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Abstract

Federated learning is an emerging paradigm allowing large-scale decentralized learning without 

sharing data across different data owners, which helps address the concern of data privacy in 

medical image analysis. However, the requirement for label consistency across clients by the 

existing methods largely narrows its application scope. In practice, each clinical site may only 

annotate certain organs of interest with partial or no overlap with other sites. Incorporating such 

partially labeled data into a unified federation is an unexplored problem with clinical significance 

and urgency. This work tackles the challenge by using a novel federated multi-encoding 

U-Net (Fed-MENU) method for multi-organ segmentation. In our method, a multi-encoding 

U-Net (MENU-Net) is proposed to extract organ-specific features through different encoding 

sub-networks. Each sub-network can be seen as an expert of a specific organ and trained for 

that client. Moreover, to encourage the organ-specific features extracted by different sub-networks 

to be informative and distinctive, we regularize the training of the MENU-Net by designing an 

auxiliary generic decoder (AGD). Extensive experiments on six public abdominal CT datasets 

show that our Fed-MENU method can effectively obtain a federated learning model using the 

partially labeled datasets with superior performance to other models trained by either localized or 

centralized learning methods. Source code is publicly available at https://github.com/DIAL-RPI/

Fed-MENU.
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1. INTRODUCTION

CONVOLUTIONAL neural network (CNN) based deep learning (DL) as a data-driven 

methodology has demonstrated unparalleled performance in various segmentation tasks, 

providing that the model can train on large-scale data with sufficient diversity. To suffice the 

large appetite of CNNs, researchers often collect data from multiple sources to jointly train 

a model for improved performance. However, in the healthcare domain, such centralized 
learning paradigm is often impractical because the clinical data cannot be easily shared 

across different institutions due to the regulations, such as Health Insurance Portability 

and Accountability Act (HIPAA). To overcome the barrier of data privacy and realize large-

scale DL on isolated data, federated learning (FL) [1], an emerging decentralized learning 
paradigm, has been adopted in the medical image analysis, solving various clinical problems 

such as prostate segmentation [2], [3] and COVID-19 diagnosis [4], [5].

FL allows different data-owners to collaboratively train one global DL model without 

sharing the data. The model training is completed by iterating over a server node and several 

client nodes. Each client individually trains a copy of the global model using their local 

data after the server updates the global model by aggregating the locally trained models. 

By repeating this process, the global model can effectively absorb the knowledge contained 

in the client datasets without data sharing. As data privacy has become a critical issue 

concerned by healthcare stakeholders, FL attracts a growing attention from both the research 

and clinical communities in recent years.

Although the capability of FL for medical image analysis has been demonstrated by the 

prior studies, it comes with limitations. A critical issue is about the strict requirement 

for the label consistency. Specifically, in an FL system, all the participating sites need 

to have identical regions-of-interest (ROIs) annotated on their local data, so the FL 

model can be optimized following the same objective across different clients. However, 

in practical scenarios, different clinical sites often have different expertise and thus follow 

different protocols for data annotation. This leads to inconsistent ROI labels across different 

sites. The requirement for labeling consistency hinders the FL methods from large-scale 

deployment in practice. Therefore, a more flexible FL framework supporting the training 

with inconsistently labeled client data is highly desired. From a technical point of view, this 

is an FL problem with partial labels since each client merely has a partially labeled dataset 

with respect to the whole set of ROIs in the federation. To the best of our knowledge, this is 

a new problem that has not yet been explored before, but at the same time is of great clinical 

significance and technical urgency to tackle.

In this paper, we propose a novel method, called federated multi-encoding U-Net (Fed-

MENU), to address the above challenge. We then demonstrate its performance on a 

representative task, i.e., multiple abdominal organ segmentation from computed tomography 

(CT) images. The underlying assumption of our design is that, although the data from 
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different clients show disparities in terms of the labeled ROIs, they share the same or similar 

image contents and thus can provide complementary information to facilitate the learning 

of robust features in a unified FL system. Since the client datasets are partially labeled 

with different ROIs, they can be seen as a set of experts with different expertise. Each 

expert focuses on learning the features within its expertise (labeled ROIs) while avoiding 

introducing the unreliable or noisy information from the non-expertise (unlabeled ROIs). 

To achieve this goal, we design a multi-encoding U-Net (MENU-Net) to decompose the 

multi-organ feature learning task into a series of individual sub-tasks of organ-specific 

feature learning. Each of them is bound with a sub-network in the MENU-Net. During the 

local training stage of FL, the client node can only tune the sub-network associated with the 

organ on which they have labels (expertise) while keeping the other parts of the network 

unchanged. Due to this decomposed feature learning strategy, the MENU-Net is encouraged 

to learn organ-specific features via different sub-networks without interference from other 

label-absent organs. Moreover, to further encourage the extracted organ-specific features to 

be informative and distinctive from other organs, we design an auxiliary generic decoder 

(AGD) to regularize the training of the MENU-Net. As a result, the MENU-Net can extract 

discriminative features during its encoding stage and thus facilitate the segmentation in the 

following decoding stage.

To demonstrate the performance of our Fed-MENU method, we conducted extensive 

experiments using four public abdominal CT datasets, each of which is annotated with a 

different set of abdominal organs. Our results show that, without sharing the raw data, 

the proposed Fed-MENU method can effectively utilize the isolated datasets with different 

partial labels to train a global model for multi-organ segmentation. The performance of 

the trained model is superior to the localized learning model trained by any single dataset 

and also the centralized learning model trained by combining all the datasets. The main 

contributions of this paper are three-fold.

