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Abstract

Void volume fraction (VVF) is a global measurement frequently used to characterize the void 

space of granular scaffolds, yet there is no gold standard by which to measure VVF in practice. 

Using simulated packed particles in 3-D, we study the relationship between VVF and particles of 

varying size, form, and composition. Our library of VVF values reveal that VVF is more variable 

across replicate scaffolds relative to the number of particles parameters. We next use our simulated 

data to explore the relationship between microscope magnification and VVF for monodisperse 

spherical particles. We offer recommendations for optimizing the accuracy of approximating 

VVF using 2-D microscope images, which is the most common approach for computing VVF 

of hydrogel granular scaffolds. Lastly, we measure VVF of hydrogel granular scaffolds while 

varying four input parameters: image quality, magnification, analysis software, and intensity 

threshold. Results show that VVF is highly sensitive to these parameters. Overall, random packing 

results in variation of VVF among granular scaffolds comprising the same particle populations. 

Furthermore, while VVF is used to compare the porosity of granular materials within a study, 

VVF is a less reliable metric across studies that use different input parameters. VVF is a global 

measurement which inherently cannot describe the dimensions of local pores within granular 

scaffolds, and our work supports the notion that more descriptors are necessary to accurately and 

sufficiently characterize void space.
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The void volume fraction (VVF) of granular scaffolds is challenging to measure accurately. For 

real microscope images, user preference for software, magnification, and threshold parameters has 

significant influence on the final reported VVF. We use simulated packed particles in 3-D to study 

VVF for a range of granular scaffolds. With access to a ground truth, our simulated microscope 

images reveal relationships between VVF and magnification, z-gap, and the number of z-slices.
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1. Introduction

Void volume fraction (VVF1) is one of the most reported analyses for packed granular 

materials. The measurement describes the proportion of the structure that is occupied by 

void space between particles. In the biomaterials field, we care about understanding void 

space because granular materials made from microscopic particles are often designed for 

applications in wound healing or organ-on-chips, where cells infiltrate into and reside in 

the void space while they enact their therapeutic effect. VVF gives us information about 

particle-packing density and is one way to characterize the space available to cells. For 

studying the inside of granular scaffolds, the field uses light microscopy or micro-computed 

tomography to generate 2-D z-stack images of the sample. These slices are then either 

analyzed on a per-slice basis or fed into software that reconstructs a 3-D image for 3-D 

analysis. We are interested in studying VVF in more depth to understand how particle 

composition and methods of analysis affect what is being reported in the literature. Our 

goal is to 1) derive relationships between particles and VVF for a range of idealized 

particle packings, 2) expose the shortcomings of measuring VVF in practice, and 3) identify 

potential practical strategies that increase accuracy and reduce subjective variabilities.

1.1 Current approaches for imaging granular scaffolds and computing VVF

In the biomaterials field, confocal microscopy is a common imaging approach for 

visualizing and analyzing granular scaffolds, where particles are fluorescently labeled and/or 

void space is illuminated using fluorescently-labeled dextran. Scaffolds are imaged with 

1VVF, void volume fraction
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a specified objective lens magnification (and corresponding numerical aperture) along the 

vertical axis to generate a z-stack of 2D-slice images that are typically a uniform step-size 

(z-gap) apart. Protocols for obtaining microscopy images vary in terms of magnification, 

sample thickness, z-gap, and the number of z-slices (Table 1), which can be attributed to 

user-preference that aims to balance image resolution, sample size, and imaging (1-7).

