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Abstract

Background: Intra-operative specimen mammography is a valuable tool in breast cancer 

surgery, providing immediate assessment of margins for a resected tumor. However, the accuracy 

of specimen mammography in detecting microscopic margin positivity is low. We sought to 

develop an artificial intelligence model to predict the pathologic margin status of resected breast 

tumors using specimen mammography.

Methods: A dataset of specimen mammography images matched with pathologic margin status 

was collected from our institution from 2017-2020. The dataset was randomly split into training, 

validation, and test sets. Specimen mammography models pre-trained on radiologic images were 

developed and compared with models pre-trained on non-medical images. Model performance was 

assessed using sensitivity, specificity, and area under the receiver operating characteristic curve 

(AUROC).

Results: The dataset included 821 images and 53% had positive margins. For three out of four 

model architectures tested, models pre-trained on radiologic images outperformed non-medical 

models. The highest performing model, InceptionV3, showed a sensitivity of 84%, a specificity of 

42%, and AUROC of 0.71. Model performance was better among patients with invasive cancers, 

less dense breasts, and non-White race.

Conclusions: This study developed and internally validated artificial intelligence models which 

predict pathologic margins status for partial mastectomy from specimen mammograms. The 

models’ accuracy compares favorably with the published literature on surgeon and radiologist 

interpretation of specimen mammography. With further development, these models could more 

precisely guide the extent of resection, potentially improving cosmesis and reducing re-operations.
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Introduction

Breast-conserving surgery with radiation is often the preferred approach for early-stage 

breast cancer, balancing oncologic resection and cosmesis.1 In this approach, obtaining 

negative margins is critical for reducing local recurrence. However, reported re-operation 

rates for positive margins remain high, at about 15%.2-6 Multiple interventions have 

attempted to identify positive margins intra-operatively, including specimen mammography.

Specimen mammography is a widely used technique that provides immediate feedback on 

the quality of resection and may assist surgeons with identifying suspicious margins and 

directing targeted removal of additional tissue.7 However, specimen mammography can be 

inaccurate, with sensitivity ranging from 20% to 58% and area under the receiver operating 

characteristic curve (AUROC) of ~0.7.8-11 A tool to assist clinicians with interpretation 

of specimen mammography for partial mastectomy would be beneficial for improving 

identification of positive margins and reducing rates of re-operation. This tool would be 

particularly useful for low-volume and low-resource centers, which see higher rates of 

positive margins.12

In addition, in part because of the limitations of specimen mammography and other intra-

operative margin assessment techniques, universal use of cavity shave margins has been 

adopted as a highly effective means of reducing positive margins.13 However, this technique 

does result in a higher volume of tissue resected and higher costs for pathology.14,15 An 

automated method of assessing the primary specimen could assist surgeons with selective 

use of cavity shave margins.

Deep learning, commonly referred to as artificial intelligence (AI), is an emerging field 

that has enabled computational interpretation of medical images.16 It has been extensively 

applied to screening mammography, with a recent systematic review identifying 82 relevant 

studies describing high accuracy for identifying breast cancer.17 Deep learning also shows 

promise for intra-operative use, with recent applications to the interpretation of laparoscopic 

video.18-20 However, deep learning has not yet been applied to intra-operative specimen 

mammography.

The goal of this study is to develop a computer vision model that can predict margin status 

for partial mastectomy based on specimen mammography alone. We hypothesized that this 

model could demonstrate clinically actionable accuracy and outperform human accuracy in 

predicting pathologic margin status.

Methods

Dataset

Prior to data collection, approval from the University of North Carolina Institutional 

Review Board (#20-1820) was obtained. We included all consecutive patients undergoing 

partial mastectomy for breast cancer, including invasive lobular carcinoma, invasive ductal 

carcinoma, and ductal carcinoma in situ (DCIS), for whom specimen mammography 

and pathologic margin status were available. Data was collected in two phases. First, 
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from 7/2017 to 6/2020, specimen mammograms were prospectively collected as part of 

a single surgeon’s quality assurance process. Second, from 8/2020 to 4/2022, specimen 

mammograms from four surgeons were collected specifically for this project. In the second 

phase of data collection, chart review of pre-operative mammography and pathology records 

was used to obtain additional clinical information including age, race/ethnicity, BMI, breast 

density,21 tumor type, and tumor grade.