• We addressed a new problem in FL to enable collaboratively training of a global 

model using isolated datasets with inconsistent labels.

• We proposed a novel Fed-MENU method to deal with this challenging problem. 

In our method, organ-specific features are individually extracted by different 

sub-networks of the MENU-Net and further enhanced by the accompanied AGD.

• We evaluated the performance of our Fed-MENU method for multi-organ 

segmentation using six public abdominal CT datasets. Our experimental results 

on both in-federation and out-of-federation testing sets demonstrated the 

effectiveness and superior performance of our design.

The rest of this paper is organized as follows. Section II gives a brief review of the previous 

literature related to this work. Section III illustrates the details of the proposed method. 

Section IV presents the experiments and results on four public datasets. Finally, we discuss 

the limitation of this work and conclude it in Section V.
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II. RELATED WORKS

Since our study involves both FL-based medical image analysis and DL-based image 

segmentation with partially labeled data, we review the related works in these two areas 

before presenting our proposed method.

A. Background of federated learning

FL, first emerged in 2017 [1], is a decentralized learning paradigm designed to address 

data privacy issue in deep learning. Unlike the conventional centralized deep learning that 

requires all training data gathered on a server node, FL allows distributed data owners to 

collaboratively train a model without sharing their data. Federated averaging (FedAvg) [1] 

was acknowledged as the benchmarking algorithm in FL, which defined the framework 

for the following studies in this field. In FedAvg, the model is simultaneously trained 

on several client devices and the clients transmit the trained model (parameters) to the 

server to update/maintain the global model (parameters). A major challenge in FL is how 

to deal with the client data that is not independently and identically distributed (non-iid) 

or heterogeneous [6–12]. For example, Li et al. [7] derived FedProx from FedAvg by 

regularizing the local models to be closer to the global model, in which way the method 

showed more stable and accurate performance when learning over the heterogeneous data. 

Acar et al. [8] proposed FedDyn by introducing a dynamic regularization term to the local 

training objective of FedAvg. The resulting model achieved not only better robustness 

against data heterogeneity but also higher communication efficiency. Li et al. [9] proposed a 

simple yet effective scheme, FedBN, to address the heterogeneity issue in feature space by 

keeping the batch normalization layers locally updated. Except for the above FL algorithms, 

data harmonization [13] can also be considered as a way to address the heterogeneities of 

multi-center data in FL.

B. Federated learning for medical image analysis

In recent years, FL has been widely applied in various medical image analysis tasks to 

address the conflict between large-scale DL model training and healthcare data privacy. 

For example, Dayan et al. [5] trained an FL model for COVID-19 clinical outcome 

prediction using chest X-ray images collected from 20 institutes across the globe. The 

experimental results showed that, by utilizing multi-site data, the trained FL model achieved 

an average area under the curve (AUC) around 0.920 for predicting the patients oxygen 

therapy categories after 24- and 72-hour periods from initial admission to the emergency 

department. This AUC value of the FL model is 16% higher than the average AUC 

(0.795) of the 20 locally trained models with single-site data. Xia et al. [14] derived an 

auto-FedAvg method from FedAvg algorithm [1] for medical image segmentation using data 

that are not independently and identically distributed (non-iid). Their method automatically 

learns the aggregation weights of each client based on the client data distribution. Roth et 
al. [2] combined FL with neural architecture search strategy to develop a super-network 

with a self-learned structure for whole prostate segmentation from multi-institute magnetic 

resonance imaging (MRI) data. Recently, Yang et al. [4] extended FL to semi-supervised 

learning paradigm and applied it to COVID region segmentation using chest CT data from 

three nations. Another work by Park et al. [15] employed the Vision Transformer (ViT) 
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architecture [16] in an FL framework to diagnose the COVID-positive cases from chest 

X-ray images.

The prior studies [2], [4], [5], [12], [14], [17–20] have demonstrated the feasibility and 

effectiveness of FL in solving the problem of large-scale DL model training without data 

sharing in the healthcare community. However, these successes are built upon a prerequisite 

that the participating sites have consistently labeled data so that they can contribute to the 

same training objective of one global model. However, such a strong requirement may not 

be met in the real scenarios, where different clinical sites often follow different protocols to 

annotate their local data. Although some prior efforts like FedMix proposed by Wicaksana 

et al. [21] allowed mixed supervised FL with different levels of label (e.g., pixel-level 

mask, bounding-box-level annotation, and image-level labels), the gap caused by the label 

inconsistency (in terms of the target classes) remained unresolved, which largely narrows the 

application scope of the FL-based methods for medical image analysis and thus motivates 

our study in this work.

It is worth noting that Dong et al. [22], [23] worked on a similar problem of federated 

learning-based X-ray image classification with partially labeled data, which is related to 

our work and thus provided positive implications for us during the revision of this paper. 

However, there are significant differences between these two works. First of all, Dong et 
al.s work is targeting at the image classification task while our work focused on the image 

segmentation task, which is more general and common in terms of the scope of clinical 

application. As a consequence, the methods proposed in these two works are fundamentally 

different and thus cannot be directly compared. Moreover, the method by Dong et al. was 

only evaluated in an in-federation setting, i.e., the testing data follows the distribution of 

the training data from one of the clients, while our study also includes an out-of-federation 

evaluation, i.e., the testing data comes from an unseen domain out of any one of the client 

datasets, which is more exhaustive and challenging.

