following commercially available antibodies: H3K27ac (Active motif, 

39133) and H3K4me1 (Active motif, 39635). For all TFs, at least three biological replicates 

were performed using embryos from different collections. For ChIP-seq, at least two 

biological replicates were performed in the same way. Approximately 0.2–0.4 grams of 

fixed 2–3 h AEL embryos were used for all ChIP experiments. Chromatin extracts were 

prepared by douncing embryos in Lysis Buffer A1 (15 mM HEPES pH 7.5, 15 mM NaCl, 

60 mM KCl, 4 mM MgCl2, 0.5% Triton X-100, 0.5 mM DTT (add fresh)), washing nuclei 

with ChIP Buffer A2 (15 mM HEPES pH 7.5, 140 mM NaCl, 1 mM EDTA, 0.5 mM 

EGTA, 1% Triton X-100, 0.5% N-lauroylsarcosine, 0.1% sodium deoxycholate, and 0.1% 

SDS), and sonicating with a Bioruptor Pico (Diagenode) for six cycles of 30 s on and 30 

s off. ChIP-nexus library preparation steps include end repair, dA-tailing, adapter ligation, 

barcode extension, and lambda exonuclease digestion and was performed as previously 

described,58 except that the ChIP-nexus adapter mix contained four fixed barcodes and 

PCR library amplification was performed directly after circularization of the purified DNA 

fragments (without addition of the oligo and BamHI digestion). ChIP-seq was performed as 

previously described and included a whole cell extract (WCE).69,78 Single-end sequencing 

was performed on an Illumina NextSeq 500 instrument (75 or 150 cycles). Replicates for 

each TF and histone modification were generated and showed high concordance (Figures 

S1A and S1E). The full ChIP-nexus protocol can be found on the Zeitlinger lab website at 

https://research.stowers.org/zeitlingerlab/protocols.html.

ATAC-seq experiments—For ATAC-seq time course experiments, the following amounts 

of hand-sorted embryos were used: 400 embryos (1–1.5 h AEL); 100 embryos (1.5–2 

h AEL); 40 embryos (2–2.5 h AEL, 2.5–3 h AEL). Following sorting, embryos were 

immediately dounced in ATAC Resuspension Buffer (10 mM Tris-HCl pH 7.4, 10 

mM NaCl, 3 mM MgCl2) with 0.1% IGEPAL CA-630 and nuclei were harvested by 

centrifugation. Tn5 transposition was performed as previously described.72,73 Briefly, the 

nuclear pellet was incubated for 3 min on ice in ATAC resuspension buffer supplemented 

with 0.1% IGEPAL CA-630, 0.1% Tween-20, and 0.01% Digitonin (Promega, G9441). The 

reaction was stopped by adding ATAC Resuspension Buffer with 0.1% Tween-20 followed 

by centrifugation. Tagmentation took place at 37°C for 30 min at 1000 rpm in a 50 μL 

reaction volume containing 10 μL of 5x Tagment DNA Buffer (50 mM Tris-HCl pH 7.4, 

25 mM MgCl2, 50% DMF) 16.5 μL 1x PBS, 0.5 μL 10% Tween-20, 0.5 μL 1% Digitonin,1–

2 μM of Tn5 transposase loaded with oligonucleotides, and water. Tn5 transposase was 

purified in-house using pETM11-Sumo3-Tn5 and His6-tagged SenP2 protease plasmids as 

previously described.148 The resulting fragments were purified using the Monarch PCR & 
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DNA Cleanup Kit (NEB). Libraries were constructed using Illumina Nextera Dual Indexing, 

and qPCR was used to prevent over-amplification as described.73 All ATAC-seq experiments 

were performed in triplicate, with highly correlated replicates (Figures S1B, S1C, S1F, and 

S1G), and paired-end sequencing was performed on an Illumina NextSeq 500 instrument 

(2× 75 bp cycles).

MNase-seq experiments—For each MNase digestion, 100 hand-sorted 2–3 h AEL 

Drosophila embryos were used. Nuclei were extracted by douncing in PBS with 0.1% 

IGEPAL CA-630. The nuclei were harvested by centrifugation and resuspended gently 

in MNase Digestion Buffer (PBS with 0.1% Triton X-100 and 1 mM CaCl2). MNase 

digestion was performed with 100 U MNase (NEB, M0247S) for 30 min at 37°C. 

The reaction was stopped with 20 mM EGTA. The nuclei were treated with 50 μg/ml 

RNase A (ThermoFisher, EN0531) for 1 h at 37 °C and 1000 rpm, and subsequently 

incubated overnight at 65 °C and 1000 rpm with 200 μg/ml Proteinase K (ThermoFisher, 

25530049) and 0.5% SDS for reverse cross-linking. DNA was extracted using phenol-

chloroform (VWR, K169). Libraries were constructed from 10 ng purified DNA using the 

High Throughput Library Prep Kit from KAPA Biosystems (KK8234) according to the 

manufacturer’s instructions. Three experimental replicates were performed, and replicates 

were highly correlated (Figure S1D). Paired-end sequencing was performed on an Illumina 

NextSeq 500 instrument (2× 75 bp cycles).

Antibody staining and microscopy experiments—Embryos were collected and aged 

to be 2–3 h old, fixed with 1.8% formaldehyde, and stored in 100% methanol at −20°C 

prior to immunostaining. Embryo aliquots were rehydrated in an ethanol:PBT gradient 

and blocked for 30 min using the Roche Western blocking reagent (Millipore Sigma, 

11921681001) and PBT. Primary antibody incubation occurred at 4°C overnight with a 

1:200 antibody dilution in PBT/blocking reagent with the same Zelda, Dorsal, and Twist 

antibodies used for ChIP-nexus experiments. Embryos were then washed six times with 

PBT, blocked again, and incubated with a donkey anti-rabbit IgG Alexa Fluor 568 secondary 

antibody (ThermoFisher, A10042), 1:500, at 4°C overnight. After eight washes with PBT, 

embryos were mounted with ProLong Gold Antifade Mountant with DAPI (Invitrogen, 

P36931). Images were acquired on a Zeiss LSM-780 point scanning confocal microscope 

with a 32 channel GaAsP detector and a plan-apochromat 10x objective lens, N.A. 0.45, 

using the ZEN Black 2.3 SP1 software by Zeiss. The Alexa Fluor 568 track used a DPSS 

561 nm laser excitation at 6.5%, and the DAPI track used a Diode 405 nm laser excitation at 

6.0%. Images were collected using a frame size of 1024 × 1024, a zoom of 1.5, and a pixel 

dwell time of 3.15 μs. Confocal z-stacks were maximum intensity projected and all image 

processing steps were performed using FIJI.149 All microscopy and processing settings were 

kept the same when comparing wt to zld− or gd7 embryos.