Computing VVF from microscope z-stack images can be broadly categorized as 2-D or 3-D 

approximations, and approaches under each umbrella use techniques from image processing 

that introduce user bias. The most common 2-D approach is to approximate VVF by the 

average void area fraction among z-slices. Fiji (ImageJ) is an image processing platform 

that is used to approximate VVF in this way (4, 5, 8, 9), and users must choose from 

16 Auto-Threshold methods for the binarization step that influences VVF (10). The field 

also commonly employs MATLAB to compute average void area fraction by implementing 

MATLAB-native thresholding algorithms into custom code, which further adds to the 

variability of computing VVF (3, 6, 11). 3-D approximations require first constructing a 

3-D volume prior to computing VVF. Imaris is a microscopy image analysis software that 

computes VVF by generating a triangulated mesh of either the particles or the void space, 

then computing the volume of the space enclosed by the mesh. User bias is introduced 

when setting the global threshold that is applied to all images in the z-stack during image 

processing. The 3-D aspect of Imaris (and other similar software) has made it appealing for 

visualizing granular scaffolds as well as computing VVF (7, 11-13)

2. Methods

2.1 Simulating granular scaffolds and computing VVF

Packed particle domains were simulated using SideFX Houdini software. Particles were 

randomly initialized above a funnel geometry that feeds into a 600 x 600 x 600 μm3 

container. Domains were discretized on a uniform Cartesian grid. The mesh size, dx, for all 

domains was chosen to produce a total voxel count between 107 and 108, which produced 

the best trade-off between detail and memory usage. We use Houdini’s native rigid-body 

physics solver to simulate how particles fall, collide, and ultimately settle in the container. 

All parameters not otherwise stated are held constant, including particle friction. Domains 

containing binary mixtures are generated by first determining the number of particles for 

each population according to the desired volume ratio and container size, then initializing 

their starting positions (randomly) within a cylinder above the setup before dropping them 

into the container through a funnel (Supplementary Figure 1). Polydisperse particle domains 

are similarly generated, where particle diameters are sampled from a normal distribution 

with set mean and standard deviation. For non-spherical particles, we use Houdini to 

model ellipsoids, cylinders (rods), and nuggets, where nuggets were created by extruding 

a parametric curve that describes the perimeter of an egg-like shape. See Supplementary 

Figure 2 for relative particle dimensions.

Once a domain is simulated, the particles are rasterized to a uniform 3-D grid. For spherical 

particles, we output a CSV file storing the particle centers and radii, as well as the mesh 

size. For non-spherical particles, we label their associated voxels with a unique integer ID, 
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then output the labeled-voxel data to a JSON file along with other fields: domain size, total 

particle count, total voxel count, voxel count per particle, and voxel size (mesh size).

VVF is defined as Φ − S ∕ V , where S represents void space and V  represents the total 

volume of scaffold. To avoid edge effects, we specifically define V  as the convex hull 

of particle centers, i.e., both particle and non-particle regions that lie within the interior 

of the scaffold, and S is defined as the non-particle regions within the convex hull. See 

Supplementary Figure 3 for formal definitions of these terms.

2.2 Simulating magnification and studying z-slices

We use microscope images of real granular scaffolds comprising 100 μm diameter particles 

as our reference z-slice images for 10x, 20x, and 40x magnification. To start, we calibrate 

a simulated domain to a real image of 10x magnification by using an 800 x 800 x 800 μm3 

domain of 60 μm spherical, rigid particles and cropping inward 4% in all directions using 

dx = 2 μm. This produces a 3-D particle domain that is 736 x 736 x 736 μm3 (~5.0 x 107 

voxels) and subsequently 736 x 736 μm2 (368 x 368 pixels) 2-D slice images. We opt for 

60 μm diameter particles instead of 100 μm diameter particles because we wanted to avoid 

simulating particle domains that exceed 800 x 800 x 800 μm3 due to hardware constraints. 

This initial crop is to avoid edge effects; however, the effect of particle alignment against the 

walls of the container is still present (e.g., Figure 3b, for small z-slice numbers, there is a 

dip in relative accuracy for all scaffolds at 10x magnification; Figure 2b, the average VVF 

at 10x is slightly larger than 20x and 40x magnification). To generate 20x magnification, we 

crop the original domain inward by 27% in each direction and use dx = 1 μm. This produces 

a 3-D particle domain that is 368 x 368 x 368 μm3 (~5.0 x 107 voxels) and 368 x 368 