C. Medical image segmentation with partial labels

Due to the high cost of data annotation, medical images are often partially labeled with 

different ROIs or labels, even though they may share the same imaging field. This created 

a barrier for the DL-based medical image segmentation methods [24], [25] when the model 

is trained on the partially labeled data. To solve this problem, Yan et al. [26] developed 

a universal lesion detection algorithm trained by CT images labeled with different lesion 

types. In their method, the missing labels were mined by exploiting clinical prior knowledge 

and cross-dataset knowledge transfer. Recently, Petit et al. [27] proposed to conduct partially 

labeled DL training through an iterative confidence relabeling method, in which a self-

supervised scheme was employed to iteratively relabel the missing organs by introducing 

pseudo labels into the training set. For the partial label problem in segmentation tasks, 

Fang and Yan [28] proposed a pyramid-input-pyramid-output feature abstraction network 

(PIPO-FAN) for multi-organ segmentation, in which a target adaptive loss is integrated 

with a unified training strategy to enable image segmentation over multiple partially labeled 

datasets with a single model. Shi et al. [29] designed two types of loss functions, namely 

marginal loss and exclusion loss, to train a multi-organ segmentation network using a set of 
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partially labeled datasets. Furthermore, Zhang et al. [30] proposed an ingenious approach, 

namely dynamic on-demand network (DoDNet), to achieve multi-organ segmentation with 

partially labeled data. Unlike the conventional deep neural networks with fixed parameters 

after training, the DoDNet can dynamically generate model parameters to adapt to different 

organ segmentation tasks. This innovative design largely improved the model efficiency and 

flexibility.

Although the problem of training DL models using partially labeled data [26–31] had been 

studied in the context of centralized learning, it is still an unexplored area for the field of FL. 

In this paper, we present the Fed-MENU method, which can learn from partially labeled data 

distributed on different sites.

III. METHOD

Fig. 1 gives an overview of the proposed Fed-MENU method. For a better understanding, 

it is presented in a specific scenario where the federation contains three client nodes and 

each node possesses a CT dataset partially labeled with one of the abdominal organs (liver, 

kidney, and pancreas). We then describe the FL framework adopted by our method in 

Section III-A. The technical innovation of this work resides in the MENU-Net designed for 

organ-specific feature extraction (Section III-B and the AGD designed for organ-specific 

feature enhancement (Section III-C). The training configurations and other technical details 

of the proposed method are provided in Section III-D.

A. Federated learning framework

Our method inherits the framework of the FedAvg [1] algorithm, which is a commonly 

adopted benchmark in FL. It consists of one server node and K client nodes. The server 

takes the responsibility of coordinating the communication and computation across different 

clients, while the clients focus on model training using their local data and devices. Given 

the universal label set of M organs, each of the client nodes has a local dataset Dk partially 

labeled with a subset of Nk ≤ M  organs. Our goal is to train a M-organ segmentation 

network F · , θ  using the partially labeled datasets Dk k = 1
K , which reside in different client 

nodes and cannot be shared or gathered for centralized training.

The training process of the FL framework consists of T  rounds of communication between 

the server and the client nodes. Specifically, in the t-th communication round, each client 

node k will first download the parameters of the current segmentation network F · , θt

on server (denoted as global model), resulting in a local copy of F · , θt  (denoted as 

local model). The client node then trains the local model using its local dataset Dk and 

device for E epochs. After the local training, the server collects the trained local models 

F · , θk
t  from all the K client nodes and aggregates them into a new global model through a 

parameter-wise averaging:

θt + 1 =
k

K Dk

j
K Dj

· θk
t, (1)
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where Dk  indicates the sample size of dataset Dk. The whole FL procedure is accomplished 

by repeating the above process until the global model F · , θt  converges.

Because the local models are individually trained on the client nodes, the server node only 

needs to transfer the model parameters instead of the raw data from the clients. That helps 

the FL model obtain knowledge contained in the isolated client datasets without violating 

the data privacy. However, since the original FedAvg framework is designed for FL with 

fully labeled data, there is a technical gap to bridge before we can deploy it to the case of 

partially labeled data. Therefore, we propose the following MENU-Net with AGD to meet 

the need.

B. MENU-Net for organ-specific feature extraction

A straightforward way to train a multi-organ segmentation network using the partial labels 

is to calculate the training loss merely using the labeled organs while ignoring the unlabeled 

ones. However, in the case of FL with partial labels, different organs are labeled in the 

client datasets, focusing on different expertise for image segmentation. As a consequence, 

the segmentation performance of the trained local models would be biased to the labeled 

organs. Intuitively, a uniform aggregation of all local models (see Eq. 1) may weaken the 

expert client models. A more reasonable way may be to promote the strength of the local 

models on segmenting the labeled organs and avoid the interference from their weaknesses 

with the unlabeled organs.

To achieve the above goal, we designed the MENU-Net to explicitly decompose multi-organ 

feature extraction into several individual processes of organ-specific feature extraction. 

As illustrated in the right panel of Fig. 1, the MENU-Net consists of M sub-encoders 

gm · ∣ θgm m = 1
M  followed by a shared decoder f · ∣ θf  as well as the skip connections 

between them. Fig. 1 shows an example with M = 3. Each sub-encoder gm · ∣ θgm  serves 

as an organ-specific feature extractor for the m-th organ. An input image x is fed to all 

the sub-encoders to get the features of all the organs in parallel. The extracted features are 

then concatenated into one stream and fed to the shared decoder f · ∣ θf , which is used to 

interpret the organ-specific features into the multi-organ segmentation masks. This process is 

formally defined as

F (x) = f g1(x) ⊕ g2(x)… ⊕ gM(x)
= f ⊕m = 1

M gm(x) , (2)

where ⊕ denotes channel-wise concatenation.