Protein binding microarray experiments—For all PBM experiments, the C-terminal 

region of Zelda, which includes the four zinc fingers (#3–6) that are known to bind 

CAGGTAG motifs, were used.37,38 These zinc fingers were cloned into a T7-driven GST 

expression vector, pTH6838. The TF sample was expressed by using a PURExpress In Vitro 
Protein Synthesis Kit (New England BioLabs) and analyzed in duplicate on two different 
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PBM arrays (HK and ME) with differing probe sequences. The ME array was designed 

by Julian Mintseris and Mike Eisen,150 and the HK array by Hilal Kazan, following 

methodology described by Philippakis et al.151 Each array consists of ~41,000 60-base 

probe sequences (each containing 35 unique bases); the two array types have completely 

different probe sequences. Each PBM is designed using de Bruijn sequences, such that all 

possible 10-mers, and 32 copies of every non-palindromic 8-mer are contained on each 

array, offering an unbiased survey of TF binding preferences. PBM laboratory methods 

including data analysis followed the procedures previously described.152,153 PBM data were 

generated with motifs derived using Top10AlignZ.95 Z-scores and E-scores were calculated 

for each 8-mer as previously described.94,95 Octamers were grouped together based on their 

7-mer sequences while also considering reverse complements, and the median E-score and 

Z-score was calculated for each 7-mer. The 7-mer sequences matching BPNet-mapped Zelda 

motifs were then extracted and the two PBM replicates were averaged for each Zelda motif.

In situ hybridization by hybridization chain reaction (HCR) experiments—
Embryos were collected and developed to a final age of 2–3 h AEL. Embryos were fixed 

in 4.5% formaldehyde fixation solution for 25 min, devitellinized, and stored in 100% 

methanol at −20°C. HCR probes were designed against entire transcripts by Molecular 

Instruments to detect NM_001272649.2 (sog) and NM_079763.4 (tld).115 Embryos were 

rehydrated and HCR was performed according to Molecular Instruments’ HCR RNA-FISH 

protocol for whole-mount fruit fly embryos with the following exceptions. Embryos were 

not treated with xylene and proteinase K. Samples were rocked gently during all steps of 

the detection and amplification stages. During the detection stage, probe input was increased 

to 3 μL of1 μM stock and probe hybridization volume increased to 500 μL per sample. 

During the amplification stage, hairpin input was increased to 10 μL of3 μM stock and 

hairpin solution volume increased to 500 μL per sample. Embryos were allowed to incubate 

with hairpin solution containing 0.4 μg/mL DAPI for 44 h. Following HCR, embryos were 

cleared in OptiPrep (Millipore Sigma, D1556) and mounted in ProLong Glass Antifade 

Mountant (ThermoFisher, P36980). Images were acquired with an Orca Flash 4.0 sCMOS 

on a confocal Nikon Eclipse Ti2 microscope equipped with a Yokagawa CSU W1 Spinning 

Disk. Samples were illuminated with 405 nm, 561 nm, and 640 nm lasers to image DAPI, 

AlexaFluor546 and AlexaFluor647 respectively. A Nikon Plan-Apo 20x objective, N.A. 

0.75, was used to acquire the images along with appropriate emission filters. Maximum 

intensity Z projections and adjustments to the brightness and contrast were performed in 

ImageJ/FIJI.149

ChIP-nexus data processing—ChIP-nexus single-end sequencing reads were pre-

processed by trimming off fixed and random barcodes and reassigning them to FASTQ 

read names. ChIP-nexus adapter fragments were trimmed from the 3’ end of the fragments 

using cutadapt (v.2.5154). ChIP-nexus reads were aligned using bowtie2 (v.2.3.5.1155) to 

the Drosophila melanogaster genome assembly dm6. Aligned ChIP-nexus BAM files were 

deduplicated based on unique fragment coordinates and barcode assignments. Normalized 

ChIP-nexus coverage was acquired through reads-per-million (RPM) normalization, where 

the ChIP-nexus sample coverage was scaled by the total number of reads divided 

by 106. ChIP-nexus peaks were mapped using MACS2 (v.2.2.7.1156) with parameters 
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designed to resimulate the full fragment length coverage rather than the single stop 

base coverage (–keep-dup=all -f=BAM –shift=−75 –extsize=150). ChIP-nexus peaks were 

filtered for pairwise reproducibility using the Irreproducible Discovery Rate framework 

(IDR) (v.2.0.3157). Peaks used for downstream analysis were selected from the largest 

pairwise comparison using the IDR framework.

ATAC-seq data processing—ATAC-seq paired-end sequencing reads were aligned using 

bowtie2 (v.2.3.5.1155) to the Drosophila melanogaster genome assembly dm6. Aligned 

ATAC-seq BAM files were marked for duplicates using Picard (v.2.23.8158) based on 

unique fragment coordinates, deduplicated, reoriented according to a Tn5 enzymatic cut 

correction of −4/+4 on fragment ends, filtered to contain fragment lengths no greater than 

600 bp, and corrected for dovetailed reads. Normalized ATAC-seq coverage was acquired 

through reads-per-million (RPM) normalization, where the ATAC-seq sample coverage was 

scaled by the total number of reads divided by 106, as performed previously.51,77 Cut site 

ATAC-seq coverage was acquired by treating each of the fragment ends as a “cut event” 

and generating coverage based on only these “cut events”. ATAC-seq peaks were mapped 

using MACS2 (v.2.2.7.1156) with default paired-end parameters using ATAC-seq fragment 

coverage. ATAC-seq peaks were filtered for pairwise reproducibility using the Irreproducible 

Discovery Rate framework (IDR) (v.2.0.3157). Peaks used for downstream analysis were 

selected from the largest pairwise comparison using the IDR framework.

ChIP-seq data processing—ChIP-seq single-end sequencing reads were aligned using 

bowtie2 (v.2.3.5.1155) to the Drosophila melanogaster genome assembly dm6. Aligned 

ChIP-seq BAM files were deduplicated based on unique fragment coordinates and 

fragments extended based on the average experiment fragment length as determined 

with an Agilent 2100 Bioanalyzer. Normalized ChIP-seq coverage was acquired using 

the deepTools subfeature bamCompare (v.3.5.1159) using parameters to generate log2 fold-

change scaling (–scaleFactorsMethod=readCount –operation=log2 –binSize=1). ChIP-seq 

peaks were mapped using MACS2 (v.2.2.7.1156) with default parameters and an applied 

background coverage using the associated WCE ChIP-seq control experiment. ChIP-seq 

peaks were filtered for pairwise reproducibility using the Irreproducible Discovery Rate 

framework (IDR) (v.2.0.3157).

MNase-seq data processing—MNase-seq paired-end sequencing reads were aligned 

using bowtie2 (v.2.3.5.1155) to the Drosophila melanogaster genome assembly dm6. Aligned 

MNase-seq BAM files were deduplicated based on unique fragment coordinates and filtered 

to contain fragment lengths no greater than 600 bp. Normalized MNase-seq coverage was 

acquired through reads-per-million (RPM) normalization, where the MNase-seq sample 

coverage was scaled by the total number of reads divided by 106.

