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Abstract

cfDNA concentrations from patients with cancer are often elevated compared to that of healthy 

controls, but the sources of this extra cfDNA have never been determined. To address this 

issue, we assessed cfDNA methylation patterns in 178 patients with cancers of the colon, 

pancreas, lung, or ovary and 64 patients without cancer. Eighty-three of these individuals had 

cfDNA concentrations much greater than those generally observed in healthy subjects. The major 

contributor of cfDNA in all samples was leukocytes, accounting for ~76% of cfDNA, with 

neutrophils predominating. This was true regardless of whether the samples were derived from 

patients with cancer or the total plasma cfDNA concentration. High levels of cfDNA observed 

in patients with cancer did not come from either neoplastic cells or from surrounding normal 

epithelial cells from the tumor’s tissue of origin. These data suggest that cancers may have a 

systemic effect on cell turnover or DNA clearance.
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INTRODUCTION

In the peripheral blood of healthy individuals, the vast majority of cell-free DNA (cfDNA) 

is derived from cells of hematopoietic lineage, consistent with lymphoid and myeloid cell 

death as the predominant source of cfDNA (1–4). The first measurements of cfDNA from 

patients with cancer were performed more than 50 years ago (5–8). Although these studies 

were performed before the development of technologies that could characterize the DNA 

fragments in detail, it was clear that the concentration of DNA was often elevated in 

patients with cancer compared to healthy controls (5,7,9,10). Numerous studies since then 

have confirmed that the cfDNA in patients with cancer is often elevated and that more 

advanced patients with cancer are more likely to have higher cfDNA concentrations (9,11). 

Sensitive studies of mutations and chromosome copy number changes have shown that part 
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of the cfDNA derived from patients with cancer is derived from neoplastic cells within 

the tumor (9–16). However, many recent studies of cfDNA are based on characteristics 

that are not entirely specific to neoplastic cells. These include assays based on cfDNA 

fragment ends, lengths, enrichments in specific sequences such as promoters, and other 

epigenetic features that can be used to identify not only the presence of cancer but the cell 

type of origin. In general, previous studies have not been able to distinguish whether the 

great excess of cfDNA that is observed in some patients with cancer is derived from the 

neoplastic cells within the tumor rather than from normal epithelial cells surrounding the 

tumor that may have been damaged by the cancer (Supplementary Note 1 and (3,14–44). 

We sought to answer this question through a combination of genetic and epigenetic analysis 

of cfDNA, particularly in samples with very high concentrations of cfDNA (sample and 

analysis schema shown in Figure S1).

RESULTS

The amount of cfDNA in normal individuals and cancer patients

The normal concentration of cfDNA in healthy individuals generally ranges from 1 – 10 

ng/ml of plasma, and the average concentration of cfDNA in the plasma of cancer patients is 

higher than in healthy individuals (7,9–11,33–36). As an example, the distribution of cfDNA 

concentrations as measured by quantitative real-time PCR among 812 healthy individuals 

and 1005 patients with cancer from a recently reported study (9) is shown in Figure 1A. 

The mean concentration of cfDNA in the plasma of the normal individuals was 4.3 ± 8.6 

ng/mL of plasma (2.9 ± 1.6 ng/mL, median ± median absolute deviation (MAD), while the 

mean concentration of cfDNA in the plasma of patients with stages I-III cancer was 12.6 

± 18.1 ng/mL of plasma (6.30 ± 3.5 ng/mL, median ± MAD). The concentrations varied 

considerably with cancer type, with lung cancers having the lowest at 5.23 ± 6.4 ng/mL of 

plasma (3.3 ± 1.5 ng/mL, median ± MAD) and liver the highest at 46.0 ± 35.6 ng/mL of 

plasma (42.3 ± 29.4 ng/mL, median ± MAD) (Figure 1B). A particularly high concentration 

of cfDNA in liver cancers has been previously noted (3,37,38). There was a significant 

difference in cfDNA concentration between AJCC 7th edition stage I to stage III cancers as 

a whole (Figure S2A, p < 0.01), which varied within each cancer type (Figure S2B). Note 

that none of the 1005 cancer patients evaluated in Figures 1B, S2A, and S2B had distant 

metastatic disease at the time plasma was taken, though it is well known that patients with 

the most advanced disease have the highest cfDNA concentrations (7,10,11,38).

The concentration of cfDNA in the plasma of the new cohort of normal individuals included 

in the present study was very similar to the cohort described in ref. (9) (Supplementary Note 

2). For 64 normal individuals, the mean concentration of cfDNA was 6.0 ± 10.5 ng/mL 

of plasma (3.4 ± 0.8 ng/mL, median ± MAD; p = 0.15 compared to data in ref (9). For 

178 patients with stages I-IV cancer evaluated in the new cohort studied here, the mean 

concentration of cfDNA was greater at 21.8 ± 26.5 ng/mL of plasma (p < 0.001 compared 

to ref. (9); 11.8 ± 5.9, median ± MAD), reflecting the different cancer types and inclusion of 

patients with metastatic disease in the new cohort.
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The tissue origin of cfDNA in normal individuals