Given a client node with partial labels on the m-th organ, the local model training only tunes 

the parameters in the sub-encoder gm · ∣ θgm  and the shared decoder f · ∣ θf , which can be 

expressed as:

arg min
θf, θgm ⊂ θ

Lsup Fm x ∣ θ , ŷm ,
(3)
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where Fm x  and ŷm are the predicted and ground-truth segmentation of the m-th organ, 

respectively. Lsup denotes the supervised loss measuring the similarity between the prediction 

and ground truth, which can be in any form of pixel-wise loss functions (e.g., Cross-entropy 

loss and Dice loss [32]) or their combinations.

C. AGD for organ-specific feature enhancement

Benefitting from the decomposed feature extraction in MENU-Net, organ-specific 

knowledge from the labeled clients (experts) can be individually learned by different sub-

encoders with less interference from other unlabeled clients (non-experts). However, since 

each local model can only see the images from one client dataset, the organ-specific features 

learned by the sub-encoders may also include some domainspecific information. This is 

unfavorable for the subsequent shared decoder. Ideally, the sub-encoder should focus on 

the structural information of the corresponding organ, which is invariant across domains. 

In addition, the extracted organ-specific features should be distinctive enough from that of 

other organs, making the subsequent shared decoder easier to interpret them into different 

organs’ segmentation.

Motivated by the above idea, we design the AGD shared across different sub-encoders 

to help regularize the training of our MENU-Net, aiming to enhance the extracted organ-

specific features. Specifically, as illustrated in the mid-bottom of Fig. 1, given the organ-

specific features gm x  extracted by an arbitrary sub-encoder gm · ∣ θgm , we feed them to a set 

of AGDs to perform an organ-agnostic (binary) segmentation of the m-th organ:

Gm x = ℎ gm x . (4)

Here, we denote the collection of all AGDs as ℎ · ∣ θℎ  parameterized by θℎ. The AGD has 

a lite structure consisting of three convolutional layers. The first two convolutional layers 

contain 3 × 3 × 3 kernels followed by instance normalization [34] and LeakyReLU activation 

[35]. The last convolutional layer has 1 × 1 × 1 kernels with two output channels followed 

by a softmax activation. Due to the shallow structure of AGD, it has limited representation 

ability and thus enforces the preceding sub-encoder layers to extract more discriminative 

features to approach the organ segmentation. On the other hand, since the AGD is working 

as a generic decoder for different organs when combined with different sub-encoders, the 

sub-encoders are encouraged to extract features distinctive enough from each other so that 

the following AGD can interpret them into the corresponding organ’s segmentation without 

extra information.

During the local training stage, the AGDs are tuned together with different sub-encoders 

over all client nodes by minimizing the segmentation error between the output Gm x  and the 

corresponding ground truth ŷm. This process can be expressed as:

arg min
θℎ, θgm

Laux Gm x ∣ θℎ, θgm , ŷm ,
(5)

where Laux denotes the auxiliary loss quantifying the binary segmentation error between 

the AGDs’ output and the corresponding ground truth. We calculate Laux as a sum of the 
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Cross-entropy loss and Dice loss [32]. Note that, since the AGDs are connected to the 

multi-scale levels of the sub-encoder, they have multiple outputs in different scales. All 

these outputs will be resampled to the original size of the ground-truth segmentation ŷm and 

counted in the auxiliary loss in Eq. 5. After the local training, the tuned parameters of AGDs 

from all clients are aggregated through the FedAvg algorithm as shown in Eq. 1, which is the 

same as that of the shared decoder f · ∣ θf . The AGDs are used to regularize the training of 

the proposed MENU-Net. During the inference stage, we only utilize the trained MENU-Net 

to infer the multi-organ segmentation masks.

D. Implementation details

The proposed method is implemented for 3D segmentation using PyTorch. Model 

parameters in the segmentation network are initialized using the Xavier algorithm [36] and 

optimized by an SGD optimizer. The learning rate is initialized to be 0.01 and decayed 

throughout the training following a poly learning rate policy [37] with a momentum factor 

of 0.99. We train the model for T = 400 rounds of communication (= 1 epoch of local 

training per round) and evaluate its performance on the validation set every epoch using 

Dice similarity coefficient (DSC) as the metric. The model achieving the highest DSC on the 

validation set is selected as the final model to be evaluated on the testing set. The training 

batch size is set to 4 on four NVIDIA A100 GPUs. The CT images are resampled to a 

uniform resolution of 1.0 × 1.0 × 1.5mm3 (pixel spacing of 1.0 × 1.0mm2 and slice thickness of 

1.5 mm) before training. Image patches with a fixed pixel size of 256 × 256 × 32 are randomly 

cropped from the resampled CT images as the input of the segmentation network. The image 

intensities are normalized from − 200.0,400.0  Hounsfield units (HU) to [0.0, 1.0] for a 

good soft-tissue contrast. Random translation ([[20 20] mm  and rotation − 0.1,0.1 rad  are 

used to augment the training samples. In the inference time, an unseen CT image is first 

resampled to the resolution of 1.0 × 1.0 × 1.5mm3 and divided into a series of patches, which 

are then fed to the trained segmentation network. The predicted patch-wise segmentation 

will be assembled to get the final segmentation mask, which is then resampled back to their 

original CT resolution for quantitative evaluation. Unless otherwise noted, all the competing 

methods and ablation models in our experiments are trained and evaluated using the same 

configuration as our method. For better reproducibility, the source code is released at https://

github.com/DIAL-RPI/Fed-MENU.