BPNet model training and optimization—BPNet architecture and software was 

applied as previously described.59 Model inputs were 1000 bp genomic sequences centered 

on the ChIP-nexus peaks of TFs of interest. Model outputs were the predicted counts 

(total reads across each region) and predicted profile (coverage signal across each region) 

for Zelda, Dorsal, Twist, Caudal, Bicoid, and GAF ChIP-nexus experiments. 95,282 IDR-
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reproducible peaks from Zelda, Dorsal, Twist, Caudal, Bicoid, and GAF ChIP-nexus 

experiments were pooled and used as model inputs. Validation datasets were peaks 

located across chr2L (~18% of peaks), test datasets were peaks located across chrX 

(~19% of peaks), and peaks located across chrY and nonstandard chromosome contigs 

were excluded from analysis. The remaining regions were used for model training. Hyper-

parameters were optimized by selected testing of parameter values deviating from the 

default BPNet architecture (number of dilational convolutional layers, number of filters 

in each convolutional layer, filter length of the first convolutional layer, filter length of the 

deconvolutional layer, learning rate, and counts-to-profile loss balancing). Model optimality 

was assessed based on counts and profile performance of each task, with a focused emphasis 

on the Zelda task performance, as this was our key TF of interest. After optimization, the 

final BPNet model architecture contained 9 dilated convolutional layers, 256 filters in each 

convolutional layer, a filter length of 7bp for both the input convolutional layer and output 

deconvolutional layer, a learning rate of 0.004, and a counts-to-profile weighting value 

(lambda) of 100. Final optimized model performance was assessed through comparing (1) 

area under the Precision-Recall Curves (auPRC) for profiles over different bins of resolution 

between observed ChIP-nexus profiles and predicted BPNet profiles (Figure S2A) and (2) 

counts correlations of observed ChIP-nexus signals to predicted BPNet signals for each TF 

(Figure S2B) as previously described.59 The auPRC values were benchmarked alongside 

replicate-replicate, observed-random, and observed-average observed profile comparisons 

to establish an in-context understanding of predicted profile accuracy. In order to test the 

stability of this optimized model architecture (fold 1), we trained two additional models 

with shuffled training, validation, and test sets (three-fold validation). The stability of the 

performance metrics as well as the stability of the returned downstream motif grammar was 

compared to the original optimized model training event (Figure S2C). All BPNet models 

were implemented and trained using Keras (v2.2.4160), TensorFlow1 backend (v.1.7161), 

the Adam optimizer.162 Training was performed using a NVIDIA® TITAN RTX GPU with 

CUDA v9.0 and cuDNN v7.0.5 drivers.

Motif extraction, motif curation, and motif island generation—DeepLIFT 

(v0.6.9.0, derived from the Kundaje Lab fork of DeepExplain (https://github.com/

kundajelab/DeepExplain)163 was applied to the trained BPNet model to generate the 

contribution of each base across a given input sequence to the predicted output counts 

and profile signals. Contribution scores for counts and profile outputs were generated for 

all 6 TF tasks. TF-MoDISco (v.0.5.3.0164) was then applied across each TF separately. 

For each TF, regions of high counts contribution were identified, clustered based on 

within-group contribution and sequence similarity, and consolidated into motifs. The Zelda, 

Dorsal, Twist, Caudal, Bicoid, and GAF motifs were manually identified based on similarity 

to previous literature and validation of ChIP-nexus binding from the pertinent TF. Once 

motifs were characterized and confirmed, they were remapped back to their TF-specific 

peaks based on both Jaccardian similarity to the TF-MoDISco contribution weight matrix 

(CWM) and sufficient total absolute contribution across the mapped motif. This mapping 

approach is previously described.59 However, as we were interested in lower affinity motif 

representations than were previously identified by BPNet, mapping thresholds were lowered 

to mapping the motif if the CWM Jaccard similarity percentile was equal to or greater than 
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10% and if the total absolute contribution percentile was equal to or greater than 0.5%. 

After mapping, motifs were filtered for redundant assignment of palindromic sequences and 

overlapping peaks. Mapped and bound motifs were next clustered into ‘motif islands’ based 

on their proximity. Each island initially starts as a 200 bp region centered on the motif and 

gets clustered and merged with another nearby motif island if they overlap. In this manner, 

islands get extended as long as there is a motif within less than 200 bp. In the end, the vast 

majority of islands are still between 200–400 bp in width, while single-motif islands are 200 

bp wide (Table S1). Island types with fewer than 30 genomic instances were filtered out. 

ATAC-seq and MNase-seq coverage was calculated across 250 bp windows centered on the 

island, while the H3K27ac and H3K4me1 signals were calculated across 1.5 kb windows 

centered on the island since these marks are typically on the enhancer flanks.

ChromBPNet model training and optimization—ChromBPNet is a modification of 

BPNet, designed to explain the relationship between genomic sequence and base-resolution 

ATAC-seq cut site coverage.29 ChromBPNet possesses similar model architecture to BPNet, 

but the training process contains extra steps to accommodate for the Tn5 sequence bias that 

influences the positions of the ATAC-seq cut sites. If the Tn5 sequence is not accounted 

for, the positional information of the cut sites cannot be reliably interpreted. The details 

of ChromBPNet’s bias correction will be published in a separate manuscript as part of 

ENCODE. Briefly, ChromBPNet corrects the bias during the training step by simultaneously 

passing sequence information through (1) a frozen, pre-trained model that has already 

learned Tn5 sequence bias and (2) an unfrozen, randomly-initialized residual model that 

will learn the unbiased sequence rules associated with ATAC-seq cut site coverage. During 

training, the sequence information will pass through both of these models and their 

respective outputs will be added together to represent training loss. By adding the two 

model outputs, ChromBPNet is evaluating both Tn5 sequence bias and sequence rules of 

accessibility, which can be compared to the actual ATAC-seq cut site coverage (which also 

possesses both of these features). After the training step has been completed, we remove 

the frozen Tn5 bias model and apply downstream interpretations only to the second model 

which contains the unbiased sequence rules that explain accessibility coverage of ATAC-seq 

cut sites.

To train the highest-quality set of models in the Drosophila genome, we trained a custom 

Tn5 bias model to represent the Tn5 sequence bias in our data. The Tn5 bias model 

architecture followed ChromBPNet defaults. The Tn5 bias model output was the pooled 

coverage of the 2.5–3 h ATAC-seq experiments. This time point was chosen for the 

bias model because it was the most likely time in which this model could have learned 

underlying sequence grammar of interest and therefore the most optimal to validate against. 

The Tn5 bias model inputs were genomic regions that met the following criteria: (1) closed 

(non-peak ATAC-seq regions across all time points), (2) unbound (non-peak ChIP-nexus 

regions across all TFs described above), (3) low-coverage regions (containing less than 

five times the cut sites as the lowest coverage 2.5–3 h ATAC-seq IDR-reproducible peak 

region), (4) 2114 bp in width, and (5) at least 750bp away from an annotated fly TSS. 

