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Abstract

FGFR3 and PIK3CA are among the most frequently mutated genes in bladder tumors. We 

hypothesized that recurrent mutations in these genes might be caused by common carcinogenic 
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exposures such as smoking and other factors. We analyzed 2,816 bladder tumors with available 

data on FGFR3 and/or PIK3CA mutations, focusing on the most recurrent mutations detected in 

≥10% of tumors. Compared to tumors with other FGFR3/PIK3CA mutations, FGFR3-Y375C was 

more common in tumors from smokers than never-smokers (p=0.009), while several APOBEC-

type driver mutations were enriched in never-smokers: FGFR3-S249C (p=0.013) and PIK3CA-

E542K/PIK3CA-E545K (p=0.009). To explore possible causes of these APOBEC-type mutations, 

we analyzed RNA-seq data from 798 bladder tumors and detected several viruses, with BK 

polyomavirus (BKPyV) being the most common. We then performed immunohistochemical (IHC) 

staining for polyomavirus (PyV) Large T-antigen (LTAg) in an independent set of 211 bladder 

tumors. Overall, by RNA-seq or IHC-LTAg, we detected PyV in 26 out of 1,010 bladder tumors 

with significantly higher detection (p=4.4 × 10−5), 25/554 (4.5%) in non-muscle-invasive bladder 

cancers (NMIBC) versus 1/456 (0.2%) of muscle-invasive bladder cancers (MIBC). In the NMIBC 

subset, the FGFR3/PIK3CA APOBEC-type driver mutations were detected in 94.7% (18/19) of 

PyV-positive vs. 68.3% (259/379) of PyV-negative tumors (p=0.011). BKPyV tumor positivity in 

the NMIBC subset with FGFR3- or PIK3CA-mutated tumors was also associated with a higher 

risk of progression to MIBC (p=0.019). In conclusion, our results support smoking and BKPyV 

infection as risk factors contributing to bladder tumorigenesis in the general patient population 

through distinct molecular mechanisms.
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INTRODUCTION

Urinary bladder cancer (BC) is the tenth most common malignancy worldwide (1). The 

majority of patients present with non-muscle-invasive bladder cancer (NMIBC, 75%), which 

is highly recurrent (~65%) (2) but has a high 5-year survival rate of 70–96% (3). In contrast, 

the less common but more advanced form, muscle-invasive bladder cancer (MIBC, 25%), 

has a high metastatic potential with a 5-year survival rate of <50% (3,4). Some NMIBC 

(10–25%) progress to MIBC (4).

Risk factors for BC include environmental exposures such as cigarette smoke, which 

explains over 50% of BC risk (5), and various occupational chemicals (6). Additionally, 

BC risk is significantly increased in carriers of certain germline genetic variants (7). 

Carcinogenic exposures may generate recurrent somatic mutations that can be studied 

individually or as mutational signatures (8). Thus, mutational analysis can help establish 

the causality of various risk factors. The mutation spectrum in bladder tumors differs 

significantly between NMIBC and MIBC. Specifically, the oncogenes FGFR3 and PIK3CA 
are the most frequently mutated genes in NMIBC, with mutations occurring in 65% and 

25% of tumors, respectively (4). In contrast, tumor suppressor genes are most commonly 

mutated in MIBC, with only ~15% of MIBC carrying an FGFR3 or PIK3CA mutation (4).

We hypothesized that understanding the etiologies of common driver mutations can pinpoint 

causal risk factors for BC. In turn, these findings can help elucidate oncogenic mechanisms 
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and inform prevention, outcomes and treatment options for BC. Here, we explored the 

association between BC risk factors and recurrent FGFR3 and PIK3CA mutations in tumors.

MATERIALS & METHODS

Bladder cancer samples

Mutation data for a total of 2,816 BC patients (1,573 NMIBC and 1,243 MIBC) with 

available smoking history and tumor stage were pooled from 7 independent studies: Spanish 

Bladder Cancer Study (SBCS) (9,10), UROMOL (11), New England Bladder Cancer Study 

(NEBCS) (12), Dana-Farber (13), MSK-IMPACT (14), TCGA-BLCA (15), and Solit (16). 