μm2 (368 x 368 pixels) 2-D slice images. This crop was chosen because a 2-fold zoom is 

equivalent to halving the field of view. Similarly, 40x magnification is generated by cropping 

the original domain 38.5% in each direction using dx = 0.8 μm to produce a 3-D particle 

domain that is 184 x 184 x 184 μm3 (~1.2 x 107 voxels) and 184 x 184 μm2 (230 x 230 

pixels) 2-D slice images. A dx of 0.8 was used in lieu of 0.5 because of memory constraints 

since each run starts with the full 800 x 800 x 800 μm3 domain at the chosen dx prior to 

cropping. Adjusting dx at each simulated magnification ensures a similar voxel count. This 

process is repeated for four additional unique particle domains. Finally, to ensure that our 

simulated data reflects the real 100 μm diameter scaffolds that were used as references, we 

scale our reported z-gap data by ∕60
100 .

To study how z-gap size affects average void area fraction using our simulated particle 

domains, we sample z-slices within the middle 50% of the scaffold that are z-gap apart and 

plot average void area fraction as a function of z-gap. To study how the number of z-slices 

affects average void area fraction, we sample an increasing number of z-slices starting from 

the bottom of the scaffold that are 8 μm apart. For each iteration, we compute the average 

void area fraction and plot as a function of the number of z-slices. We use the same particle 

domains as described in the previous paragraph.
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2.3 Real granular scaffolds

We study how VVF measurements vary for four conditions: 1) scaffolds comprising 70 

μm diameter polyethylene glycol (PEG) vs. 100 μm diameter hyaluronic acid (HA) particle 

scaffolds, 2) 10x, 20x, and 40x optical lens magnifications, 3) Fiji, MATLAB, Imaris, 

and 3-D Particle Segmentation software approaches, and 4) a reasonable range of input 

parameters or settings that produce a low, middle, and high VVF value. The goal of the last 

condition is to study the range of user bias for each software. Our protocol for determining 

reasonable low, middle, and high output images was as follows: low outputs showed many 

‘false particle’ regions but at least one ‘false void’ region; middle output images showed 

both ‘false particle’ and ‘false void’ regions and was considered the ‘best’ binarization; and 

high output images showed many ‘false void’ regions but at least one ‘false particle’ region.

2.3.1 Polyethylene glycol Vinylsulfone microgel production—Microfluidic 

devices and microgels for Polyethylene glycol Vinylsulfone (PEG-VS) were produced as 

previously described (14). Briefly, 8 arm PEG-VS was dissolved in 0.3 M triethanolamine 

(Sigma) pH 8.8 and pre-reacted with K-peptide (Ac-FKGGERCG-NH2, GenScript) and Q-

peptide (Ac-NQEQVSPLGGERCG-NH2, GenScript) and RGD (Ac-RGDSPGERCG-NH2, 

GenScript) for at least one hour at 37°C. Concurrently, the cross-linker solution was 

prepared by dissolving the di-thiol matrix metalloproteinase sensitive peptide (GenScript) in 

distilled water at 12 mM and reacted with 10 μM Alexa-Fluor 647-maleimide for 5 minutes. 

These solutions were filtered through a 0.22 μm sterile filter before loading into 1 ml 

syringes. The aqueous solutions did not mix until droplet segmentation on the microfluidic 

device. The pinching oil phase was a heavy mineral oil supplemented with 1% v/v Span-80. 

Downstream of the segmentation region, a second oil inlet with a high concentration of 

Span-80 (5% v/v) and Triethylamine (3% v/v) was added and mixed to the flowing droplet 

emulsion. These microgels were collected and allowed to gel overnight at room temperature 

to form microgels. The microgels were then purified and stored in HEPES buffer (pH 8.3 

containing 1% Antibiotic-Antimycotic and 10 mM CaCl2) at 4 °C.