These criteria were applied in order to ensure that Tn5 sequence bias was only learned 

at regions that were closed, inactive, and representative of noise-based cut site coverage. 
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After application of these criteria, the Tn5 bias model was trained on 2,326 training regions 

and 883 validation regions. Training, validation, and test regions were determined based 

on the chromosomes reported above for BPNet. In order to validate that the Tn5 bias 

model learned only Tn5 sequence bias and no other grammar rules, particularly motif-driven 

rules, we collected Tn5 counts and Tn5 profile contribution scores using the DeepSHAP 

implementation of DeepLIFT (https://github.com/kundajelab/shap163) and ran TF-MoDISco 

(v.0.5.16.0164). For profile contribution, the Tn5 sequence bias was returned (Figure S2E), 

but no motif consensus logos were returned. For counts contribution, neither Tn5 nor 

motif consensus logos were returned. This confirmed that our Tn5 bias model was only 

learning positional Tn5 sequence bias information. In order to follow-up this validation, we 

injected the sequences of likely canonical motifs into 256 genomic sequences from the test 

chromosome (chrX) and averaged the effects to observe that the Tn5 bias model did not 

predict an increase in coverage magnitude (Figure S2D).

After Tn5 bias model training, ChromBPNet architecture and software was applied 

(https://github.com/kundajelab/chrombpnet). Model inputs were 2114 bp genomic sequences 

centered on IDR-reproducible ATAC-seq peaks. To fairly compare the results between 

four ChromBPNet models for each developmental time point measured using ATAC-seq 

(1–1.5 h, 1.5–2 h, 2–2.5 h, 2.5–3 h), we sought to train each of the models with the 

pooled IDR-reproducible ATAC-seq peaks from every time point measured. Additionally, 

because we wished to characterize enhancer accessibility rules, we removed peaks that were 

within 750 bp of an annotated TSS, as we know that accessibility at promoters can be 

dictated by different sequence rules than at enhancers. After the time points were pooled and 

promoter-proximal peaks removed, 41,497 ATAC-seq peaks were included. In order to train 

more robust models, we also included curated non-peak regions (described above) sampled 

to 10% of the ATAC-seq peaks for training (4,150 non-peak regions). The inclusion of 

both peak and non-peak ATAC-seq regions allows the model to better differentiate between 

accessible and inaccessible sequences. In total, 45,647 regions were used as ChromBPNet 

model inputs. Validation datasets were peaks located across chr2L (~16% of peaks), test 

datasets were peaks located across chrX (~19% of peaks), and peaks located across chrY 

and nonstandard chromosome contigs were excluded from analysis. The remaining regions 

were used for model training. In addition to shared peaks across different ChromBPNet 

models to maintain inter-model stability, we also sought to train each of the models with the 

same ChromBPNet architecture. For this, an optimization search was required, and we again 

decided to optimize on the pooled coverage of the 2.5–3 h ATAC-seq experiments through 

selected testing of parameter values deviating from the default ChromBPNet architecture 

(number of filters in each convolutional layer, filter length of the first convolutional layer, 

and filter length of the deconvolutional layer). Model optimality was assessed based on 

the counts and profile performance of the bias-removed predictions, as well as prioritizing 

model depth to avoid over-distribution of motif grammar within sequence representations. 

After optimization, the final ChromBPNet model architecture contained 128 filters in each 

convolutional layer and a filter length of 7 bp for both the input convolutional layer and 

75 bp for the output deconvolutional layer. We then trained ChromBPNet models on the 

pooled cut site coverage of the four developmental time point ATAC-seq experiments (1–1.5 

h, 1.5–2 h, 2–2.5 h, 2.5–3 h). Final optimized model performance was assessed through 

Brennan et al. Page 23

Dev Cell. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/kundajelab/shap
https://github.com/kundajelab/chrombpnet


comparing (1) the ability of the model to differentiate peak and non-peak regions using 

area under the receiver operating characteristic curve (ROC AUC) (Figure S2F), (2) counts 

correlations of observed ATAC-seq cut sites to ChromBPNet predictions (Figure S2G), and 

(3) profile prediction accuracy of observed ATAC-seq cut sites to ChromBPNet predictions 

using Jensen-Shannon distances benchmarked by randomly shuffled region profiles (Figure 

S2H). In order to test the stability of these different ChromBPNet models, we trained two 

additional models across each ATAC-seq time point with shuffled training, validation, and 

test sets (three-fold validation). The stability of the performance metrics as well as the 

stability of the returned downstream motif grammar was compared to the original optimized 

model training event (fold 1). All ChromBPNet models were implemented and trained using 

Keras (v2.5.0160), TensorFlow2 backend (v.2.5.1161), and the Adam optimizer.162 Training 

was performed using a NVIDIA® TITAN RTX GPU with CUDA v11.0 and cuDNN v8.3.0 

drivers.

ChromBPNet contribution score generation and validation—DeepLIFT 

(v0.6.13.0, derived from the Kundaje Lab fork of DeepSHAP (https://github.com/

AvantiShri/shap)163) was applied to the trained ChromBPNet model to generate the 

contribution of each base across a given input sequence to the predicted output counts 

and profile signals. Contribution scores for counts and profile outputs were generated for 

each trained ChromBPNet model across all time points (1–1.5 h, 1.5–2 h, 2–2.5 h, 2.5–3 

h). TF-MoDISco (v.0.5.16.0164) was then applied for each trained ChromBPNet model 

in order to identify regions of high counts contribution, cluster based on within-group 

contribution and sequence similarity, and consolidate these clusters into motifs. Pertinent 

motifs (Zelda, GAF, Caudal, Twist-like, and Dorsal-like) were manually identified based 

on similarity to previous literature and ChIP-nexus binding was measured across these 

accessibility-identified motifs to validate that they were indeed relevant binding sites that 

also contribute towards explaining the ChromBPNet models across the designated time 

points (Figure S2I).

Using binding and accessibility models to examine motif effects in silico—In 

order to internally measure the “marginalized” effects of motifs without the surrounding 

genomic context, we adopted an in silico approach by which we injected motifs into many 

seed-controlled randomized sequences and generated BPNet and ChromBPNet predictions 

of these sequences with and without the motifs. We used 64 randomized sequences 

for BPNet predictions and 512 for ChromBPNet predictions (accessibility predictions 

contain greater sequence complexity and therefore required more trials to establish stable 

predictions across randomly generated sequences), averaging predictions across each of 

these randomized sequence sets. After performing in silico injections of a single motif, we 

visualized the output profiles generated from randomized sequence alone or motif-injected 

sequences for the Tn5 bias model, ChromBPNet models, and BPNet across all TF motifs.