IV. EXPERIMENTS

A. Datasets

We conducted experiments using six public abdominal CT image datasets, including 1) 

liver tumor segmentation challenge (LiTS) dataset [38]1, 2) kidney tumor segmentation 

challenge (KiTS) dataset [39], [40]2, 3) pancreas and 4) spleen segmentation datasets 

in medical segmentation decathlon challenge [41], [42]3 (Task # 7 and # 9, respectively), 

5) multi-modality abdominal multi-organ segmentation challenge (AMOS) dataset [33]4, 

1 https://competitions.codalab.org/competitions/17094 
2 https://kits19.grand-challenge.org/home 
3 http://medicaldecathlon.com 
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and 6) multi-atlas labeling beyond the cranial vault challenge (BTCV) dataset [43]5. For 

brevity, we denote the six datasets as the liver, kidney, pancreas, spleen, AMOS, and BTCV, 

respectively, in the rest of the paper. Table I shows the detailed information of these datasets.

Liver dataset contains 131 images, whose sizes range between [74~987] × 512 × 512  (in 

D × H × W  pixels). The in-plane spacing of these CT slices varies from 0.56 mm to 1.00 mm
and the slice thickness varies from 0.70 mm to 5.00 mm. Each CT image has a pixel-wise 

annotation of liver and tumor segmentation stored in the same size as the corresponding 

image. We treat the liver tumor regions as part of the liver in our experiments.

Kidney dataset contains 210 images, whose sizes range between [29~1059] 

× 512 × 512,796  (in D × H × W  pixels). The in-plane spacing of CT slices varies from 

0.44 mm to 1.04 mm and the slice thickness varies from 0.50 mm to 5.00 mm. Each CT image 

has a pixel-wise annotation of kidney and tumor segmentation stored in the same size as 

the corresponding image. We treat the kidney tumor regions as part of the kidney in our 

experiments.

Pancreas dataset contains 281 images, whose sizes range between [37~751] × 512 × 512
(in D × H × W  pixels). The in-plane spacing of these CT slices varies from 0.61 mm to 

0.98 mm and the slice thickness varies from 0.70 mm to 7.50 mm. Each CT image has a 

pixel-wise annotation of pancreas and tumor segmentation stored in the same size as the 

corresponding image. We treat the pancreas tumor regions as part of the pancreas in our 

experiments.

Spleen dataset contains 41 images, whose sizes range between [31~168] × 512 × 512  (in 

D × H × W  pixels). The in-plane spacing of these CT slices varies from 0.61 mm to 0.98 mm
and the slice thickness varies from 1.50 mm to 8.00 mm. Each CT image has a pixel-wise 

annotation of spleen segmentation stored in the same size as the corresponding image.

AMOS dataset contains 200 images, whose sizes range between [64~512] 

× 60 ∼ 768 × 192 ∼ 768  (in D × H × W  pixels). The in-plane spacing of these CT slices 

varies from 0.45 mm to 3.00 mm and the slice thickness varies from 0.82 mm to 5.00 mm. Each 

CT image has a pixel-wise annotation of liver, kidney, pancreas, spleen, and gallbladder 

segmentation stored in the same size as the corresponding image.

BTCV dataset contains 30 images, whose sizes range between [85~198] × 512 × 512  (in 

D × H × W  pixels). The in-plane spacing of these CT slices varies from 0.59 mm to 0.98 mm
and the slice thickness varies from 2.50 mm to 5.00 mm. Each CT image has a pixel-wise 

annotation of liver, kidney, pancreas, spleen, and gallbladder segmentation stored in the 

same size as the corresponding image.

For the liver, kidney, pancreas, spleen, and AMOS datasets, we randomly split each of 

them into training/validation/testing sets with a fixed ratio of 60%:10%:30%, respectively. 

4 https://amos22.grand-challenge.org 
5 https://www.synapse.org/#!Synapse:syn3193805/wiki/89480 
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The experimental results on the five testing sets are used for in-federation evaluation, which 

indicates the model performance when the testing data follows the same distribution as the 

training and validation data. For the BTCV dataset, we reserve it as an out-of-federation 
testing set, which is completely unseen to the model during training and validation. The 

performance on the BTCV dataset gives a good indication of the model’s generalization 

ability.

B. Metrics

We calculated the mean and standard deviation (SD) of Dice similarity coefficient (DSC) 

and average symmetric surface distance (ASD) for each organ to quantitatively evaluate the 

segmentation results yielded by different methods. For each labeled organ in a certain client 

dataset, we first calculate the mean value Qc
k over all cases to get the result for organ c in 

this client k. Then, the mean value of the Ck labeled organs Qk = 1/Ck c = 1

Ck
Qc

k is calculated as 

the performance index of client k. Finally, the mean value of the K clients Q = 1/K
k = 1

K
Qk

is considered as the global index indicating the model accuracy. Instead of performing an 

overall case-wise averaging, this strategy was to avoid the bias from unbalanced sample 

numbers among the datasets, ensuring the global DSC and ASD calculated from each 

dataset with different sizes play an equal role. We also conducted paired t-tests on the above 

metrics to check the statistical significance between different groups of results.

C. Comparison with benchmarks

1) Benchmarks: We compared our method with three benchmarks to demonstrate its 

effectiveness. The benchmarks include:

Localized learning mode:  Four single-organ segmentation networks and a five-organ 

segmentation network were individually trained using the liver, kidney, pancreas, spleen, and 

AMOS datasets, respectively. This benchmark simulated the scenario where the clinical sites 

cannot share their data with each other and no techniques are adopted to deal with the data 

privacy issue during the model training.

Centralized learning mode:  A five-organ segmentation network was trained using the 

combination of the liver, kidney, pancreas, spleen, and AMOS datasets. This benchmark 

simulated an ideal scenario where the clinical sites can freely share their data without any 

concern on the data privacy during the model training.