In 64 normal individuals, whole genome bisulfite sequencing data showed that the vast 

majority of cfDNA arises from leukocytes, regardless of the total concentration of cfDNA in 

the plasma (Supplementary Note 3, Figure 2, blue dots, Figure S3, Table S1). Neutrophils 

accounted for roughly 2/3 of the leukocyte cfDNA, consistent with the ~2:1 ratio of 

neutrophils to lymphocytes in the circulation of healthy individuals. Interestingly, the 

fraction of cfDNA contributed by B cells was not consistent with the fraction of B cells 

in the circulation of healthy individuals. B cells are expected to account for only 10-15% 

of blood lymphocytes, while T cells account for most of the remainder (80%) (45). But B 

cell- and T cell-derived DNA accounted for 16.4 ± 12.0 % and 17.5 ± 4.3%, respectively, 

of lymphocyte cfDNA in the circulation. This difference between the ratio of B to T cells 

expected in the circulation and the ratio of B cell derived DNA to T cell derived DNA in the 

circulation was highly significant (p < 0.001) (Supplementary Note 4). Other minor tissue 

contributors to cfDNA were the liver, colon, heart, brain, and lung, accounting for 5.8 ± 

6.6%, 4.0 ± 7.1%, 3.5 ± 3.4%, 3.1 ± 3.3%, and 2.4 ± 3.4% of the total, respectively (Figure 

2, blue dots and Table S1). Deconvolution using NNLS (40–42) instead of QP (39) yielded 

nearly identical results (Figure S4).

Using a separate reference deconvolution matrix from Moss et al. (43) and QP (39) as 

the deconvolution algorithm, leukocytes were again the predominant contributor to plasma 

cfDNA at 61.2 ± 23.4% (Figure 3, blue dots and Table S1), with neutrophils contributing 

the most cfDNA, followed by monocytes, NK cells, myeloid progenitors, B cells, and T 

cells. Similar to data obtained with the Sun et al. (3) deconvolution reference matrix, other 

minor contributors included colon epithelial cells at 7.2 ± 8.5% and hepatocytes at 6.7 ± 

9.8%, respectively. Again, deconvolution using NNLS (40–42) instead of QP (39) provided 

very similar results (Figure S5). Contributions of overlapping cell types as determined by 

the Moss et al. (43) and Sun et al. (3) reference matrices were similar for total leukocytes, 

neutrophils, B cells T cells, hepatocytes, colon epithelial cells, and brain (Tables S1 and S2).

Deconvolution with the Loyfer et al. (44) matrix and NNLS algorithm similarly showed that 

leukocytes were the predominant contributor to plasma cfDNA at 54.8 ± 20.3% (Table S2), 

with blood granulocytes contributing the most cfDNA, followed by megakaryocytes, blood 

monocytes/macrophages, keratinocytes, erythrocyte progenitors, endothelial cells, NK cells, 

and T cells. Analysis of our healthy cohort showed tissue contributions very similar to those 

reported in the healthy patients evaluated by Loyfer et al. (44).

For individuals with non-elevated concentrations of cfDNA, the results described above are 

consistent with prior studies showing that most cfDNA comes from cells of lymphoid and 

myeloid lineage (2–4,27). The novel aspect of the current study is the determination of these 

origins in individuals with elevated cfDNA. No prior studies had evaluated the tissue of 

origin of these elevated cfDNA concentrations in such individuals, and we hypothesized that 

such individuals might have had tissue-specific damage that accounted for their extremely 

high cfDNA levels. However, the results did not confirm our hypothesis; there was a linear 

correlation between the amount of DNA contributed by leukocytes and the total cfDNA 

concentration at all concentrations, regardless of whether the Sun et al. (3), Moss et al. 
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(43), or Loyfer et al. (44) reference matrices were used for deconvolution, or whether the 

plasma cfDNA methylation signature was deconvoluted by QP or NNLS. (Figure 2, blue 
dots, R2 = 0.99, p < 0.001 and Figure 3, blue dots, R2 = 0.96, p < 0.001; Table S1). In 

other words, the great majority (average 79%, IQR 74% to 88%) of the cfDNA in healthy 

plasma, even when the total cfDNA concentration was more than 10x the normal level, 

arose from leukocytes. Similar fractions of DNA arising from neutrophils, B cells, and T 

cells were discovered, regardless of the total cfDNA concentrations (R2 = 0.99, 0.96, and 

0.89, respectively, p < 0.001, Figure 2, blue dots). The amount of liver and lung DNA was 

proportionately increased with total cfDNA concentration, in the same way as observed in 

healthy individuals without elevated cfDNA (Figure 2, blue dots). Additionally, the same 

unexpectedly high contribution of B cells to total cfDNA was observed in normal individuals 

with high cfDNA concentrations as in those with low concentrations (Figure 2, blue 
dots). In addition to total leukocytes, analysis using the Moss et al. (43) reference matrix 

highlighted the contribution of myeloid progenitor cells (R2 = 0.91, p < 0.001), monocytes 

(R2 = 0.86, p < 0.001), and neutrophils (R2 = 0.79, p < 0.001) at all concentrations of total 

cfDNA (Figure 3, blue dots).