It has been previously described that accurate predictions of relative motif affinities can 

be extracted from a BPNet model trained on ChIP-nexus data.89–91 We then summarized 

the “marginalized” effects of motifs above to compare how motif affinity changes Zelda’s 

influence at the level of both binding and accessibility. After performing in silico injections 
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of a single motif described above, we summed the values of the output profiles generated 

from randomized sequence alone or motif-injected sequences for both ChromBPNet and 

BPNet. These sums were then subtracted in log-space and referred to as “marginalized” 

scores, characterized as:

marginalized score = log ℎmotif − log ℎ∅

where ℎmotif is the predicted sum of the counts when a motif is injected into the random 

sequence and ℎ∅ is the predicted sum of the counts of the averaged random sequences 

without injections. These “marginalized” scores were computed for each Zelda motif variant 

for all ChromBPNet models and BPNet.

In order to test the effects of motif pairs on cooperativity for binding and accessibility 

without surrounding genomic context, in silico motif interaction analysis was performed to 

measure “binding enhancement” as described previously.59 In brief, this involved injecting 

two motif sequences (motif A and motif B) across motif pair distances d  ranging up to 400 

bp into random sequences. Binding predictions and accessibility predictions were measured 

in these different simulation scenarios from BPNet (where ℎ represents the sum of the 

counts predicted across a 200 bp window, centered on motif A) and ChromBPNet (where ℎ
represents the sum of the counts predicted across the entire 1000 bp window), respectively. 

We measured four different cases: (1) neither motif A nor motif B were injected into the 

sequence ℎ∅ , (2) motif A only was injected into the sequence ℎA , (3) motif B only was 

injected into the sequence ℎB , and (4) motif A and motif B were both injected into the 

sequence at a designated distance ℎAB . These cases were measured and averaged across 

64 trials for BPNet predictions and 512 trials for ChromBPNet predictions (accessibility 

predictions contain greater sequence complexity and therefore required more trials to 

establish stable predictions across randomly generated sequences). After all measurements 

were collected across all motif combinations and distances, then averaged across trials, the 

in silico motif pair cooperativity for each was calculated using the following equation:

cooperativity = ℎAB − ℎB − ℎ∅ + ℎPAB
ℎA + ℎPA

where ℎP  is the predicted pseudocounts represented by the 20th percentile quantile cutoff 

value for both binding and accessibility predictions across each window when motif A 

and motif B are present and when only motif A is present (case 4 and 2, respectively, 

described above). The motif pairs considered were combinations of the highest affinity 

representations of Zelda (CAGGTAG), Dorsal (GGGAAAACCC), Twist (AACACATGTT), 

Caudal (TTTTATGGCC), Bicoid (TTAATCC), and GAF (GAGAGAGAGAGAGAGAG). 

For both BPNet and all ChromBPNet models, these high-affinity motifs were also tested 

alongside an additional lower affinity representation of Zelda (TAGGTAG) in a pairwise 

fashion with all other motifs to investigate Zelda’s changing influence on other TFs based on 

motif affinity.
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Using binding and accessibility models to examine motif effects in genomic 
sequences—In order to measure the in-context effects of a motif within its surrounding 

genomic sequence, we computationally generated genomic sequences with this motif’s 

sequence mutated by randomly shuffling the bases that belong to this motif. We generated 

16 randomized mutation sequences per motif instance to establish mutation stability, 

averaging predictions across each of these randomized mutation sets. We performed this 

genomic perturbation for all mapped TF motifs across our curated set of genomic enhancers 

(described above) and visualized the output profiles generated for both BPNet and all 

ChromBPNet models.

In order to summarize the accessibility effects of mutating high- and low-affinity Zelda 

motifs, the 250 highest- and lowest-affinity Zelda motif-containing-only islands were 

identified. Using the procedure described above for all Zelda motifs in these genomic 

islands, accessibility profiles from unmodified island sequences and Zelda-mutated island 

sequences were predicted using the ChromBPNet models. After generating the profiles for 

each island, we summed the profiles into a single scalar value for WT sequences ℎW T  and 

Zelda-mutated sequences ℎdzld . Relative accessibility effects of high- and low-affinity Zelda 

motifs were characterized by the log2 fold-change measured effect, represented as log 2 ℎW T
ℎdzld

.

Differential chromatin accessibility analysis—To determine the differential 

chromatin accessibility between wt embryos with mutant zld−, gd7, and cic6 embryos, we 

used DESeq2 with default parameters and FDR = 0.05.109 Briefly, for each comparison 

between wt and mutant ATAC-seq data sets, we calculated ATAC-seq cut site coverage 

at the same pooled IDR-reproducible ATAC-seq peaks from all time points that were 

used for ChromBPNet prior to promoter removal (see “ChromBPNet model training and 

optimization”). For all time points we used three replicates and built one DESeq model 

encompassing ATAC-seq counts from all time points. To compute the differential chromatin 

accessibility, we then used each DESeq2 model to conduct pairwise comparisons between 

between wt and mutant conditions within each time point and computed the log2(mutant/wt) 
values. In this way, log2(mutant/wt) < 0 represent a loss in chromatin accessibility in the 

mutant, while log2(mutant/wt) > 0 represent a gain in chromatin accessibility in the mutant, 

while p-adjusted < 0.05 loci are highlighted. We performed this differential chromatin 

accessibility approach for all wt-to-mutant comparisons.

Enhancer collection—The bulk set of mesodermal and dorsal ectodermal enhancers used 

in this study were previously defined based on differential histone acetylation and have been 

validated three-fold using 1) Vienna tiles,165 2) TF binding and motif enrichment analysis, 

and 3) differential RNA-seq expression of nearby target genes across the dorsoventral 

axis.108 More limited sets of validated neuroectodermal enhancers were collected from 

previous work.78,166 All anterior-posterior patterning enhancers were collected from earlier 

studies.75,76 We additionally used a bulk, highly curated set of enhancers that were 

previously characterized as active in blastoderm embryos based on 1) in situ hybridization 

images, 2) transgenic reporters, 3) Vienna tiles, and 4) the REDfly167 database when 

calculating motif island overlaps with active enhancers.74
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QUANTIFICATION AND STATISTICAL ANALYSIS

All computational and statistical analyses performed, software used, and data processing 

steps are described in their respective methods sections. No further statistical analyses were 

conducted. Figure legends describe the details of the data plotted, including what statistical 

tests were performed, significance, and sample size. All code used to analyze and plot 

the data has been deposited at https://github.com/zeitlingerlab/Brennan_Zelda_2023 and 

software information is presented in the key resources table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Deep learning identifies DNA sequence rules of TFs in the early Drosophila 
embryo

• Zelda consistently pioneers chromatin accessibility proportional to motif 

affinity

• Activators depend on Zelda and augment accessibility when mediating 

activation

• Chromatin accessibility comes from pioneering and sequence context-

dependent activation
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Figure 1. BPNet predicts a hierarchical relationship between Zelda and patterning TFs in the 
early Drosophila embryo
(A) ChIP-nexus produced high-resolution, strand-specific binding of Zelda (Zld), GAGA 

factor (GAF), Bicoid (Bcd), Caudal (Cad), Dorsal (Dl), and Twist (Twi) in stage 5 embryos. 

A multi-task BPNet model was trained to predict TF binding from DNA sequence. See also 

Figures S1A and S2A–S2B.