A single 2D, anterior-posterior image was selected for each specimen. All images 

were obtained using a Faxitron® Trident® HD Specimen Radiography System (Hologic, 

Marlborough, Massachusetts), intra-operatively, immediately after resection of the 

specimen. Our institution’s process for margin processing/analysis is to obtain a specimen 

mammogram, which is interpreted intra-operatively by a breast radiologist, routinely obtain 

cavity shave margins, and submit the primary specimen and margins for formal pathology.

Primary outcome

Using retrospective chart review, specimen mammograms were matched with pathology 

reports and categorized into positive and negative classes based on National Comprehensive 

Cancer Network (NCCN) guidelines.22 For specimens with invasive cancer, a positive 

margin was defined as “ink on tumor.” For specimens with DCIS, a positive margin was 

defined as DCIS within 2mm of the margin. For specimens containing both DCIS and 

invasive cancer, but with DCIS within 2mm of the margin or mixed pathology, we elected 

to categorize this pathology as positive, acknowledging that, clinically, this result is treated 

as negative. We used this approach for model training to maximize the sensitivity of the 

model for DCIS margins and avoid training the model to ignore DCIS in specimens with 

invasive cancer. In addition, we used specimen mammograms and pathologic margin status 

of the main specimen, excluding cavity shave margins, which were routinely used, but not 

routinely imaged.

Data processing

The dataset was divided randomly into training, validation, and test sets in a 60/20/20 ratio. 

A single anterior-posterior image was used for each specimen and resized to 512 x 512 

pixels. The training set underwent standard data augmentation including random flipping 

(vertically and horizontally), zoom, shifts (horizontal and vertical), and rotation.23

Pre-training Datasets

We compared two different pre-training strategies. First, we used models from the 

RadImageNet project, which developed pre-trained models based on 1.35 million annotated 

medical images.24 In contrast, prior medical computer vision projects have often relied on 

ImageNet, which is a large database of >14 million images. However, ImageNet includes 

largely images of non-medical objects, such as balloons or strawberries.25 We compared 

the performance of “radiology-specific models,” pre-trained on RadImageNet, with “general 

models,” pre-trained on ImageNet.
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Modeling

We developed models based on the architectures used by the RadImageNet project, 

including ResNet-50, InceptionV3, Inception-ResNet-v2, and DenseNet-121.24 These are 

different types of convolutional neural networks, a type of AI model specifically used for 

computer vision. To this end, we implemented eight models: one of each base architecture 

pre-trained on RadImageNet and one of each pre-trained on ImageNet. After the highest 

performing model type and pre-training strategy was identified, the model was further 

optimized. Additional details on model development are available in the GitHub repository 

referenced at the end of this section. A diagram of the model is shown in Figure 1a.

Model evaluation

Model performance for predicting pathologic margin status was assessed primarily using 

area under the receiver operating curve (AUROC). This is a classification metric that 

assesses a model’s ability to distinguish positive from negative cases and ranges from 0.5 at 

the worst, to 1 at the best. For the highest performing model (based on AUROC), evaluation 

metrics were calculated for categories within tumor type, breast density, and race/ethnicity 

because screening mammography has previously been shown to have different accuracy 

within these groups.26,27 For this analysis, sensitivity, specificity, positive predictive value 

(PPV), negative predictive value (NPV), and area under the precision-recall curve (AUPRC) 

were also calculated. In addition, Grad-CAM was used to create saliency maps to assess 

pixel importance for 10 randomly selected images from the test set and these were visually 

assessed.28 Figure 1b shows the overall workflow for model development and evaluation.

Models were implemented and evaluated using the Python (version 3.8) libraries scikit-learn 

and Tensorflow/Keras.29,30 An NVIDIA RTX A4500 graphics card (NVIDIA, Santa Clara, 

CA) was used for model training and validation. For characterization of the cohort, Chi-

squared test was used to compare categorical variables and T-test to compare continuous 

variables, using the tableone package.31 Code to reproduce this work and additional details 

on methods are available at github.com/gomezlab/cvsm.