The tissue origins of cfDNA in patients with cancer

We analyzed plasma from 178 patients with colorectal (N = 18), lung (N = 31), ovarian (N = 

36) or pancreatic cancer (N = 93) to determine the source of their cfDNA. As in the normal 

individuals described above, leukocyte lysis during sample collection or processing or other 

contribution from high molecular weight DNA was excluded in all cancer patients (Figure 

S3, Table S1).

In patients with cancer, the tissue source of cfDNA (Figure 2, red dots) was markedly 

similar to that in normal individuals (Figure 2, blue dots). Using the reference matrix from 

Sun et al. (3) and deconvolution via QP, 70.5 ± 13.7% (73.6 ± 5.4%, median ± MAD) of the 

cfDNA in these patients was contributed by leukocytes, with an average of 11.4 ± 11.4%, 

5.9 ± 9.0%, 3.6 ± 2.8%, 3.1 ± 3.0%, 2.2 ± 3.7%, and 2.2 ± 2.7% contributed by liver, 

colon, brain, heart, lungs, and pancreas, respectively (Table S1). Of the leukocyte DNA, ~2/3 

was derived from neutrophils in cancer patients, just as in normal individuals (Table S1). 

These results are consistent with previous studies on cancer patients without elevated cfDNA 

concentrations (3). Deconvolution strategies using the Moss et al. (43) reference matrix or 

using NNLS instead of QP yielded similar results (Figure 3, red dots compared to Figure 

2, red dots; Figures S4 and S5; Table S1). Analysis using the Loyfer et al. (44) approach 

also produced similar results, with total leukocytes contributing 56.6 ± 13.3% to the total 

cfDNA pool, with predominant contributions by blood granulocytes, megakaryocytes, blood 

monocytes/macrophages, and hepatocytes, just as in healthy individuals (Table S2).

In patients with elevated concentrations of cfDNA, we expected that a major source of the 

large amounts of DNA in patients would be from the neoplastic cells and the surrounding 

non-neoplastic epithelial cells. This expectation was not confirmed by experiment. As with 

normal individuals, there was a linear correlation between the amount of DNA contributed 

by leukocytes and the total cfDNA concentration (Figure 2, red dots, R2 = 0.92, p < 0.001; 

Figure 3, red dots, R2 = 0.82, p < 0.001).
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Interestingly, ten patients with cancer had approximately 5 ng/mL or more of their 

cfDNA derived from colonic epithelium (Table S1). These concentrations were significantly 

different from those derived from normal individuals, regardless of the total cfDNA 

concentration in the normal individuals (p < 0.001). Of the ten, 80% (8/10) of these patients 

had colorectal cancers. We sought to understand the origin of this epithelial DNA. In theory, 

it could have come from the neoplastic cells themselves or the surrounding non-neoplastic 

colorectal epithelial cells that had been destroyed by the cancer. It is well known that 

cancers destroy surrounding normal organ cells during the invasive process, and these dead 

or dying cells could in principle contribute to cfDNA (46–48). To distinguish between 

these two possibilities, tumor-specific mutations and copy number alterations (CNAs) in the 

cfDNA were used to determine the fraction of the cfDNA contributed by the neoplastic cells 

themselves.

We found a linear correlation between the fraction of cfDNA derived from colon epithelial 

cells and the fraction of cfDNA derived from neoplastic colon epithelial cells in patients 

with colorectal cancer (Figure S6, R2 = 0.95, p < 0.001; Supplementary Note 5). The former 

was assessed by whole genome bisulfite sequencing of plasma cfDNA while the latter 

was assessed by SafeSeqS analysis of mutations in the same plasma cfDNA samples, as 

described in Kinde et al. (49). The data in Figure S6 and Table S1 show that the amount of 

cfDNA derived from all colonic epithelial cells (assessed by methylation) was similar to that 

expected from the contribution of the neoplastic colonic epithelial cells alone (as assessed 

by mutation) (50). This conclusion was supported by copy number analysis of the cfDNA 

(Table S1).

The tissue origins of cfDNA following surgery

Other conditions besides cancer have been associated with elevated cfDNA concentrations 

(51–53). For example, it has been shown that large increases in cfDNA occur one day 

after surgery (10,54,55). To investigate the source of the extra cfDNA in such patients, we 

obtained plasma samples approximately 24 hours after surgery from nine of the patients 

with pancreatic cancer included in Table S1, all of whom had Whipple procedures for tumor 

resection. Prior to surgery, eight of the nine patients had total cfDNA concentrations in the 

normal range (Figure S7). Following surgery, there was a dramatic elevation of the total 

cfDNA, ranging from 2.3- to 18-fold (median of 8.7-fold) in these 8 patients (Figure S7, 

Table S1, p = 0.001). The only patient for whom the cfDNA concentration did not increase 

following surgery was the one (PANCA 1248) with elevated cfDNA (29.1 ng/mL of plasma) 

prior to surgery.