(B) Identified motifs are shown as a frequency-based position weight matrix (PWM) and as 

a contribution weight matrix (CWM), which are highly similar for all TFs. See also Figure 

S2C.

(C) Average ChIP-nexus TF binding footprints show that motifs directly bound by a TF 

have sharp footprints. Strand-specific data (+ strand on top; − strand at bottom) in reads per 

million (RPM) were averaged centered on each motif.

(D) BPNet’s predictive accuracy illustrated at the sog shadow enhancer, which was withheld 

during training. Observed (Obs) ChIP-nexus data are shown above the BPNet-predicted 

(Pred) data. Motifs contributing to the predictions are found below. Additional enhancers are 

provided in Figure S3.

(E) The average counts contribution score for all mapped motifs toward the binding of each 

TF reveals that the Zelda motif contributes to the binding of all TFs, but not vice versa, 

indicating a hierarchical relationship. Darker colors indicate that a motif (y axis) has a 

higher contribution score (shown on log scale) to the binding of a TF (x axis).
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(F) In silico injections of motifs into randomized sequences confirm that the Zelda motif is 

predicted to boost the binding of all TFs, while the GAF motif boosts only GAF’s binding. 

TF binding was predicted by BPNet when each motif was alone and when a Zelda motif 

(left), or a GAF motif (right), was injected at a given distance, up to 400 bp away (x axis). 

The average fold-change binding enhancement in the presence of Zelda/GAF is shown on 

the y axis.

(G) When mutating a Zelda motif in the sog shadow enhancer, BPNet predicts reduced 

binding of all TFs, while mutating a Dorsal motif has a smaller but notable effect. 

Predicted binding at the wild-type sequence (red) is overlaid with the predicted binding 

when individual motifs are computationally mutated (gray). Blue bars highlight the mutated 

motifs; gray bars are all other mapped motifs. See also Figure S3.
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Figure 2. ChromBPNet reveals distinct contributions from pioneers and patterning TFs in early 
Drosophila embryos
(A) ATAC-seq experiments were performed in four 30-min windows on hand-sorted 

embryos. See also Figure S1B.

(B) ChromBPNet predicts bias-free chromatin accessibility at base-resolution. A bias model 

is first trained on ATAC-seq data at closed genomic regions to learn baseline Tn5 sequence 

bias, then frozen and used for training alongside a second, residual BPNet model on open 

ATAC-seq regions. When the bias model is removed, the residual model predicts the bias-

removed ATAC-seq data. See also Figures S2D–S2H.
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(C) ChromBPNet accurately predicts accessibility at the sog shadow enhancer (2.5–3 

h data). Experimentally generated ATAC-seq data are shown as conventional fragment 

coverage (first track) and Tn5 cut site coverage (second track), which closely mirrors 

ChromBPNet’s prediction from the combined model (third track). After removing the bias 

model, ChromBPNet’s predicted profile is more evenly distributed (fourth track). The counts 

contribution scores for each base across the enhancer (fifth track) shows spikes at BPNet-

mapped motifs. Additional enhancers provided in Figures S4A–S4D.

(D) ChromBPNet predicts the effect of mutating a Zelda (left), Dorsal (middle), and Twist 

(right) motif at the sog shadow enhancer for each time point (same motifs as in Figure 1G). 

Mutating the Zelda motif had the largest effect on chromatin accessibility, while the Dorsal 

motif mutation lowered accessibility to a lesser extent and only at later time points. See also 

Figures S4E–S4H.

(E) Average counts contribution scores for each BPNet-mapped motif (y axis) for all time 

points (x axis) show that pioneering motifs contribute to chromatin accessibility at all time 

points, whereas patterning TF motifs have a lesser contribution that is limited to later time 

points. See also Figure S2I–S2K.

(F) Pioneer TF motifs show a three-way correlation between binding contribution, 

accessibility contribution, and motif strength. Patterning TFs show much weaker, time 

point-specific relationships, suggesting context-dependent behavior. For each bound and 

accessible motif for all TFs, the binding counts contribution scores (x axis) and accessibility 

counts contribution scores (y axis) are plotted. The motif strength (color scale) represents the 

rank percentile of the PWM match scores. Pearson correlation values (r) and coefficient of 

determination R2 values were calculated. Red lines are shown for plots with an r > 0.3.
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Figure 3. The pioneer TF Zelda reads out motif affinity to drive chromatin accessibility
(A) The Zelda-binding contributions from the BPNet model reflect the known Zelda motif 

affinities. Zelda motif sequences, ordered by their counts contribution scores to Zelda 

binding, are shown from high (top) to low (bottom). Motif logos for the highest and lowest 

quartiles mainly differ in the first and last base of the 7-mer sequence. See also Figure S5A.

(B) The model-derived motif strengths strongly correlate with experimentally measured 

Zelda motif affinities. Shown for all mapped Zelda motif 7-mer sequences and a negative 

control (TATCGAT) are: the rank percentile of their PWM match scores (orange), the 
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median Z scores from Zelda protein-binding microarray (PBM) experiments (green), and 

the marginalized effects predicted by the trained BPNet (blue) and ChromBPNet (gold). See 

also Figure S5B.

(C) Confocal images of stage 5 embryos show strong Zelda protein depletion in zld− versus 

wt embryos.

(D) Chromatin accessibility is significantly reduced at ATAC-seq peaks containing mapped 

Zelda motifs. Using DESeq2, the log2-fold changes between wt and zld− embryos were 

calculated for each peak region over time, and the median values among the four time points 

were plotted. Peaks containing Zelda motifs are significantly different from control peaks 

without Zelda motifs (Wilcoxon rank-sum test, p < 2e−16). See also Figures S1C and S5C.

(E) Zelda motif strength determines the reduction in chromatin accessibility in zld− 

embryos. Individual examples of normalized accessibility in wt (shaded profile) and zld− 

(black line) embryos are shown at a high-affinity Zelda motif (CAGGTAG, left) and a 

low-affinity Zelda motif (TAGGTAG, middle), with the GAF motif (right) as a control. No 

other BPNet-mapped motifs are found within these regions.

(F) Average chromatin accessibility profiles for wt and zld− embryos show that high- and 

low-affinity motifs both facilitate Zelda’s pioneering, but low-affinity motifs do so to a 

lesser extent. Among regions that only contain a single Zelda motif, those with the 250 

highest- and 250 lowest-affinity motifs were selected (summarized as motif logos). GAF 

motifs were used as control. Anchored on these Zelda motifs, the average profiles of 

normalized ATAC-seq data are shown for wt (colored lines) and zld− embryos (dotted black 

lines). Motifs mapping to promoters were excluded, as in ChromBPNet training. See also 

Figures S5D–S5E.

(G) Average ChromBPNet-predicted chromatin accessibility (bias-corrected cut site 

coverage) at the same high- and low-affinity Zelda motif regions for the wt sequences and 

after computationally mutating the Zelda motifs. The results confirm that ChromBPNet has 

learned the effects of Zelda motif affinity.