Federated learning mode:  A five-organ segmentation network was trained using the 

FedAvg [1] algorithm with the liver, kidney, pancreas, spleen, and AMOS datasets 

distributed on five client nodes. This benchmark simulated a practical scenario where the 

clinical sites cannot share their data with each other and a naive FL solution is adopted to 

deal with the data privacy issue during the model training.

We adopted U-Net [44] as the segmentation network for the above models. To ensure 

the performance gain comes from the design choice rather than the additional network 

parameters, we extended the base channel number of the U-Net from 32 to 96 to make it 
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have a slightly larger number of parameters than our method. In the leftmost column of 

Table II and Table III, we specified the trainable parameters in each model. The training 

configuration of all the methods followed the recommended settings by nnU-Net [37]. For 

the U-Net in federated learning mode, we employed the marginal loss and exclusion loss 

[29] as the training objective to adapt it to the partially labeled client data. The core idea of 

the marginal/exclusion loss is to combine the unlabeled organs with the background category 

and try to maximize/minimize the overlap with the merged background/foreground ground 

truth, respectively, which can be formulated as follows:

Lmargin = Lce p′, 1 − y′ + Ldice p′, 1 − y′ (6)

Lexclusion = − Lce p′, y′ − Ldice p′, y′ (7)

where p′ and ŷ′ denote the predicted segmentation of the merged background category and 

ground-truth segmentation of the merged foreground category, respectively. We utilized the 

sum of the Cross-entropy loss and Dice loss [32] to quantify the overlapping regions, which 

is consistent with the original nnU-Net [37] training settings. For the sake of fairness, the 

same objective was also used as the supervised loss Lsup in our method.

2) In-federation performance: Table II shows the quantitative results of the in-

federation evaluation. It can be observed that, among the three learning modes, the 

centralized learning models generally exhibited the upper-bound performance. The FL 

models significantly outperformed the localized learning models, which justified the 

feasibility of using different partially labeled datasets to collaboratively train a multi-organ 

segmentation model through FL. When compared with the baseline U-Net model, our 

method achieved higher global accuracy in both centralized learning mode and FL mode, 

which demonstrated the superiority of our designs. Although not all the improvement 

margins are statistically significant, the standard deviation of our results is much lower 

than those of the U-Net baseline model, which indicated our method had a more stable 

performance on the multi-center data. We also observed that, while the region-based DSC 

metric showed relatively small differences, our model performed much better than the U-Net 

in terms of the distance-based ASD metric. This phenomenon suggested that there are fewer 

false positives in our results. It is worth noting that the trainable parameter number of our 

method is 78 million, which is 24% fewer than that of the U-Net (∼ 97 million parameters). 

This result suggests that the performance gain of our method was coming from the design 

choice rather than the additional parameters. More importantly, the smaller model size can 

also benefit the FL due to the lower communication and computation costs.

3) Out-of-federation performance: Table III presents the quantitative results of the 

out-of-federation evaluation. Similar to the in-federation scenario, the centralized learning 

models showed superior accuracy over the FL and localized learning models. However, there 

was a global performance degradation from the in-federation results to the out-of-federation 

results due to the data distribution shift from the training domain (the liver, kidney, pancreas, 

spleen, and AMOS datasets) to an unseen testing domain (the BTCV dataset). Furthermore, 

we observed that the performance gap between the centralized learning models and the FL 
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models decreased for the out-of-federation results, as compared to the in-federation results. 

These results suggest that out-of-federation segmentation is a more challenging task than 

in-federation segmentation, and our method can effectively handle it with better performance 

over the baseline U-Net model.

4) Result visualization: Figs. 2 and 3 visualize the segmentation results yielded by 

different methods in 2D (axial) and 3D views, respectively. Each column shows a case 

from one client dataset. In the 2D views, the ground-truth contours are superimposed on 

the segmentation results as yellow dashed lines for better comparison. In the 3D views, 

the segmentation results of the unlabeled organs are represented by transparent meshes. It 

can be observed that our proposed method produced fewer false positive results in either 

in-federation or out-of-federation results.

D. Ablation study

In this section, we conducted ablation studies on the proposed method to evaluate the 

effectiveness of the two key designs, including 1) the MENU-Net for organ-specific feature 

extraction and 2) the AGD for organ-specific feature enhancement. A U-Net [44] trained 

using the FedAvg algorithm [1] was used as the baseline method, on which the MENU-Net 

and AGD components are sequentially imposed. In addition, we also tried to replace the 

AGD with a non-generic version, i.e., the auxiliary decoders are locally trained on the 

client nodes without parameter fusion (see Eq. 1) through the server node. We denote it as 

auxiliary localized decoder (ALD) in the following contents. This ablation model is used to 

justify the necessity of parameter sharing in learning organ-specific features.

The quantitative results of the ablation studies are listed in Table IV The observations 

are three-fold. 1) Compared with the baseline, the design of the MENU-Net (Table IV] 

“+MENU-Net”) can effectively improve the global segmentation indices except for the 

ASD metric in out-of-federation evaluation. This result indicated a positive effect of the 

task decomposition design (i.e., the multi-encoder network architecture) in learning domain-

invariant features. 2) Based on the MENU-Net, the AGD (Table IV “+MENU-Net+AGD”) 

can further boost the segmentation accuracy for both in-federation and out-of-federation 

evaluation. This result suggested that the auxiliary supervisions on the intermediate layers 

can facilitate the learning of more discriminative features, and thus, benefit the subsequent 

shared decoder for accurate segmentation. 3) By replacing the AGD with the ALD, the 

accuracy of our method (Table IV] “+MENU-Net+ALD”) dropped in both the in-federation 

setting and the out-of-federation setting. This result demonstrated the importance of 

parameter sharing in our AGD since the auxiliary decoder shared across the clients enforced 

the preceding sub-encoders to extract discriminative features for different organs.