The per-cohort summary of the data is presented in Table S1. Several studies used targeted 

sequencing panels: NEBCS (44 genes), Dana-Farber (237 genes), MSK-IMPACT (341- 

and 410-gene panels), and Solit (~240 genes). SBCS profiled FGFR3 mutations with a 

SNAPshot assay or targeted sequencing (9,17). Mutations in UROMOL were analyzed 

based on RNA-seq and in TCGA-BLCA based on whole-exome sequencing data. Data 

for MSK-IMPACT, TCGA-BLCA and Solit were retrieved from cBioPortal (18) in 2019; 

Dana-Farber data was downloaded from published supplementary materials (13), and data 

for SBCS, UROMOL (European Genome-Phenome Archive (EGAD00001002717)), and 

NEBCS were provided by the co-authors of the paper.

Data on lifetime occupational history was available only for NEBCS (19). Somatic mutation 

data for FGFR3 and PIK3CA genes was available in all studies except for SBCS, for which 

PIK3CA mutation data was unavailable. All somatic mutations, including synonymous, 

non-synonymous and indels, were used in the analyses.

Analysis of viral transcriptome in RNA-seq of bladder tumors

The unaligned RNA-seq reads for the UROMOL and TCGA-BLCA tumors were de 
novo assembled using MegaHit (version 1.2.9, RRID:SCR_018551) (20). The non-human 

contigs were annotated using BLAST search (blastn, RRID:SCR_001598) against the 

total NCBI nucleotide (nt) database as of November 2019. RNA-seq reads were also 

aligned against a fusion reference genome that included human genome (hg38) and 

representative GenBank sequences of 1,126 human viruses (Table S2) using STAR 

version 2.5.3ab (RRID:SCR_004463) (21). The total numbers of viral reads were counted 

from the STAR alignments and by aligning the raw reads back to the contigs using 

bowtie2 (RRID:SCR_016368) and picard BamIndexStats (http://broadinstitute.github.io/

picard, v2.20.8). Coverage plots normalized against all human reads were generated from 

these alignments using bedtools genomecov (v2.29.0) and the R (v3.6.2) package ggplot2. 

All genomic analyses were done using the NIH Biowulf high-performance computational 

cluster (http://hpc.nih.gov). Samples were called positive for a specific virus if they 

contained assembled viral contigs greater than 300 bp with at least 8 reads mapping to 

this virus (Table S3).

BKPyV infection in HBLAK cells

The spontaneously immortalized bladder cell line HBLAK was purchased in 2018 from 

CELLnTEC and cultured in CnT-Prime Epithelial Culture Medium (CELLnTEC), according 
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to the manufacturer’s protocol. Cells were authenticated by microsatellite fingerprinting 

(AmpFLSTR Identifiler PCR Amplification Kit, Thermo Fisher) by the Cancer Genomics 

Research Laboratory/NCI, and regularly tested for mycoplasma contamination (MycoAlert 

Mycoplasma Detection Kit, Lonza). HBLAK cells were seeded at 100,000 cells per well 

in 12-well plates and infected in triplicates with rearranged BKPyV (strain Gardner, 

NCBI accession: LC029411.1) at 0.5 multiplicity of infection (MOI) and mock-infected, 

as previously described (22). Cells were harvested 1-, 3-, 5-, and 7-days post-infection 

(dpi). For BKPyV immunofluorescent staining with pAb416 (EMD Millipore), HBLAK 

cells were seeded onto glass slides and stained as previously described (23). Low-molecular-

weight DNA was isolated using the Hirt protocol (24). DNA copies of the BKPyV 

genome were quantified using qPCR and normalized against human mitochondrial (MT) 

DNA using previously described primers and methods (23). RNA was extracted with TRI 

reagent (Invitrogen) and assessed for quality using spectrophotometry and the TapeStation 

(Agilent). RNA-seq libraries for all infected samples and 5 dpi mock-infected samples 

were prepared using the Takara Pico Input Mammalian kit and sequenced on the Illumina 

NextSeq 550. The generated RNA-seq reads were aligned against a fusion reference genome 

using the same pipelines as for tumor RNA-seq samples. BKPyV mapped reads were 

counted using picard BamIndexStats and normalized versus the length of the BKPyV 

genome (~5.1 kb) and the total number of reads per sample to calculate RPKM. Gene 

counts were generated with STAR-count and analyzed using the DESeq2 package in the 

R statistical environment (25). Count data were normalized using blind variance stabilizing 

transformation. Normalized count data and qPCR data were plotted using GraphPad Prism 8.