Bisulfite sequencing of plasma cfDNA in these eight patients revealed the following:

i. The amount of cfDNA from all evaluable tissue sources increased after surgery, 

though the additional contribution from the lungs, brain, esophagus, small 

intestines, pancreas, and heart appeared to be slightly elevated (p = 0.09, 0.13, 

0.08, 0.09, 0.13, and 0.10, respectively) (Figure 4 and Table S1).

ii. The majority (average 57%, range 42% to 70%) of the total cfDNA after surgery 

was from leukocytes, and the predominant contributors to leukocyte cfDNA were 
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neutrophils (average 73%, range 67 to 82% of the leukocyte cfDNA; Figure S8, 

Table S1).

iii. For most tissues, the proportional representation of each evaluable tissue either 

decreased or changed only slightly after surgery—except for the liver (Figure 

S8, Table S1). There was a striking increase (average 46-fold, range 6 to 

144-fold) in the fraction of total cfDNA derived from hepatocytes following 

surgery, in marked contrast to the other tissues (Figure S8). The amount of 

the “neo-cfDNA” can be defined and calculated by subtracting the amount of 

cfDNA present pre-surgery from the amount of cfDNA present after surgery. 

This calculation showed that hepatocytes contributed an average of 38.2% (range 

23.9% to 57.6%) and leukocytes contributed an average of 48.4% (range 23.3% 

to 67.1%) of the neo-cfDNA.

Based on the clinical history of PANC 696 described above, as well as on previous data 

(3,52), we thought it likely that much of the extra cfDNA following surgery was due to 

liver damage. We were able to obtain standard measurements of liver function using alanine 

transaminase (ALT) and aspartate aminotransferase (AST) levels in five of the eight patients 

whose cfDNA concentrations increased following surgery. AST and ALT levels substantially 

increased in all five patients (p < 0.05; Figure S9). Notably, in the one patient (PANCA 

1248) whose total cfDNA did not increase post-surgery, AST levels were already increased 

prior to surgery, unlike the other patients assessed (Table S1).

DISCUSSION

The results of this study lend support to previous observations about the origins of cfDNA 

in healthy individuals and patients with cancer that have normal to slightly elevated 

concentrations of cfDNA. Additionally, the results of this study lead to several important 

conclusions about the origin of excess cfDNA in patients with greatly elevated cfDNA 

concentrations:

i. In patients with colorectal, lung, ovarian, and pancreatic cancer with high 

concentrations of cfDNA in the present study, the increased cfDNA does not 

primarily come from either the neoplastic cells within the cancer or from 

adjacent non-neoplastic epithelial cells.

ii. Instead, the increased cfDNA in these patients with cancer comes largely from 

leukocytes, primarily neutrophils.

iii. The elevated cfDNA in patients with cancer studied is attributable to a systemic 

effect. It is not just neutrophils, but also B and T lymphocytes, and in some cases 

hepatocytes, colon epithelial cells, and lung epithelial cells, that release more 

DNA into the circulation when cfDNA concentrations are elevated.

iv. Similarly, the elevated cfDNA that routinely occurs following surgery of patients 

with pancreatic cancer arises from a systemic effect, resulting in the release of 

cfDNA from leukocytes but in this case also from hepatocytes.
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v. The cfDNA contributed by leukocytes is often associated with an 

overrepresentation of B cells compared to T cells, regardless of disease state 

and cfDNA concentration.

One of the major questions raised by our data is the nature of the systemic factor(s) that 

are responsible for increasing the contributions of cfDNA from all major tissue sources of 

cfDNA (56–73). One possibility is that the systemic factor(s) are one or more of the myriad 

of proteins and other molecules known to be secreted by neoplastic cells (74,75), or released 

upon the death of cancer cells in situ (46,75). Another possibility is that these factors 

come from endothelial cells within the cancers. There is convincing evidence indicating that 

the tumor vasculature is abnormal (76,77) and endothelial cells are in direct contact with 

the systemic circulation. Inflammatory cells within the tumor could also release cytotoxic 

products (78). A completely different, but enticing possibility, is that cell turnover is normal 

in these patients, but clearance of cfDNA is abnormal. We hope that the results of this study 

will stimulate research to identify the biochemical basis for the pronounced elevation of 

cfDNA observed in cancer patients and in other clinical scenarios.

MATERIALS AND METHODS

Sample Collection and DNA Isolation

All individuals participating in the study provided written informed consent after approval 

by the institutional review board at the patient’s participating institutions (including Johns 

Hopkins IRB00075499 and Melbourne Health HREC 2011.225), and the study complied 

with the Health Insurance Portability and Accountability Act and the Declaration of 

Helsinki. Peripheral blood was collected in K2-EDTA tubes after informed consent was 

obtained and prior to and/or 24 hours after patients underwent surgical resection. General 

demographics, surgical pathology, and American Joint Commission on Cancer (AJCC) stage 

(7th) were documented. The cohort is outline in Figure S1. The healthy cohort consisted 

of peripheral blood samples obtained from 64 individuals of median age 48.5 yrs (IQR 

interquartile range 28 to 58 yrs) with no history of cancer. The cancer and healthy control 

samples were processed in an identical manner. Plasma samples from 18 patients with 

colorectal cancer, 31 patients with lung cancer, 36 patients with ovarian cancer, and 93 

patients with pancreatic cancer were included in the study (median age 67 yrs, IQR 56 to 74 

yrs).