Fig. 4 visualized the gradient-weighted class activation maps (Grad-CAMs) [45] produced 

by our MENU-Net (extracted from the third convolutional block in the sub-encoders) when 

it is trained without AGD, with ALD, and with AGD, respectively. The model trained 

with AGD generated activation maps with more accurate shapes and fewer false positive 

regions than the other two models, which indicated that the AGD can effectively enhance the 

organ-specific features extracted by the sub-encoders with better explainability [46].
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E. Effects of communication frequency

Communication frequency is a key factor affecting the performance of the FL methods in 

practice. In the proposed method, the communication frequency is jointly controlled by 

the number of communication rounds T  and the number of local training epochs E. We 

successively trained our method with different combinations of T × E to investigate the 

effects of communication frequency. For the sake of fairness, the product of these two 

parameters are fixed to 400, which means all models are optimized with the same number of 

training batches (iterations).

The experimental results are shown in Table V and Fig. 5. It can be seen that higher 

communication frequency generally brought better performance to the trained model, 

which is in line with observations in other FL-based methods [1], [4], [9], [14], and our 

method consistently outperformed the baseline FL U-Net model. Considering our method 

is designed for the cross-silo FL [47] scenario, where the clients (clinical sites) have stable 

internet connections with sufficient bandwidth, we finally choose T = 400 and E = 1 in our 

method to achieve higher accuracy.

F. Comparison with different FL strategies

Another important factor relating to the FL systems performance is the choice of the 

learning strategy, which determines how the locally trained models are optimized and 

aggregated to update the server model. In the prior experiments, to focus on our own 

designs, we consistently used the most basic FL strategy, i.e., the FedAvg algorithm [1], 

for this choice. Our method is also flexible to be combined with other FL strategies. To 

demonstrate this property, we tried to deploy our method with six different FL strategies, 

including FedAvg [1], FedAvgM [6], FedProx [7], FedDyn [8], FedSM [11], and FedNorm 

[10]. The experimental results of these hybrid models are shown in Table VI. It can be 

observed that, by combining with more advanced FL strategies, the segmentation accuracy 

of our method can be further improved. The highest DSC was achieved when our method 

was combined with the FedDyn [8] algorithm. This experiment demonstrates the flexibility 

of our proposed method. While the existing FL strategies mainly focus on resolving the 

problem of image heterogeneities, our method is designed to deal with label heterogeneities. 

Thus, the proposed method and FL strategies can complement each other. We also compared 

our method with another multi-organ segmentation method for partially labeled data, i.e., 
DoDNet [30], which was originally designed for centralized learning scenario and extended 

in this experiment by combining with the FedAvg [1] algorithm (denoted as “Fed-DoDNet” 

in Table VI. The segmentation accuracy of this competing model is slightly lower than our 

model, which demonstrated the superiority of our method designs.

V. DISCUSSION AND CONCLUSION

In our experiments, the FL model was trained with five client datasets, each containing 

varying numbers of images that were labeled with different organs. This setup was designed 

to simulate real scenarios in clinical settings. Our experimental results revealed that our 

proposed method is flexible and capable of handling such complex scenarios. However, 

it is important to note that our approach has a minimum criterion for the number of 
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labeled organs required. Specifically, each client dataset must be labeled with at least 

one of the target organs. For more complicated scenarios involving unlabeled images, it 

would require some additional semi-supervised or unsupervised learning techniques, such 

as the teacherstudent consistency learning strategy [48], [49], to deal with. Fortunately, our 

Fed-MENU framework is highly adaptable and can seamlessly integrate these methods, 

making it possible to extend the framework to these situations.

Most of the CT images used in this study contained tumors, and we treated the lesion 

regions as a part of the surrounding organ in the experiments. There could be a potential 

influence of these abnormities on the performance of the proposed method. To investigate 

this impact, we compared the performance of our method when the lesion regions in the CT 

images were treated 1) as background and 2) as part of the foreground organs, respectively. 

The quantitative results yielded from these two settings are reported in Table VII It can be 

seen that, when the lesion regions were treated as the background category, the resulting 

performance of the proposed method degraded. The reason can be attributed to the fact 

that, although the lesion regions exhibited different textures or intensities than the healthy 

tissues, they may not substantially change the contour shape of the target organs. Thus, it 

would be relatively easy to segment these regions as a part of the foreground. Otherwise, if 

the lesions were treated as the background, it may significantly change the structure of the 

target organs, which would eventually affect the segmentation accuracy. Since the proposed 

method is designed to deal with the inconsistently labeled data for FL, we can also consider 

the tumor labels as a new class inconsistently distributed in different client nodes and train 

our method to segment the tumors. This could lead us to a potential application of disease 

diagnosis. Naturally, to be adaptive to the task of diagnosis (classification), the output 

branch of the proposed MENU-Net may be replaced with a global pooling layer followed 

by fully-connected layers. As this study mainly focused on the application of multi-organ 

segmentation, this direction will be explored in our future research.