LTAg-IHC staining in bladder tumor microarrays

The previously described NEBCS bladder tumor microarray (TMA) (26) was serially 

sectioned at 5 μm thickness on Sakura Autosection microtome and mounted on charged 

slides. The first slide of each block was stained with H&E (hematoxylin and eosin), and 

two consecutive slides were stained with antibody against Large T Antigen (LTAg), clone 

PAb416 (#DP02, EMD Millipore), which detects LTAg from multiple polyomaviruses. 

Slides were baked at 60°C for one hour before immunostaining on Ventana Discovery Ultra 

automated stainer with the following conditions: antigen retrieval for 64 min at 96°C and 

pH 9; incubation with the antibody at 0.5 μg/ml concentration in antibody diluent (#S3022, 

Agilent) for 32 min at 36°C; incubation with anti-mouse HQ-AntiHQ HRP detection system 

for 12 min with DAB chromogen and Hematoxylin II counterstain. Negative and positive 

controls were represented by FFPE blocks of HeLa cells mock-transfected or transfected 

with a construct for truncated TAg of BKPyV (27). The cells were transfected with trunc-

TAg expression construct using Lipofectamine 2000, pelleted, mounted in an FFPE block 

and processed alongside TMA blocks. Slides were scanned for digital image analysis on 

AT2 slide scanner (Leica Biosystems) at a 40x magnification. De-arraying of TMA cores 

and marker analysis was done using HALO software (Indica Labs, Albuquerque, NM). 

A random forest classifier was utilized to separate exogenous debris from tissue content, 

followed by training the Immune Cell module v1.3 to detect rare events of true positive 

LTAg staining. Staining was considered positive if detected on both replica slides, with at 

least 2 dots on each slide, without a significant technical background. All positive slides 
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were independently reviewed by three pathologists, including one not associated with this 

study.

Statistical analyses

The relationship between mutation status (FGFR3 or PIK3CA) and smoking was evaluated 

using multivariate polytomous (multinomial) logistic regression models to calculate odds 

ratios (ORs) and 95% confidence intervals (CIs). To account for mutational processes 

affecting multiple genes, we compared tumors with specific FGFR3 and PIK3CA mutations 

to other mutations in these genes and tumors designated as wild-type (without any FGFR3 
and PIK3CA mutations). Thus, logistic regression analysis was performed in tumors divided 

into the following groups: i) positive for the mutation of interest, ii) negative for the 

mutation of interest but positive for another mutation in the gene, and iii) tumors without any 

mutations in the gene (wild-type, WT). Smoking status was coded as a categorical variable 

either in five levels (never, former, current, occasional, and unknown) or three levels (never, 

ever, unknown). Ever-smokers included former, current and occasional smokers. Patients 

with unknown smoking status made up <4% of the total dataset, <5% of all NMIBC and 

<3% of all MIBC (Table S1). The exclusion of samples with missing values for smoking 

status did not affect the association results and conclusions of the paper. Occupational 

exposure information available in NEBCS was classified into two categorical levels (high 

or low risk) based on lifetime occupational history (19). Other variables such as sex, race, 

age, smoking status, and tumor stage were treated as categorical variables, as described 

in Table S1. Final multivariable regression models included age, sex, smoking status, and 

tumor stage; the variables were included in the model when parameter estimates changed 

by more than 10% compared to unadjusted and forward stepwise models. Model estimates 

were calculated with R v3.5.1, package nnet. Validation analysis was conducted in R by 

5,000 permutations of the main independent variable (cigarette smoking status). Random 

sample distributions were generated from the data using the R functions sample() and 

replicate(), without sample replacement. Fisher’s exact tests for 2×2 contigency tables were 

used to compare the counts of APOBEC-type mutations per each virus category and in 

BKPyV-positive vs BKPyV-negative tumors, as well as to determine if the risk factors, 

smoking status and PyV positivity were independent. Pearson Chi-square tests were used 

to compare PyV-positivity rates between NMIBC and MIBC sets. Progression-free survival 

(PFS, months) was evaluated in the UROMOL study as progression to MIBC, using Kaplan-

Meier analysis (R packages survminer and survival).

Data availability

RNA-seq data for HBLAK cells were deposited in the NCBI Sequence Read Archive (SRA) 

under project PRJNA643143.