The 242 individuals included in this study were chosen from cfDNA samples collected for 

studies described in (48) and similar ongoing studies to evaluate the use of cfDNA for the 

earlier detection of cancer in patients prior to surgery or any other form of therapy. All 

individuals for whom sufficient plasma was available for construction of libraries for whole 

genome sequencing of bisulfite-treated DNA were considered. Any individual with a cfDNA 

concentration >15 ng/mL of plasma from this collection were chosen for analysis. 

Additionally, there were two different blood samples available from nine of the 21 patients 

with pancreatic cancer, one collected prior to surgery and the other collected approximately 

24 hours after surgery, and these were chosen for analysis. Finally, normal individuals with 

cfDNA concentrations <15 ng/mL of plasma, as well as cancer patients with cfDNA 

concentrations <15 ng/mL, were chosen randomly. DNA from each of these 242 patients 
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(251 total plasma samples) was purified with a BioChain cfDNA Extraction Kit (BioChain, 

cat #K5011610) using the manufacturer’s recommended protocol. DNA from peripheral 

WBCs was purified with the QIAsymphony DP DNA Midi Kit (Qiagen, cat #937255) as 

specified by the manufacturer. cfDNA was quantified using qPCR using Sso Advanced 

SYBR Green Supermix (BioRad Cat # 1725271) as directed by the manufacturer and 

employing the following primers: 5′-

CACACAGGAAACAGCTATGACCATGGGTAACAGCTTTATCTATTGACATTATGC-3′ 
and 5′-

CGACGTAAAACGACGGCCAGTNNNNNNNNNNNNNNAAACTTCATGCTTCATCTA

GTCAGC-3′. National Institute of Standards and Technology (NIST) human DNA 

quantification standard NIST SRM 2372a, diluted to 1 ng/ml, served as the reference 

standard. 2.5 μL of cfDNA or NIST 2372a DNA was added to 97.5 μL of 1:1,000 SYBR 

Green I diluted in 1X PBS. Amplification and fluorescence detection conditions were as 

follows: one cycle of 98°C for 120 s, then 30 cycles of 98°C for 10 s, 57°C for 120 s, and 

72°C for 120 s.

Bisulfite Treatment, Library Preparation, and Sequencing

For libraries prepared using the Accel-NGS Methyl-Seq DNA Library Kit (Swift 

BioSciences, cat #30024, Table S1), the EZ DNA Methylation Kit (Zymo Research, cat 

#D5001) was used to prepare DNA samples as follows. DNA was denatured in dilute 

M-Dilution buffer at 37°C for 15 minutes then bisulfite converted in the dark at 50°C for 

16 hours before being placed on ice for 10 min (79). After a single wash with M-Wash 

buffer, the sample was desulphonated for 15 min at room temperature. The sample was 

washed twice in M-Wash Buffer then eluted in the Zymo Elution Buffer and stored at 

–20 °C (49). Sequencing libraries were then prepared using the Accel-NGS Methyl-Seq 

DNA Library Kit, with 9 PCR cycles used at the indexing stage. Samples assessed using 

MethylSaferSeqS (Table S1) were prepared as described in detail in Wang et al. (80), in 

which library preparation is performed prior to bisulfite-treatment (50). Methylation status 

as assessed by the two library preparation methods produced indistinguishable results (50). 

Each library was paired-end sequenced to 150 bp on a single lane of an Illumina HiSeq 

4000 instrument. Reads passing Illumina CASAVA Chastity filters were used for subsequent 

analysis.

DNA Sequencing Data Analysis

Illumina adapters and bases with quality scores below 25 were trimmed from the head 

and tail of each read using Trimmomatic (81). To improve mapping efficiency by reducing 

spurious mutations introduced by end repair, 15 bp were additionally cropped from the 

tail of Read 1 and the head of Read 2 using Trimmomatic per Swift’s recommendations. 

BSMAP was used to align each paired-end read to the bisulfite-converted hg19 genome, and 

the average methylation at each CpG computed using BSMAP’s methratio.py script (82).

Identification of Methylation Markers for Plasma cfDNA Tissue Deconvolution by Quadratic 
Programming

The average contribution of twelve tissue types (liver, lungs, colon, small intestines, 

pancreas, adrenal glands, esophagus, heart, brain, T cells, B cells, and neutrophils) to 
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the total cfDNA pool was determined using 5,653 differentially methylated 500 bp 

regions described by Sun et al. (3) In brief, the approach was bioinformatically based 

on whole genome bisulfite sequencing of normal DNA from the liver, lungs, esophagus, 

heart, pancreas, colon, small intestines, adrenal glands, brain, and T cells, which was 

retrieved from the Human Epigenome Atlas from the Baylor College of Medicine 

(www.genboree.org/epigenomeatlas/index.rhtml). The bisulfite sequencing data for B cells 

and neutrophils were from Hodges et al. (83). All CpG islands (CGIs) and CpG shores 

on autosomes were assessed for potential inclusion into the methylation marker set. CGIs 

and CpG shores on sex chromosomes were not used, so as to minimize potential variations 

in methylation levels related to the sex-associated chromosome dosage difference in the 

source data. CGIs were downloaded from the University of California, Santa Cruz (UCSC) 

database (genome.ucsc.edu/, 27,048 CGIs for the human genome) (84), and CpG shores 

were defined as 2-kb flanking windows of the CGIs (85). Then, the CGIs and CpG shores 

were subdivided into nonoverlapping 500-bp units, and each unit was considered a potential 

methylation marker.