The experiments conducted in this study are done in a virtual environment, in which we 

focus on the training problem of inconsistently labeled data. In practical scenarios, there are 

some security issues that should be considered. For example, encryptions are required to 

secure the communications between server and client nodes. Unencrypted communication 

would raise a risk of information leakage and interference from malicious attacks [50]. In 

addition, challenges of data memorization [51] as well as adversarial inference [52] also 

raise privacy concerns to the FL methods. It has been demonstrated that an FL model can 

be maliciously manipulated to reconstruct the private training data if no protective measures 

are taken [53]. To address this issue, differential privacy (DP) [54] techniques can be used 

to enhance the FL methods by introducing noise to their input data, computation results, or 

optimization process [55]. Since the goal of this study is to develop an FL framework to 

enable collaborative learning on inconsistently labeled data, we did not draw extra efforts to 

the security issue. Fortunately, our method is compatible to the above-mentioned techniques 

and thus can be combined with them to achieve secure FL.

One potential limitation of the proposed method could be its scalability. In this study, 

we designed our method for a five-organ segmentation task. However, when more organs 

are desired in the segmentation task, more encoders are required in the MENU-Net. As a 
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consequence, the concatenation of the output feature maps from the multi-encoders would 

increase model complexity and GPU memory consumption. One solution to this issue could 

be using one single shared encoder combined with conditional input to replace the multi-

encoder design. This would result in a variant of our method sharing the DoDNet structure 

[30]. In Table VI, we reported the experimental results of this variant model (denoted as 

“Fed-DoDNet”), which demonstrated the feasibility of this sharedencoder+conditional input 

design.

In this paper, we revealed and defined a new problem of FL with partially labeled data 

in the context of medical image segmentation, which is of great clinical significance and 

technical urgency to solve. Subsequently, a novel Fed-MENU method was proposed to 

tackle this challenging problem. Compared with the conventional FL framework that worked 

on the fullylabeled data, our Fed-MENU method had two key designs to adapt to the 

partially labeled client datasets, 1) the MENU-Net for organ-specific feature extraction and 

2) the AGD for organ-specific feature enhancement. Extensive experiments were conducted 

using six public abdominal CT image datasets. The experimental results comprehensively 

demonstrated the feasibility and effectiveness of our method in solving the partial label 

problem in the context of FL.
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Fig. 1: 
Scheme of the proposed Fed-MENU method. For better understanding, the method is 

presented using an example scenario where three clinical sites with partially labeled 

abdominal CT images collaboratively train an FL model for multi-organ segmentation of 

the liver, kidney, and pancreas. The left panel of the figure shows the federation structure. 

The right panel details the local training procedure on Client node 3, where the pancreas is 

the only labeled organ in this client dataset. For brevity, we present only the connections 

between the third sub-encoder (colored in blue) and the shared decoder, as well as the 

AGDs. In the final implementation, all sub-encoders are connected to the shared decoder and 

AGDs at equivalent positions.
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Fig. 2: 
2D Visualization of segmentation results yielded by the competing methods. Each column 

shows a case from one client. For better comparison, the ground-truth contours are also 

superimposed on the segmentation results as yellow dashed lines.
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Fig. 3: 
3D Visualization of segmentation results by the competing methods. Each column shows a 

case from one client. The segmentation of the unlabeled organs is represented by transparent 

meshes.
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Fig. 4: 
Gradient-weighted class activation maps (Grad-CAMs) [45] generated by the MENU-Net 

trained without AGD (left), with ALD (middle), and with AGD (right). Yellow dashed lines 

indicate ground-truth contours. We use the activation (output) of the third convolutional 

block in the sub-encoders to calculate the Grad-CAMs.
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Fig. 5: 
Average DSC of FL models trained with different communication frequencies. The red 

dashed line indicates the average DSC achieved by centralized learning model.
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TABLE IV:

Experimental results of ablation studies on the proposed method. The best results are marked in bold.

Ablation models
In-federation Out-of-federation

DSC [%] ASD [mm] DSC [%] ASD [mm]

Baseline 90.39 2.48 83.26 2.83

+MENU-Net 90.95 1.76 83.86 3.39

+NEMU-Net+ALD 90.78 1.62 83.36 3.65

+NEMU-Net+AGD 91.14 1.40 84.33 2.71
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TABLE V:

Quantitative performance evaluation of the proposed method trained with different communication frequencies 

T × E . T  is the number of communication rounds and E is the number of local training epochs. The best 

results are marked in bold.

Communication frequency T × E
In-federation Out-of-federation

DSC % ASD mm DSC % ASD mm
25 × 16 90.63 1.78 83.10 3.47

50 × 8 90.64 1.92 83.45 2.95

100 × 4 90.72 1.89 83.58 2.98

200 × 2 90.95 1.57 83.81 3.27

400 × 1 91.14 1.40 84.33 2.71

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 October 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 31

TABLE VI:

Quantitative performance evaluation of the proposed method when combined with different federated learning 

strategies. The best results are marked in bold.

Models

In-federation Out-of-federation

DSC % ASD mm DSC % ASD mm
FedAvg [1] 91.14 1.40 84.33 2.71

FedAvgM [6] 90.28 1.98 82.32 3.29

FedProx [7] 90.95 1.62 83.73 2.97

FedDyn [8] 91.33 1.56 84.60 3.23

FedSM [11] 91.15 1.41 84.38 2.70

FedNorm [10] 90.92 1.75 84.21 3.12

Fed-DoDNet [30] 91.09 1.75 83.82 2.74
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TABLE VII:

Quantitative performance evaluation of the proposed method when the lesion regions were treated as 

background/a part of the target organs. The best results are marked in bold.

Models

In-federation Out-of-federation

DSC % ASD mm DSC % ASD mm
Lesion as background 89.76 1.65 84.00 2.81

Lesion as part of organ 91.14 1.40 84.33 2.71
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