RESULTS

We analyzed data for 2,816 BC patients from seven studies (9–16) with available smoking 

history, tumor stage, and mutation status for FGFR3 and PIK3CA (Table S1). We chose 

these genes because they are frequently mutated in BC and thus included in all sequencing 

panels (whole-exome and targeted) used in these studies. Of the 2,816 tumors analyzed, 
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1,310 (47%) had at least one FGFR3 or PIK3CA mutation. To ensure sufficient statistical 

power, we focused on mutations in these genes detected in ≥10% of tumors: FGFR3-

S249C (detected in 57% of tumors), FGFR3-Y375C (20%), PIK3CA-E545K (37%), and 

PIK3CA-E542K (19%) (Table S4). Our conclusions on the significance of these associations 

between smoking status and specific mutations were further supported by permutation 

resampling analysis (with 5,000 permutations of smoking status). We found FGFR3-Y375C 

(TAT>TGT) to be more common in tumors from ever-smokers than never-smokers, both 

when compared to tumors with other FGFR3 mutations (OR=1.84 (1.17–2.91), p=0.009) 

and FGFR3-WT tumors (OR=1.86 (1.19–2.92), p=0.007, Table 1).

In contrast, the three other common mutations—FGFR3-S249C (TCC>TGC), PIK3CA-

E545K (TGA>TAA), and PIK3CA-E542K (TGA>TAA)—were enriched in never-smokers: 

FGFR3-S249C (OR=1.54 (1.10–2.18), p=0.013) and PIK3CA-E545K or PIK3CA-E542K 

(OR=1.81 (1.17–2.82), p=0.009, Table 1), compared to tumors with other FGFR3 or 

PIK3CA mutations. These three mutations have been previously attributed to the activities of 

APOBEC3A/B enzymes, which catalyze cytosine deamination (28,29). Similar trends with 

smoking status were observed in stratified analyses across all seven datasets (Table S5). 

The associations were stronger in studies with a higher proportion of NMIBC cases, likely 

attributable to increased statistical power due to higher mutation frequencies in NMIBC 

compared to MIBC. Other known BC risk factors, such as male sex, age, and employment 

in a high-risk occupation, were not associated with the four common mutations analyzed 

(Table S5).

Because APOBEC3A/B are interferon-stimulated genes (30), we hypothesized that viral 

infections might contribute to the observed enrichment of APOBEC-type driver mutations 

in tumors of never-smokers. We thus conducted an RNA-seq analysis of 798 bladder tumors 

(390 from the UROMOL study and 408 from TCGA-BLCA). By querying the tumor 

RNA-seq data for the presence of viral sequences, we detected several viruses (Figure 1A, 

Table S3, Table S6), with BK polyomavirus (BKPyV) being the most common. In NMIBC, 

BKPyV was detected in 5.3% (20/376) of all tumors and 5.0% (14/279) of tumors with 

FGFR3 or PIK3CA mutations (Figure 1A, Table S6). In contrast, only one of 423 MIBC 

(0.2%) was BKPyV-positive; this tumor had a previously annotated BKPyV integration (31) 

and no FGFR3 or PIK3CA mutations. Among NMIBC tumors with FGFR3 or PIK3CA 
mutations, BKPyV detection was associated with a higher risk of progression to MIBC 

(p=0.019, Figure 1B).

We also conducted immunohistochemical (IHC) staining in 211 bladder tumors from an 

independent study (NEBCS) using an antibody for SV40 Large T Antigen (LTAg), which 

detects several polyomaviruses (PyV), including BKPyV. LTAg was detected in five of 178 

NMIBC tumors but none of 33 MIBC tumors. All five LTAg-positive tumors harbored an 

APOBEC-type mutation in FGFR3 or PIK3CA (Figure 1C, Figure S1A, Table S7).

Overall, by RNA-seq or IHC-LTAg analyses, we detected 26 PyV-positive tumors: 4.5% 

(25/554) of NMIBC vs. 0.2% (1/456) of MIBC (p=4.4 × 10−5, Table 2). Among NMIBC 

tumors with FGFR3 or PIK3CA mutations, 94.7% (18/19) of PyV-positive tumors carried 

at least one APOBEC-type driver mutation vs. 68.3% (259/379) of PyV-negative tumors 
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(p=0.011, Figure 1C, Table 2). As expected for independent factors, tumor PyV positivity 

was uniformly distributed across smoking groups. In the total dataset (n=944), tumor PyV 

positivity was 1.5% in never-smokers and 2.4% in ever-smokers (p=0.470) (Table S7).