The methylation densities (i.e., the percentage of CpGs being methylated within a 500 bp 

unit) of all the potential marker loci were compared between the 12 tissue types. Using the 

methylation profiles of the 12 tissue types, two types of methylation markers were identified. 

Type I markers refer to any genomic loci with methylation densities that are 3 SDs below 

or above in one tissue compared with the mean level of the 12 tissue types. Type II markers 

are genomic loci that demonstrate highly variable methylation densities across the 12 tissue 

types. A locus is considered highly variable when (A) the methylation density of the most 

hypermethylated tissue is at least 20% higher than that of the most hypomethylated one; 

and (B) the SD of the methylation densities across the 12 tissue types when divided by the 

mean methylation density (i.e., the coefficient of variation) of the group is at least 0.25. To 

reduce the number of potentially redundant markers, only one marker would be selected in 

one contiguous block of two CpG shores flanking one CGI. The genomic locations of the 

Type I and Type II markers used in this study can be found in Supplementary Table 1 in Sun 

et al. (3).

Plasma cfDNA Tissue Deconvolution by Quadratic Programming (QP)

As described in Sun et al. (3), the mathematical relationship between the methylation 

densities of the different methylation markers in plasma and the corresponding methylation 

markers in different tissues can be expressed as

MDı =
k

pk*MDik

where MDı represents the methylation density of the methylation biomarker i in the plasma; 

pk represents the proportional contribution of tissue k to the plasma; and MDik represents the 

methylation density of the methylation biomarker i in tissue k. The aim of the deconvolution 

process was to determine the proportional contribution of tissue k to the plasma, namely 

pk, for each member of the panel of tissues. Quadratic programming (39) was used to solve 

the simultaneous equations. A matrix was compiled including the panel of tissues and their 
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corresponding methylation densities for each methylation marker on the combined list of 

type I and type II markers (a total of 5,653 markers). The program input a range of pk values 

for each tissue type and determined the expected plasma DNA methylation density for each 

marker. The tested range of pk values should fulfill the expectation that the total contribution 

of all candidate tissues, namely, the liver, neutrophils, and lymphocytes for this study, to 

plasma DNA would be 100% and the values of all pk would be nonnegative. The program 

then identified the set of pk values that resulted in expected methylation densities across 

the markers that most closely resembled the data obtained from the plasma DNA bisulfite 

sequencing.

The total contribution from T cells and B cells was regarded as the contribution from the 

lymphocytes, and the total contribution from leukocytes was regarded as the contribution 

from the lymphocytes and neutrophils. To obtain absolute levels of cfDNA (ng/ml) per cell 

type, the resulting contribution was multiplied by the total concentration of cfDNA present 

in the sample.

Identification of Methylation Markers for Plasma cfDNA Tissue Deconvolution by Non-
Negative Least Squares Regression

The average contribution of 25 tissue types (neutrophils, monocytes, CD4 T cells, CD8 T 

cells, B cells, NK cells, myeloid progenitors, adipocytes, cortical neurons, hepatocytes, lung 

cells, pancreatic acinar cells, pancreatic duct cells, vascular endothelial cells, colon epithelial 

cells, left atrium, bladder, breast, head and neck/larynx, kidney, prostate, thyroid, upper GI, 

uterus/cervix) to the total cfDNA pool was determined using 7,890 differentially methylated 

CpG, as described in Moss et al. (43). In brief, all DNA methylation profiles were 

determined either on the Illumina Infinium Human Methylation 450K or EPIC BeadChip 

arrays. DNA methylation data for white blood cells (neutrophils, monocytes, B cells, CD4+ 

T cells, CD8+ T cells, NK cells, n = 6 each) were downloaded from GSE110555 (EPIC) 

(86). Data for myeloid progenitors (n = 5) were downloaded from GSE63409 (450K) (87), 

and data for left atrium (n = 4) were downloaded from GSE62727 (450K) (88). Data for 

bladder (n = 19), breast (n = 98), cervix (n = 3), colon (n = 38), esophagus (n = 16), oral 

cavity (n = 34), kidney (n = 160), prostate (n = 50), rectum (n = 7), stomach (n = 2), thyroid 

(n = 56), and uterus (n = 34) were downloaded from TCGA (89). DNA methylation data for 

adipocytes (n = 3, 450K), hepatocytes (n = 3, 450K and EPIC), alveolar lung cells (n = 3, 

EPIC), neurons (n = 3, 450K and EPIC), vascular endothelial cells (n = 2, EPIC) pancreatic 

acinar cells (n = 3, 450K and EPIC), duct cells (n = 3, 450K and EPIC), and colon epithelial 

cells (n = 3, EPIC) were generated by Moss et al. (43) and can be requested from the 

authors.