(H) BPNet has also learned that low-affinity Zelda motifs boost TF binding less than 

high-affinity motifs. TF motifs were injected into randomized sequences with either a 

high-affinity Zelda motif (CAGGTAG) or a low-affinity Zelda motif (TAGGTAG) at a given 

distance away for up to 200 bp, and the average TF binding enhancement over no added 

Zelda was predicted (y axis). See also Figures S5G–S5H.
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Figure 4. Patterning TFs increase chromatin accessibility in a context-dependent manner
(A) Schematic summary of motif islands. Motif islands are generated by first resizing all 

BPNet-mapped and bound motifs to 200 bp wide. Next, overlapping regions are merged and 

classified based on the motifs that compose them. See also Table S1.

(B) Islands with combinations of Zelda and patterning TF motifs contain the highest 

chromatin accessibility, nucleosome depletion, active enhancer histone modifications, and 

known enhancer overlap. For each motif island type with a specific motif composition (y 

axis), the median normalized ATAC-seq fragment coverage, MNase-seq signal, H3K27ac 

ChIP-seq signal, H3K4me1 ChIP-seq signal and the overlap with enhancers active in 2–4 h 

AEL74 embryos are shown via the color scale. The red bar highlights islands that contain 

only Zelda motifs, and islands are ordered by total ATAC-seq signal. See also Figures S1D–

S1E and S5F.
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(C) Individual island examples, where colored bars indicate BPNet-mapped motifs (blue = 

Zld, magenta = Dl, green = Twi).

(D) Chromatin accessibility is most strongly reduced in zld− embryos at islands containing 

Zelda and patterning TF motifs. Using DESeq2, log2-fold changes in ATAC-seq signal 

between wt and zld− embryos were calculated for each island, and their median changes 

across the time points are shown. Islands that contain patterning TF motifs in addition to 

Zelda motifs show significantly more changes than those with Zelda motifs only, e.g., the 

difference between Zld and Dl_Zld islands (p = 8.3e−11, Wilcoxon rank-sum test) and Zld 

and Dl_Twi_Zld islands (p < 2.22e−16, Wilcoxon rank-sum test).
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Figure 5. Patterning transcription factors increase chromatin accessibility through 
transcriptional activation
(A) Dorsoventral patterning in the early Drosophila embryo occurs through a nuclear 

concentration gradient of the Dorsal TF, which activates mesodermal and neuroectodermal 

target genes but represses dorsal ectodermal genes. Dorsal repression occurs through 

Capicua, whose binding at these regions depends on Dorsal and which recruits the co-

repressor Groucho.

(B) In embryos lacking nuclear Dorsal (gd7), chromatin accessibility is specifically 

reduced at Dorsal-activated enhancers but not at Dorsal-repressed enhancers. Differential 

Brennan et al. Page 47

Dev Cell. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accessibility was calculated between wt and gd7 embryos for all time points and the MA 

plot for the 2.5–3 h AEL time point is shown. Red dots represent statistically significant 

differences (false discovery rate [FDR] = 0.05). Known dorsoventral enhancers are colored 

by the tissue type in which they are active. See also Figures S1F and S6A–S6B.

(C) Mesoderm enhancers, as characterized previously108 (n = 416), have significantly 

reduced chromatin accessibility in gd7 embryos when they are inactive (Wilcoxon rank-sum 

tests, four asterisks: p < 0.0001). Normalized ATAC-seq fragment coverage was calculated 

across 1 kb centered on each enhancer. See also Figure S6C.

(D) Dorsal ectoderm enhancers108 (n = 380) gain chromatin accessibility in gd7 embryos 

where they are not repressed by Dorsal.

(E) In cic6 embryos, where Capicua’s interaction with Groucho is abrogated and Dorsal 

can no longer repress, chromatin accessibility is increased at Dorsal-repressed enhancers. 

Differential accessibility analysis between wt and cic6 embryos was performed as in (B). See 

also Figures S1G and S6D–S6E.

(F) Chromatin accessibility and target gene activation do not always correlate (dashed red 

box). ATAC-seq data at a Dorsal-repressed enhancer (tld) and Dorsal-activated enhancer 

(sog shadow) upon loss of Zelda (zld−), nuclear Dorsal (gd7), and Dorsal-mediated 

repression (cic6) are shown on top as normalized ATAC-seq fragment coverage from 

the 2.5–3 h AEL time point across 1.5 kb windows: dm6 coordinates chr3R:24,748,748–

24,750,248 (tld) and chrX:15,646,300–15,647,800 (sog shadow). The wt ATAC-seq 

maximum value is marked as a dotted gray line. Colored bars are BPNet-mapped motifs 

listed below. Multiplexed hybridization chain reaction experiments show sog and tld 
expression in stage 5 wt, zld−, gd7, and cic6 mutant embryos (scale is 100 um). Note that sog 
expression is partially reduced upon loss of Zelda’s pioneering, but completely gone upon 

loss of Dorsal. Meanwhile, tld expression is ablated in the absence of Zelda but expands 

upon loss of Dorsal or Dorsal-mediated repression. See also Figures S6F–S6G.
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Figure 6. Pioneering and enhancer activation increase chromatin accessibility
Chromatin accessibility at enhancers is established in a two-tier process that involves 

pioneering and activation. The pioneer Zelda bestows basal chromatin accessibility at 

enhancers without necessarily activating them. It does so by reading out its motif affinity 

on nucleosomal DNA and producing a consistent effect that is not dependent on the 

surrounding motif combination. The accessible DNA then allows the binding of patterning 

TFs such as Dorsal. Activation occurs when patterning TFs bind at high concentrations 

and enable the formation of hubs through multivalent weak interactions with each other 

and cofactors such as histone acetyltransferases. Whether or not Zelda is present in these 

hubs is unclear. Since enhancer activation through hubs is DNA-templated, it is inherently 

dependent on the motif combination within the enhancer. How enhancer activation increases 

chromatin accessibility further is not clear, possibly due to histone acetylation and the highly 

dynamic nature of hubs.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-Zelda Koenecke et al.108 366735–1

Rabbit polyclonal anti-Bicoid This paper U9982EL040–1

Rabbit polyclonal anti-Caudal This paper U4197EL190–1

Rabbit polyclonal anti-Dorsal He et al.58 126740–44

Rabbit polyclonal anti-Twist He et al.58 131424–2

Rabbit polyclonal anti-GAF This paper 163185–42

Rabbit polyclonal anti-H3K27ac Active Motif 39133; RRID: AB_2561016

Mouse monoclonal anti-H3K4me1 Active Motif 39635; RRID: AB_2793284

Anti-rabbit IgG Alexa Fluor 568 secondary antibody ThermoFisher A10042; RRID: AB_2534017