To explore why these APOBEC-type driver mutations were enriched in BKPyV-positive 

NMIBC tumors, we performed total RNA-seq in BKPyV-infected immortalized human 

uroepithelial cells (HBLAK). We observed increased APOBEC3B (but not APOBEC3A) 

mRNA expression early post-infection without changes in cell viability (Figure 1D, Figure 

S1B, Figure S1C. Both BKPyV-infected HBLAK cells and BKPyV-positive NMIBC 

exhibited similar viral expression patterns: strong expression of the viral capsid genes VP1 

and VP2 (Figure 1E), which encode structural proteins expressed late in the viral cycle, 

indicating productive viral replication. In contrast, in the MIBC tumor from TCGA-BLCA 

with previously annotated BKPyV integration (31), we observed nearly undetectable VP1 

and VP2 but abundant LTAg expression (Figure 1E).

DISCUSSION

Understanding the molecular causes of mutations detected in tumors can help refine known 

cancer risk factors and identify new ones. Here, we showed that different risk factors were 

associated with some of the most recurrent mutations in bladder tumors.

We demonstrated that one of the most common mutations (FGFR3-Y375C) detected in 

bladder tumors is likely caused by tobacco smoking. These results are consistent with 

the previously reported link between TAT>TGT mutations and defective activity of the 

nucleotide excision repair (NER) pathway in smokers (12,32). Tobacco carcinogens induce 

DNA damage, such as bulky lesions, which are excised and may be erroneously repaired 

through compensatory low-fidelity pathways.

In contrast, never-smokers were more likely to harbor three other common mutations— 

all APOBEC-type: FGFR3-S249C, PIK3CA-E542K, and PIK3CA-E545K. This finding 

agrees with a report that in vitro exposure to smoking-related chemicals does not induce 

APOBEC-type mutations (33). PyV infection instead may contribute to this enrichment 

of APOBEC-type mutations. Additionally, in the FGFR3/PIK3CA-mutated set, NMIBC 

that were PyV-positive were more likely to progress to MIBC than PyV-negative NMIBC. 

Our RNA-seq results also revealed that BKPyV-positive NMIBC tumors have distinct viral 

expression profiles compared to the only MIBC tumor (TCGA-BLCA) with documented 

BKPyV integration. IHC-LTAg also demonstrated a distinct staining pattern in BKPyV-

positive NMIBC, characterized by isolated positive cells instead of the diffuse, clonal 

staining commonly seen in BKPyV-positive MIBC with viral integration (34).

By adulthood, >80% of individuals are seropositive for BKPyV, which subclinically 

persists in the urinary tract (35,36). While low levels of intermittent BKPyV shedding 

can be detected in the urine (7%) or stool (18%) of immunocompetent individuals 

(37,38), the reactivation of BKPyV is naturally controlled by the immune response. 

In immunosuppressed individuals (e.g., organ transplant recipients (OTRs), and kidney 

transplant recipients, specifically), BKPyV reactivation is common and manifests as 
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abundant viruria, viremia, strong IHC-LTAg tissue staining, and increased risk of BC 

(39). Specifically, BKPyV viruria and PyV-associated nephropathy can develop in as 

high as 51–64% and 4–10% of kidney transplant recipients, respectively (40). However, 

the consequences of BKPyV reactivation on BC risk in individuals without apparent 

immunodeficiency (non-OTRs) have not been well-studied due to technical challenges of 

detection and the transient nature of reactivation that might also be triggered by various 

environmental exposures.

In NMIBC from the general population, we found limited numbers of IHC-LTAg-positive 

tumor cells in a pattern distinct from the strong clonal staining observed in MIBC tumors 

of OTRs, which often present with BKPyV integration in the host genome (34,41). The 

sparse staining pattern in BKPyV-positive NMIBC may be harder to detect and considerably 

depend on sample quality. However, our detection methods (RNA-seq and IHC-LTAg) likely 

improved sensitivity and specificity compared to standard DNA PCR-based assays. RNA-

seq might detect additional and more variable viral sequences missed by sequence-specific 

qPCR assays. Moreover, the detection of transcribed PyV sequences indicates active protein-

producing infection, in contrast with qPCR detection in DNA, which does not discriminate 

between active and latent infections. Another study examined PyV positivity in non-OTR 

BC patients using DNA PCR-based assays and found that PyV positivity rates were similar 

to our findings (42). One key difference is that we additionally found that BKPyV positivity 

is enriched in NMIBC compared to MIBC. Our more sensitive detection approaches (RNA-

seq and LTAg-IHC) may have helped us capture this association. As LTAg expression varies 

throughout the viral lifecycle, we suggest RNA-seq is more sensitive than IHC-LTAg for 

BKPyV detection.