Results

The dataset included 806 images. Of these, 450 were collected in the first, single surgeon 

phase, while 356 were collected in the second, multiple surgeon phase. 431 (52.5%) images 

had positive margins in the main specimen without considering cavity shave margins. 

Representative images for each classification are shown in Figure 3. Within the positive 

margin classification, 128 had mixed pathology with both invasive cancer and DCIS 2mm 

from the margin. The average age was 60 and most patients had IDC (70.0%) or DCIS 

(21.3%). Non-Hispanic White patients comprised 70.1% of the cohort, compared with 

18.1% Non-Hispanic Black and 7.8% Hispanic. Most patients had a breast density of B 

(scattered fibroglandular densities) (45.8%) or C (heterogeneously dense) (36.9%). Patients 

with infiltrating ductal carcinoma who had a tumor grade of 2 were more likely to have 

positive margins (Table 1). After splitting into training, validation, and testing groups, 485 

images were used for training, 160 for validation, and 161 for testing.
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We first compared the performance of models pre-trained on radiologic images 

(RadImageNet), compared with models pre-trained on general images (ImageNet). Overall, 

radiology-specific models showed higher accuracy compared with general models with 

AUROC 0.63 to 0.71 vs. 0.46 – 0.68, respectively. Each of the model types tested showed 

higher performance with radiology-specific pre-training, except for one (DenseNet121), 

and performance was similar between the two pre-training strategies in this case (AUROC 

0.66 vs 0.68). The highest performing model was InceptionV3 with radiology-specific 

pre-training. Receiver operating characteristic and precision-recall curves are shown for all 

models in Figure 4.

Based on this analysis, InceptionV3 with radiology-specific pre-training was further 

optimized. This model showed an AUROC of 0.71, AUPRC of 0.73, sensitivity of 85%, 

specificity of 45%, positive predictive value of 62%, and negative predictive value of 70%. 

In subset analysis, we found that model performance was worse for DCIS (AUROC 0.65) 

compared with invasive ductal carcinoma (AUROC 0.71) and invasive lobular carcinoma 

(AUROC 0.75). We also found that model performance was worse for extremely dense 

breast tissue (category D) compared with less dense breast tissue (Table 2). For race/

ethnicity, model performance was worse for Non-Hispanic White patients compared with 

non-White patients, although this difference appeared to be partially driven by breast 

density, with 14% of Non-Hispanic White patients having category D breast density, 

compared with 9% of non-White patients (Table 3).

To improve model interpretability, or understanding what parts of the image contributed the 

most to model decision-making, we assessed where the attention of the model was focused. 

In most cases, models pre-trained on radiologic images had attention focused on relevant 

parts of the image, such as localization wires, biopsy clips, and areas of tumor, while models 

pre-trained on non-medical images did not (Figure 5).

Discussion

This project developed an artificial intelligence model that predicts the pathologic margin 

status of partial mastectomy specimens based on specimen mammograms. Pre-training with 

radiology images was found to improve model predictions compared with pre-training with 

non-medical images. With an internal test set, the model showed a sensitivity of 85%, a 

specificity of 45%, and AUROC of 0.71. Analysis of pixel importance suggested that model 

attention was focused on relevant portions of the image.

Despite advances in intra-operative margin assessment, the rate of positive margins after 

partial mastectomy remains high.3 In fact, due to limitations in visual, tactile, and 

radiographic intraoperative assessment of margins, cavity shave margins have been widely 

adopted to reduce the rate of positive margins.13,14 Still, specimen mammography is a 

widely used method that benefits from its availability within the operating room and its 

ability to provide immediate feedback. Because of this, specimen imaging for non-palpable 

lesions is recommended by the Collaborative Attempt to Lower Lumpectomy Reoperation 

rates (CALLER) toolbox.32 However, the diagnostic accuracy of specimen mammography 

is highly variable and relatively low, with reported sensitivity ranging from 20-58%.8-11 A 
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meta-analysis of nine studies showed a pooled sensitivity of 53% (95% CI 45 – 61%) with 

a pooled specificity of 84% (95% CI 77 - 89%).33 AUROC is similarly variable, but low, 

ranging from 0.60 to 0.73.33-37 Our models’ accuracy metrics are higher than many previous 

results published in the literature, demonstrating the potential of this approach.