Chemicals, peptides, and recombinant proteins

37% formaldehyde solution VWR Cat# 50–00-0

Dynabeads Protein A ThermoFisher Cat# 10008D

phi29 DNA polymerase New England 
Biolabs

Cat# M0269S

Lambda exonuclease New England 
Biolabs

Cat# M0262S

Q5 High-Fidelity 2x Master Mix New England 
Biolabs

Cat# M0492S

dNTP solution mix New England 
Biolabs

Cat# N0447S

MNase New England 
Biolabs

Cat# M0247S

RNase A ThermoFisher Cat# EN0531

Phenol:chloroform:isoamyl alcohol (25:24:1) (v/v/v) VWR Cat# 136112–00-0

Proteinase K ThermoFisher Cat# 25530049

Western Blocking Reagent Millipore Sigma Cat# 11921681001

ProLong Gold Antifade Mountant with DAPI ThermoFisher Cat# P36931

OptiPrep Density Gradient Medium Millipore Sigma Cat# D1556

ProLong Glass Antifade Mountant ThermoFisher Cat# P36980

Critical commercial assays

End Repair Module New England 
Biolabs

Cat# E6050S

dA-Tailing Module New England 
Biolabs

Cat# E6053S

Quick Ligation Kit New England 
Biolabs

Cat# M2200S

High Throughput Library Prep Kit KAPA 
Biosystems

Cat# KK8234

Monarch DNA Gel Extraction Kit New England 
Biolabs

Cat# T1020
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REAGENT or RESOURCE SOURCE IDENTIFIER

Monarch PCR & DNA Cleanup Kit New England 
Biolabs

Cat# T1030

PURExpress In Vitro Protein Synthesis Kit New England 
Biolabs

Cat# E6800

Hybridization Chain Reaction (HCR) v3.0 Molecular 
Instruments

N/A

Deposited data

Raw and analyzed NGS and PBM data This paper GEO: GSE218852

Trained deep learning models (Zenodo) This paper Zenodo: https://zenodo.org/recore/8075860https://doi.org/
10.5281/zenodo.8118135

Raw images This paper ODR: http://www.stowers.org/research/publications/
libpb-2357

Experimental models: Organisms/strains

Drosophila melanogaster: Oregon-R Koenecke et al.108 FlyBase: FBsn0000276

Drosophila melanogaster: UAS-shRNA-zld: P{UAS-
zld.shRNA}

Sun et al.6 FlyBase: FBtp0147479

Drosophila melanogaster: Maternal Triple Driver (MTD)-
Gal4: P{COG-GAL4:VP16}; P{Gal4-nos.NGT}40; P{nos-
Gal4-VP16}

Bloomington 
Stock Center

BSC: 31777

Drosophila melanogaster: gd7: gd7/winscy, P{hs-hid}5 Koenecke et al.108 N/A

Drosophila melanogaster: cic6: cic6/TM3, Sb1 Papagianni et 
al.101

N/A

Oligonucleotides

Oligonucleotides for ChIP-nexus, see Table S2 IDT https://research.stowers.org/zeitlingerlab/protocols.html

Illumina Index primer 1: 5’-CAAGCAGAAGAC 
GGCATACGAGAT[i7]GTCTCGTGGGCTCGG-3’

IDT https://support-docs.illumina.com/SHARE/AdapterSeq/
1000000002694_17_illumina_adapter_sequences.pdf

Illumina Index primer 2: 5’-AATGATACGGCGACC 
ACCGAGATCTACAC[i5]TCGTCGGCAGCGTC-3’

IDT https://support-docs.illumina.com/SHARE/AdapterSeq/
1000000002694_17_illumina_adapter_sequences.pdf

Illumina Transposase adapter read 1 (Nextera A): 5’- 
TCGTCGGCAGCGTCAGATGTGTATAA GAGACAG-3’

IDT https://support-docs.illumina.com/SHARE/AdapterSeq/
1000000002694_17_illumina_adapter_sequences.pdf

Illumina Transposase adapter read 2 (Nextera B): 5’- 
GTCTCGTGGGCTCGGAGATGTGTATA AGAGACAG-3’

IDT https://support-docs.illumina.com/SHARE/AdapterSeq/
1000000002694_17_illumina_adapter_sequences.pdf

Mosaic end primer: /5Phos/CTGTCTCTTATAC A/3ddC/ IDT Tn5mC1.1-A1block

gd7 heat shock forward primer: 5’-GGAGCGAC 
AATTCAATTCAAACAAGC-3’

IDT N/A

gd7 heat shock reverse primer: 5’-GTAGCTGTG 
GCTGCAGTGCATCG-3’

IDT N/A

Recombinant DNA

pETM11-Sumo3-Tn5 plasmid Hennig et al.148 E54K,L372P

His6-tagged SenP2 protease plasmid Hennig et al.148 N/A

Software and algorithms

FIJI Schindelin et 
al.149

https://fiji.sc/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Cutadapt v.2.5 Martin154 https://cutadapt.readthedocs.io/en/v2.5/

Bowtie2 v.2.3.5.1 Langmead and 
Salzberg155

https://bowtie-bio.sourceforge.net/bowtie2/manual.shtml

MACS2 v.2.2.7.1 Zhang et al.156 https://github.com/macs3-project/MACS

Irreproducible Discovery Rate framework v.2.0.3 Li et al.157 https://github.com/nboley/idr

Picard v.2.23.8 Broad Institute of 
MIT and 
Harvard158

http://broadinstitute.github.io/picard

deepTools2 v.3.5.1 Ramírez et al.159 https://deeptools.readthedocs.io/en/latest/

BPNet software Avsec et al.59 https://github.com/kundajelab/bpnet/

Keras v.2.2.4 & v.2.5.0 Chollet et al.160 https://pypi.org/project/keras/

TensorFlow1 backend v.1.7 & v.2.5.1 Abadi et al.161 https://www.tensorflow.org/install/pip

Adam optimizer Kingma and 
Ba162

N/A

DeepLIFT v.0.6.9.0 Shrikumar et 
al.163

https://github.com/kundajelab/DeepExplain

TF-MoDISco v.0.5.3.0 & v.0.5.16.0 Shrikumar et 
al.164

https://github.com/kundajelab/tfmodisco

ChromBPNet software Anshul Kundaje’s 
lab, Stanford 
University

https://github.com/kundajelab/chrombpnet

DeepLIFT v.0.6.13.0 Shrikumar et 
al.163

https://github.com/kundajelab/shap

DESeq2 v.1.36.0 Love et al.109 https://bioconductor.org/packages/release/bioc/html/
DESeq2.html

R v.4.2.0 R core team https://www.r-project.org/

Rstudio RStudio https://rstudio.com

ggplot2 v.3.3.6 Wickham168 https://ggplot2.tidyverse.org/

Other

All code and analyses that contributed to this work This paper https://github.com/zeitlingerlab/
Brennan_Zelda_2023https://doi.org/10.5281/
zenodo.8118135

Bioruptor Pico sonication device Diagenode https://www.diagenode.com/en/p/bioruptor-pico-
sonication-device

Point scanning confocal microscope Zeiss 780

Spinning disk microscope Nikon Eclipse Ti2
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