The BKPyV expression patterns from both non-OTR NMIBC and infected HBLAK cells 

in vitro are consistent with that of episomal (non-integrated) virus. In contrast, integrated 

BKPyV is common in MIBC tumors of OTRs (41) and was observed only in one non-OTR 

tumor (MIBC from TCGA-BLCA). Thus, episomal and integrated PyV forms might be 

characteristic of NMIBC vs. MIBC, respectively. Episomal BKPyV suggests productive 

infection, while integration into the host genome is not part of the normal viral life cycle 

and irreversibly disrupts virus replication (34,43). The integration of BKPyV can promote 

the expression of LTAg, a viral oncogene implicated in tumorigenesis through cellular 

transformation partly by inhibiting tumor suppressor proteins (44,45).

BKPyV-positive MIBC is more common in OTRs (21% of post-transplant BC patients) 

(41) compared to non-OTRs, with only one BKPyV-positive MIBC in the whole TCGA-

BLCA dataset (0.2%). This could depend on the impaired ability to eliminate viruses in 

immunocompromised OTR patients. Genomically integrated BKPyV may also be more 

easily targeted by immune surveillance than episomal forms, potentially from the increased 

expression of the novel or foreign antigens. The predominance of BKPyV integration in the 

MIBCs of OTRs (41) compared to non-OTRs could indicate that integrated viral forms are 

more readily eliminated in immunocompetent environments. The effects of non-integrated, 

productive BKPyV infections in urothelial oncogenesis are less understood.
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BKPyV reactivation that might occur even in transiently immunosuppressed conditions may 

upregulate APOBEC enzymes and subsequently generate APOBEC-type driver mutations, 

thus initiating or promoting BC. This is consistent with the hit-and-run hypothesis (46), 

which proposes that transient oncogenic virus infections can provide a survival benefit 

in premalignant cells or early-stage tumors (i.e., NMIBC) before being cleared by host 

responses. Supporting this paradigm, an in vitro study (47) showed that BKPyV infection 

of urothelial cells stimulates APOBEC3B-mediated accumulation of abasic sites, which 

can be erroneously repaired, leading to mutations. As immune surveillance can eradicate 

virus-infected cells, BKPyV infection confers disadvantages to tumors. However, as tumors 

advance to highly genomically unstable states like MIBC, they may be able to thrive and 

progress independently of virus-mediated support. Thus, the BKPyV positivity in tumors of 

non-OTRs could reflect their reliance on viral factors: high dependency in NMIBC (BKPyV 

is detectable) and no or low dependency in MIBC (BKPyV is no longer needed and thus 

eliminated).

We also found an increased risk of progressing to MIBC in BKPyV-positive NMIBC tumors, 

even though BKPyV might be immunologically cleared by the time of progression. The 

risk of progression with BKPyV may be due to increased expression of APOBEC3B and 

APOBEC-mediated mutagenesis, which has been previously shown to increase genomic 

instability and shorten the progression-free survival of NMIBC patients (11,48), or through 

other virus-mediated mechanisms.

Genotoxic injury caused by PyV infections and cigarette smoking may trigger distinct 

repair pathways and types of base substitutions (32,47). The enrichment of APOBEC 

activity in never-smokers in our and previous studies (12,49) supports this idea. APOBEC 

mutagenesis is a major mutational process in BC, which could be induced by multiple 

factors such as genotoxic drug exposures, inflammation, and intrinsic genomic stress that 

activate the expression of APOBEC enzymes (30,50). The proportion of APOBEC-type 

FGFR3 and PIK3CA mutations caused entirely by hit-and-run PyV infection is difficult 

to estimate. While further research is needed, our study supports the idea that BKPyV 

infection contributes to the emergence of the highly recurrent APOBEC-type FGFR3-

S249C, PIK3CA-E545K, and PIK3CA-E542K mutations in BC.

The strength of our study is the combination of tumor and epidemiological data, allowing us 

to identify potential links between environmental factors and common mutations. However, 

the tumors in our study were predominately analyzed by targeted sequencing panels, which 

precluded genome-wide mutational signature analysis. Despite this limitation, using RNA-

seq and IHC-LTAg staining for BC patients from the general population (non-OTRs), we 

detected PyV in 2.6% of all BC tested, including 4.5% of NMIBC (25/554) and 0.2% of 

MIBC (1/456). PyV positivity in non-OTRs could be underestimated for several reasons, 

such as spatially dispersed expression patterns in tissue samples and viral clearance by the 

host response.