To analyze DNA methylation samples composed of admixed methylomes from various 

cell types, the authors approximated the plasma cfDNA methylation profile as a linear 

combination of the methylation profiles of cell types in the reference atlas. According to this 

model, the relative contributions of different cell types to plasma cfDNA can be determined 

using non-negative least squares linear regression (NNLS) as described in (40–42). To select 

candidate CpGs, the authors of (40–42) first excluded CpGs whose variance across the 

entire methylation atlas was below 0.1% or was missing. They then selected the K = 100 
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most specific hypermethylated CpGs for each cell type, denoting the methylation matrix X, 

composed of N rows (CpGs) by d columns (cell types). They then divided each row (the 

methylation pattern of one CpG over all cell types) by its sum:

Xi′ = Xi

j
d Xi, j

For each cell type j, they identified the top K hypermethylated CpGs with the highest X’i,j 

values. To identify uniquely hypomethylated CpGs, they performed a similar process for the 

reversed methylation matrix (1−X). Finally, for each cell type they included both the top K 
hypermethylated and the top K unmethylated CpGs in the reference matrix. To this set of 

CpGs, they added neighboring CpGs, up to 50 bp. Pairwise-specific CpGs were iteratively 

selected as follows: given the current set S of CpGs, they projected the reference atlas on 

those coordinates and calculated the Euclidean distances between pairs of cell types. Once 

the closest pair of cell types was identified, they selected the CpG site where they differed 

the most and added it into the set S. This process was iteratively repeated, focusing on 

the most confusing pair of cell types in each iteration. Admixing experiments, similar to 

those performed in Sun et al. (3), were performed using buffy coat bisulfite sequencing data 

mixed with liver, lung, colon epithelial cell, or left atrium bisulfite sequencing data, showing 

excellent agreement between predicted fraction and actual fraction (as shown in Figures 

S10A–D).

Plasma cfDNA Tissue Deconvolution by Non-Negative Least Squares Regression (NNLS)

A custom python script adapted from the nnls package in MATLAB and described in Moss 

et al. (43) was used to perform non-negative least squares regression (40–42) to calculate 

the relative contribution of each cell type to a given sample. Given a matrix X of reference 

methylation values with N CpGs and d cell types, and a vector Y of methylation values of 

length N, non-negative coefficients β were identified by solving argminβ∥Xβ-Y∥2, subject to 

β ≥ 0. The resulting β was adjusted to have a sum of 1, where for each βj was defined as:

βj′ = βj

∑j
d βj

To obtain absolute levels of cfDNA (ng/ml) per cell type, the resulting βj′ was multiplied by 

the total concentration of cfDNA present in the sample, as measured by quantitative PCR.

Similar analysis using NNLS with an expanded matrix of 39 cell types is described in 

Loyfer et al. (44).

RealSeqS

RealSeqS was used to test the plasma samples for evidence of aneuploidy and contamination 

with high molecular weight DNA derived from leukocytes that were lysed during 

venipuncture or blood processing (12). RealSeqS uses a single primer pair to amplify 

~750,000 loci scattered throughout the genome (12). PCR was performed in 25 μL reactions 

containing 7.25 μL of water, 0.125 μL of each primer, 12.5 μL of NEBNext Ultra II 
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Q5 Master Mix (New England Biolabs, cat #M0544S), and 5 μL of DNA. The cycling 

conditions were: one cycle of 98°C for 120 s, then 15 cycles of 98°C for 10 s, 57°C for 

120 s, and 72°C for 120 s. Each plasma DNA sample was assessed in eight independent 

reactions, and the amount of DNA per reaction varied from ~0.1 ng to 0.25 ng. A second 

round of PCR was then performed to add dual indexes (barcodes) to each PCR product 

prior to sequencing, as described in Douville et al. (12). The second round of PCR was 

performed in 25 μL reactions containing 7.25 μL of water, 0.125 μL of each primer, 12.5 

μL of NEBNext Ultra II Q5 Master Mix (New England Biolabs, cat #M0544S), and 5 μL 

of DNA containing 5% of the PCR product from the first round. The cycling conditions 

were: one cycle of 98°C for 120 s, then 15 cycles of 98°C for 10 s, 65°C for 15 s, and 72°C 

for 120 s. Amplification products from the second round were purified with AMPure XP 

beads (Beckman, cat #a63880), as per the manufacturer’s instructions, prior to sequencing. 

As noted above, each sample was amplified in eight independent PCRs in the first round. 

Each of the eight independent PCRs was then re-amplified using index primers in the second 

PCR round. The sequencing reads from the 8 replicates were summed for the bioinformatic 

analysis but could also be assessed individually for quality control purposes. Massively 

parallel sequencing was performed on an Illumina HiSeq 4000. During the first round of 

PCR, degenerate bases at the 5’ end of one of the primers were used as molecular barcodes 

(unique identifiers, UIDs) to uniquely label each DNA template molecule (13). This ensured 

that each DNA template molecule was counted only once, as described in Kinde et al. (39). 

In all instances for RealSeqS in this paper, the term “reads” refers to uniquely identified 

reads (UIDs). If multiple reads had the same UID, at least 50% of the reads were required to 

map to the same genomic location. Reads with the same UID but with discordant genomic 

locations were discarded from analysis.