Another interesting finding from our study was that our model showed lower accuracy 

in predicting margin status among patients with the highest breast density (category D). 

This is expected, given similar findings for screening mammography, but has not been 

previously reported for specimen mammography.27 In contrast to previous studies applying 

artificial intelligence (AI) to mammography, our models show higher accuracy among non-

White patients compared with White patients.26 This difference may be because non-White 

patients are well-represented within our dataset and because of the higher percentage of 

category D breast density among White patients in this study. In addition, our study agrees 

with previous literature showing that DCIS margins are particularly difficult to assess using 

specimen mammography.7,38 Use of a larger training set focused on DCIS alone may be 

necessary to overcome this limitation.

More generally, the overall performance of our models agrees with other recent advances 

in computer vision classification of mammograms that show improved accuracy when 

radiologists are assisted by AI.39-41 Recently, AI has also been successfully applied to 

laparoscopic video, demonstrating its potential to assist with real-time, intra-operative 

decision-making.42-44 AI-assisted interpretation of specimen mammography may function 

similarly., Low-volume or low-resource centers that lack access to dedicated breast 

surgeons or radiologists have the highest rates of positive margins and may benefit most 

from AI-assistance, raising the potential for these systems to improve equity in surgical 

outcomes.12,45 AI-assisted clinical decision-support systems would be most useful to these 

clinicians and thus have the potential to improve equity in surgical outcomes for their 

patients.46

There are two clinical scenarios that would specifically benefit from our models. First, 

if a positive margin was predicted, this could guide additional resection. Alternatively, 

identifying negative margins on the primary specimen could allow precise patient-specific 

omission of cavity shave margins which could decrease the overall volume of resection, 

improve cosmesis, and decrease costs related to pathology.15 Because of cavity shave 

margins, we were not able to develop a model for margin positivity based on the final 

margin, so we focused on the second scenario, confidently identifying negative margins. 

To maximize the negative predictive value, we trained the model on the widest margin 

guideline, DCIS. We chose this approach to maximize the negative predictive value, and 

because false positives in this setting are less problematic as the patient would simply 

receive routine cavity shave margins. The threshold of NPV for clinical use is an open 

question and dependent on individual surgeon judgment. However, further development of 

these models is warranted, including collection of a larger dataset to ensure reliability across 

different imaging hardware and institutions and mammography-specific transfer learning to 

improve model accuracy.
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This project has several limitations. First, the accuracy and generalizability of the model is 

most significantly limited by the size and single-institution nature of the dataset. A larger, 

multi-institutional dataset would likely result in a more accurate and robust model and could 

verify its external validity. Second, the rate of positive margins is higher than previously 

reported because of our exclusion of cavity shave margins and use of DCIS margins in 

mixed invasive cancer/DCIS pathology.3 This approach maximizes the sensitivity of the 

model for DCIS margins, reduces false negatives, and results in a single model which can 

be used for all cases. Third, our model does not identify which side of the specimen may 

have a positive margin. Leveraging model attention techniques to automatically localize 

image features associated with a positive margin is possible and represents a direction for 

future research.47,48 Finally, we did not assess radiologist or surgeon accuracy for margin 

prediction on our dataset, although this is likely to be similar to previous literature.

More recent imaging techniques, such as 3D tomosynthesis or optical coherence 

tomography, may also be more accurate compared with 2D specimen mammography and 

result in improved models.49-51 In addition, trials of new technologies for margin assessment 

such as fluorescence and spectroscopy have shown promising results .52-57 However, these 

devices require purchase of costly hardware and carry the risk of allergic reaction. In 

contrast, the current approach has the advantage of using widely available systems.