In conclusion, we report that two common exposures—tobacco smoke and BKPyV infection

—contribute to the etiology of several common FGFR3 and PIK3CA mutations through 

distinct molecular mechanisms. Our results also highlight potential differences in PyV-
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related oncogenic effects in NMIBC and MIBC, warranting further investigation into the 

mechanistic and translational relevance of these findings. Specifically, the role of transient 

BKPyV infection in non-OTR BC needs to be further explored using tumor screening with 

high-sensitivity detection methods. As many studies support the link between BKPyV and 

renourinary cancers, the potential of vaccination against BKPyV to protect from BC is also 

worth exploring.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Prevention Relevance Statement:

Tobacco smoking likely causes one of the most common mutations in bladder tumors 

(FGFR3-Y375C), while viral infections might contribute to three others (FGFR3-S249C, 

PIK3CA-E542K, and PIK3CA-E545K). Understanding the causes of these mutations 

may lead to new prevention and treatment strategies, such as viral screening and 

vaccination.
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Figure 1. BKPyV infection as a possible cause of APOBEC-mediated mutagenesis in NMIBC.
A) Several viruses were detected by RNA-seq analysis of 376 UROMOL-NMIBC tumors: 

BK Polyomavirus (BKPyV), Herpes Simplex Virus 2 (HSV2), Cytomegalovirus (CMV), 

Human papillomavirus (HPV), Herpes Simplex Virus 1 (HSV1), Human Betaherpesvirus 

7 (HHV7), and Epstein-Barr Virus (EBV). Within the subset of 279 tumors with FGFR3/

PIK3CA mutations, APOBEC-type driver mutations in these two genes were most common 

in the BKPyV-positive tumors. P-values are for Fisher’s exact test. B) Time to progression 

to MIBC in NMIBC patients with FGFR3 or PIK3CA mutations from the UROMOL study. 

Progression-free survival (PFS) was evaluated by Kaplan-Meier analysis in 279 patients 

with FGFR3 or PIK3CA mutations according to BKPyV status (yes/no) by RNA-seq. C) 
Representative IHC images demonstrating H&E and Large T antigen (LTAg) staining in 

one of the 5 positive NMIBC tumors; images from additional tumors are shown in Figure 

S1A. Marked areas are shown at a higher magnification. Arrows point to cells positive 
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for LTAg staining (brown dots). NMIBC patient 1 is a 71-yr old never-smoking male with 

stage Ta, grade 1 bladder tumor with the APOBEC-type FGFR3-S249C mutation. Positive 

control for LTAg antibody: HeLa cells transfected with an expression construct for truncated 

T antigen. The table shows results for NMIBC tumors with FGFR3/PIK3CA mutations 

based on BKPyV status, as determined by RNA-seq or IHC-LTAg. Tumors positive for 

BKPyV were more likely to harbor an APOBEC-type FGFR3/PIK3CA mutation than 

BKPyV-negative tumors. P-values are for Fisher’s exact test. D) Variance stabilized read 

counts for APOBEC3A (A3A) and APOBEC3B (A3B) RNA expression corresponding 

to mock-infection and 1, 3, 5, and 7 days post-BKPyV infection. E) Representative 

coverage plots for BKPyV RNA-seq on different days post-infection in HBLAK cells (n=3) 

(blue), NMIBC tumors from UROMOL (green) and the only BKPyV-positive MIBC tumor 

(TCGA-BLCA), in which virus is integrated (red). The y-axis shows the read depth per 

million human reads. Positions and open reading frames within the 5-Kb BKPyV genome 

are shown under the X-axis. Agnoprotein – regulates viral proliferation; VP1 and VP2 - 

encode structural proteins for virion capsids during viral proliferation; LTAg and st - encode 

large and small tumor (T) antigens involved in the initiation of viral replication that causes 

an oncogenic transformation of the host genome.
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Table 1.