After massively parallel sequencing, gains or losses of each of the 39 chromosome arms 

covered by the assay were determined using a bespoke statistical learning method (13). A 

support vector machine (SVM) was used to discriminate between aneuploid and euploid 

samples. The SVM was trained using 2,651 aneuploid samples and 1,348 euploid plasma 

samples, to yield a “genome-wide aneuploidy score.” Samples were scored as positive when 

the genome-wide aneuploidy score was > 0.441.

Plasma samples were also analyzed for genomic DNA contamination using RealSeqS. 

RealSeqS enables the detection of genomic DNA by virtue of the differently-sized 

amplicons generated during PCR amplification (12). Because the average size of cell-free 

DNA is ~160-180 bp, almost all the ~750,000 amplicons are present in an average 

cfDNA sample. However, there were 1241 amplicons of size 200-500 bp, which represent 

contamination by genomic DNA. Coverage at these long amplicons is proportional to the 

background rate of gDNA contamination, as described in (13). In samples containing >15 

ng of DNA per mL of plasma in which RealSeqS data were not available, an Agilent 

BioAnalyzer System was used to evaluate the fraction of DNA > 500 bp.

Somatic Mutations

For patients with colorectal cancer, a panel of 15 genes was designed to find mutations in 

DNA from primary tumors, as described in Tie et al. (90). This panel enabled detection 
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of at least one mutation in 98% of CRC samples tested (90). The mutation with the 

highest mutant allele frequency in the primary tumor was then used to assess plasma 

DNA, as described by Tie et al. (90). The SafeSeqS approach, employing unique identifiers 

(UIDs, aka molecular barcodes), was then used to assess the plasma DNA for the mutation 

of interest (12). For patients with pancreatic cancer, plasma was directly assessed with 

SaferSeqS primers (9,91) for mutations at codons 12, 13, 59, 60, & 61, as >95% of 

pancreatic cancers harbor a mutation at one of these positions (92).

Copy Number Alterations

ichorCNA version 3.2 was downloaded on August 25, 2022 and applied to WGS data on 

bisulfite-treated cfDNA. Tumor fraction estimates were based on copy number analysis of 

500kb intervals using default parameters. The lower limit of detection was considered to be 

3% based on data from ref. (93).

Statistical Considerations

A η2 test was used to compare the number of individuals with elevated concentrations 

of cfDNA in 8 cancer types compared to healthy persons. A one-way ANOVA was used 

to compare the number of individuals with elevated concentrations of cfDNA in 8 cancer 

types by AJCC 7th edition stage. Pearson’s correlation coefficient was used to determine 

the relationship between total cfDNA concentration and relative contribution from individual 

tissues, and a t statistic was used to determine statistical significance. Student’s two tailed 

t-test was used to compare the total concentration of cfDNA pre- and post-surgery and 

aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels pre- and post-

surgery. A p value ≤ 0.05 was considered statistically significant.

Data Availability Statement

Data on methylation (bisulfite sequencing) and copy number alterations in plasma DNA 

are deposited in the European Genome-Phenome Archive (EGAS00001005400). Similarly, 

data on mutations in plasma are available from the European Genome-phenome Archive 

(EGAS00001002764 and EGAS00001002444). Commercial use remains restricted due to 

Johns Hopkins Medicine legal requirements.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STATEMENT OF SIGNIFICANCE

The origin of excess cfDNA in patients with cancer is unknown. Using cfDNA 

methylation patterns, we determined that neither the tumor nor the surrounding normal 

tissue contribute this excess cfDNA - it comes from leukocytes. This finding suggests 

cancers have a systemic impact on cell turnover or DNA clearance.
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Figure 1. Plasma cfDNA concentrations in previously described patients.
(A) Distribution of the average concentration of cfDNA in the plasma of patients with 

cancer as determined by qPCR shows that it is elevated compared to normal controls. Blue 

line = normal controls (N = 812). Red line = patients with cancer (N = 1005). (B) The 

concentration of cfDNA as determined by qPCR for normal controls (N = 812), and patients 

with breast (N = 209), colorectal (N = 388), esophageal (N = 45), liver (N = 44), lung (N = 

104), ovarian (N = 54), pancreatic (N = 93), and stomach (N = 68) cancer. Data are derived 

from the previously published CancerSEEK study (9). *** p < 0.001
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Figure 2. Deconvolution of the plasma cfDNA methylation profile using the reference cell type 
matrix derived from Sun et al. (3).
The total methylation profile of plasma cfDNA was deconvoluted into 12 different tissue 

types using quadratic programming. The total leukocyte concentration was taken to be the 

sum of the concentrations of neutrophils, B cells, and T cells. Note that the y-axes for the 

different tissue types shown are not the same.
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Figure 3. Deconvolution of the plasma cfDNA methylation profile using the reference cell type 
matrix derived from Moss et al. (43).
The total methylation profile of plasma cfDNA was deconvoluted into 25 different tissue 

types using quadratic programming The total leukocyte concentration was taken to be the 

sum of myeloid progenitors, monocytes, neutrophils, B cells, CD4 T cells, CD8 T cells, and 

NK cells. Note that the y-axes for the different tissue types shown are not the same.
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Figure 4. The amount of cfDNA from evaluable tissue sources before and ~24 hours after surgery
Each color represents a separate patient (see Supplemental Table 1). * p < 0.05, ** p < 0.01, 

*** p < 0.001.
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