Conclusion

In conclusion, we developed a prototype model that predicts the pathologic margin status 

of partial mastectomy specimens based on intra-operative specimen mammography. The 

model’s predictions compare highly favorably with human interpretation. Optimized and 

externally validated versions of this model could assist surgeons with predicting margin 

status intra-operatively, guide selective use of cavity shave margins, and ultimately reduce 

the need for re-operation in breast-conserving surgery.
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Synopsis

Specimen mammography can assess specimen adequacy following partial mastectomy 

for breast cancer. This study developed and internally validated an artificial intelligence 

model to predict pathologic margin status from specimen mammograms, with 

comparable accuracy to surgeons and radiologists.
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Figure 1. 
A - Diagram of model structure, B - Flowchart of study design
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Figure 2. 
Example specimen mammograms by margin status classification
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Figure 3. 
Receiver operating characteristic and precision-recall curves for models predicting margin 

status
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Figure 4. 
Analysis of pixel importance for radiology-specific and general models. Red/yellow 

indicates higher importance
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Table 1.

Demographic and clinical characteristics

Overall Margin (−) Margin
(+)

P-Value

n 357 139 218

Age, mean (SD) 60.5 (13.1) 59.2 (12.9) 61.4 (13.2) 0.109

Race/Ethnicity, n (%) Asian 11 (3.1) 6 (4.3) 5 (2.3) 0.082

Hispanic 27 (7.6) 7 (5.0) 20 (9.2)

Non-Hispanic Black 63 (17.6) 22 (15.8) 41 (18.8)

Non-Hispanic White 253 (70.9) 101 (72.7) 152 (69.7)

Other/Unknown 3 (0.8) 3 (2.2)

Density, n (%) A 17 (4.8) 6 (4.3) 11 (5.0) 0.651

B 164 (45.9) 59 (42.4) 105 (48.2)

C 130 (36.4) 56 (40.3) 74 (33.9)

D 46 (12.9) 18 (12.9) 28 (12.8)

Tumor Type, n (%) DCIS 76 (21.3) 30 (21.6) 46 (21.1) 0.925

IDC 250 (70.0) 96 (69.1) 154 (70.6)

ILC 31 (8.7) 13 (9.4) 18 (8.3)

Grade, n (%) DCIS, n (%) 1 8 (11.9) 5 (17.9) 3 (7.7) 0.399

2 31 (46.3) 13 (46.4) 18 (46.2)

3 28 (41.8) 10 (35.7) 18 (46.2)

IDC, n (%) 1 69 (28.6) 25 (27.2) 44 (29.5) <0.001

2 99 (41.1) 26 (28.3) 73 (49.0)

3 73 (30.3) 41 (44.6) 32 (21.5)

ILC, n (%) 1 7 (22.6) 3 (23.1) 4 (22.2) 0.482

2 23 (74.2) 9 (69.2) 14 (77.8)

3 1 (3.2) 1 (7.7) 0 (0.0)

BMI – Body mass index, DCIS – Ductal carcinoma in situ, IDC – Invasive ductal carcinoma, ILC – invasive lobular carcinoma
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Table 2.

Model accuracy metrics by breast tissue density category

Density
Category

AUROC AUPRC Sensitivity Specificity PPV NPV

A 0.758 0.877 0.818 0.333 0.692 0.500

B 0.682 0.773 0.875 0.339 0.700 0.606

C 0.756 0.787 0.865 0.357 0.640 0.667

D 0.542 0.614 0.786 0.278 0.629 0.455

Add breast density categories. AUROC – area under the receiver operating characteristic curve, AUPRC – area under the precision-recall curves, 
PPV – positive predictive value, NPV – negative predictive value
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Table 3.

Model accuracy metrics by race/ethnicity category

Race/Ethnicity
Category

AUROC AUPRC Sensitivity Specificity PPV NPV

Asian 0.800 0.832 0.800 0.333 0.500 0.667

Hispanic 0.793 0.892 0.900 0.714 0.900 0.714

Non-Hispanic Black 0.737 0.845 0.829 0.364 0.708 0.533

Non-Hispanic White 0.667 0.728 0.861 0.307 0.65 0.596

AUROC – area under the receiver operating characteristic curve, AUPRC – area under the precision-recall curves, PPV – positive predictive value, 
NPV – negative predictive value
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