Analysis of associations between smoking status and FGFR3-Y375C, FGFR3-S249C, and PIK3CA- E542K/

E545K mutations

FGFR3 
Mutation

Smoking 
Status* Total

FGFR3-
Y375C, 
N=217†

FGFR3 other 
mutations, 

N=832†
FGFR3-WT, 

N=1758†

FGFR3-Y375C

Compared to other 
FGFR3 mutations

Compared to 
FGFR3-WT

n % n % n %

Adjusted 
OR (95% 

CI)§ P

Adjusted 
OR (95% 

CI)§ P

Y375C

Never 647 27 4.2 171 26.4 447 69.1 Ref Ref

Ever 2056 181 8.8 610 29.7 1260 61.3
1.84 (1.17 – 

2.91) 0.009
1.86 (1.19 – 

2.92) 0.007

Never 647 27 4.2 171 4.2 447 26.4 Ref Ref

Former 973 90 9.2 311 9.2 570 32.0
1.89 (1.14 – 

3.14) 0.014
1.86 (1.12 – 

3.09) 0.016

Current 665 74 11.1 229 11.1 359 34.4
2.01 (1.20 – 

3.38) 0.008
2.02 (1.20 – 

3.40) 0.008

FGFR3 
Mutation

Smoking 
Status* Total

FGFR3-
S249C, 
N=622†

FGFR3 other 
mutations, 

N=427†
FGFR3-WT, 

N=1758†

FGFR3-S249C

Compared to other 
FGFR3 mutations

Compared to 
FGFR3-WT

n % n % n %

Adjusted 
OR (95% 

CI)§ P

Adjusted 
OR (95% 

CI)§ P

S249C

Never 647 132 20.4 66 10.2 447 69.1
1.54 (1.10 – 

2.18) 0.013
1.05 (0.81 – 

1.37) 0.685

Ever 2056 455 22.1 336 16.3 1260 61.3 Ref Ref

Never 647 132 20.4 66 20.4 447 10.2
1.61 (1.08 – 

2.40) 0.020
1.05 (0.76 – 

1.46) 0.755

Former 973 233 23.9 168 23.9 570 17.3
1.09 (0.80 – 

1.49) 0.581
1.00 (0.76 – 

1.30) 0.985

Current 665 171 25.7 132 25.7 359 19.8 Ref Ref

PIK3CA 
Mutation

Smoking 
Status* Total

PIK3CA- 
E542K/
E545K, 
N=280†

PIK3CA other 
mutations, 

N=193†
PIK3CA-WT, 

N=1499†

PIK3CA-E542K/E545K

Compared to other 
PIK3CA mutations

Compared to 
PIK3CA-WT

n % n % n %

Adjusted 
OR (95% 

CI)§ P

Adjusted 
OR (95% 

CI)§ P

E542K or 
E545K

Never 499 88 17.6 44 8.8 366 73.3
1.81 (1.17 – 

2.82) 0.009
1.54 (1.15 – 

2.07) 0.004

Ever 1369 175 12.8 142 10.4 1048 76.6 Ref Ref

Never 499 88 17.6 44 17.6 366 8.8
2.44 (1.24 – 

4.80) 0.010
1.58 (1.01 – 

2.47) 0.044

Former 619 86 13.9 62 13.9 469 10.0
1.36 (0.76 – 

2.40) 0.298
1.11 (0.74 – 

1.66) 0.624

Current 332 45 13.6 36 13.6 249 10.8 Ref Ref

WT, wild-type;

*
Ever-smokers include former, current and occasional smokers;

†
See Table S1 for detailed information;
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§
Odds ratios (ORs) and 95% confidence intervals (CIs) are calculated using polytomous logistic regression models, adjusting for study, tumor stage 

(Ta, T1, T2+), and sex.
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Table 2.

Summary of polyomavirus positivity and APOBEC-type driver mutation positivity among BC samples

Subset Total Samples positive for PyV

n n % p-val

Total BC 1010 26 2.6 na

NMIBC 554 25 4.5 4.4E-05

NMIBC with FGFR3 or PIK3CA mutation 398 19 4.8 na

MIBC 456 1 0.2 Ref

Subset: NMIBC with FGFR3 or PIK3CA mutation Total
Samples positive for APOBEC-type driver mutation 

(FGFR3-S249C, PIK3CA-E545K, or PIK3CA-E542K)

n n % p-val

BKPyV+ 19 18 94.7 0.011

BKPyV− 379 259 68.3 Ref

BC, bladder cancer; BKPyV, BK polyomavirus; NMIBC, non-muscle invasive bladder cancer; PyV, polyomavirus.
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