Scaffolds were made as previously described (14), where 4 U/ml of thrombin (200 U/mL in 

200 mM Tris-HCl, 150 mM NaCl, 20 mM CaCl2) and 10U/ml of Factor XIII (250 U/mL) 

were combined with pelleted “dry” microgels and mixed and allowed to incubate at 37°C 

for 30 minutes to form a solid hydrogel. The scaffolds were imaged on a Nikon Ti Eclipse 

scanning confocal microscope equipped with a C2 laser using a 20x air objective with 0.75 

numerical aperture.

2.3.2 Hyaluronic acid-norbornene microgel production—Hyaluronic acid-

norbornene (HA-NB) was first synthesized as previously described (15). Briefly, HA 

(MW 79,000 Da) (Contipro) was activated with 4-(4,6-Dimethoxy[1.3.5]triazin-2-yl)-4-

methylmorpholinium chloride (DMTMM) (MW: 294.74 Da) (TCI America, Portland, OR) 

at 4 molar equivalents in 200 mM MES buffer for 10 min before adding 2 molar equivalents 

of 5-Norbornene-2-methanamine (a mixture of isomers) (NMA) (TCI America, Portland, 

OR) drop-wise. HA-NB was then purified and H’NMR verified 33.5% NB functionalization.

Riley et al. Page 5

Small. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This HA-NB was then used for microgel productions as previously described (15). Briefly, 

microgels were produced using a planar flow-focusing microfluidic device to create uniform 

particles. A 1 mL gel precursor solution was made by dissolving HA-NB in 50mM 

HEPES pH 7.5, di-thiol MMP sensitive linker peptide (Ac-GCRDGPQGIWGQDRCG-NH2, 

Genscript) (SH/HA ratio of 14), tris(2-carboxyethyl)phosphine (TCEP) (Sigma-Aldrich) 

(TCEP/SH ratio of 0.25) and 9.90 mM lithium phenyl(2,4,6-trimethylbenzoyl)phosphinate 

photo-initiator (LAP) (TCI America, Portland, OR). The final HA-NB in the precursor 

solution should be at 3.5% (w/v). A 5 mL BD Leur-Lok syringe was filled with 5% (v/v) 

Span-80 in heavy mineral oil and attached to the outer inlet of the microfluidic device. A 

single syringe pump was used to push the differently-sized syringes at asymmetric flow 

rates. A OmniCure LX500 LED Spot UV curing system controller with a OmnniCure 

LX500 LED MAX head at 365nm wavelength, 30% power at (20 mW/cm2) was used off 

chip to crosslinking the microgels. A 15 mL conical tube wrapped in foil was used to collect 

the HMP emulsion. Microgels were washed of any oil and left to swell in 1xPBS buffer 

overnight or at 4°C until stained and imaged.

Before imaging, microgels were labeled with an AlexaFluor 488 that had been previously 

modified with a tetrazine linker. After fluorescently tagging and washing the microgels, they 

were combined with 4-arm PEG-Tetrazine at a ratio of 7 Tet/HA to form scaffolds. After 

annealing, the scaffolds were imaged on a Nikon Ti Eclipse scanning confocal microscope 

equipped with a C2 laser using a 20x air objective with 0.75 numerical aperture.

2.3.3 Fiji—Fiji is an image processing program that approximates VVF by computing the 

average void area fraction among inputted 2-D z-slice images (16). We first convert images 

to 8-bit, then binarize each z-slice using built-in methods from Fiji’s Auto Threshold plugin: 

namely, MinError, Huang, and Default for low, middle, and high outputs, respectively. 

These selections were based on the sample image of cells shown in the Fiji/ImageJ online 

documentation (10), where we relate the circular cells to particles. MinError binarization 

correctly segments complete cells/particles but includes substantial particle-pixel noise, 

which underestimates void space. Huang produces the optimal cell/particle segmentation. 

Default binarization results in cells/particles that are speckled with void space pixels, which 

overestimates void space. These three methods reference actual settings used in the field for 

reporting VVF. For our analysis, we exclude blurry z-slices that appear out of focus.

2.3.4 MATLAB—Our MATLAB script uses standard built-in functions to process and 

binarize images, then approximates VVF by computing the average void area fraction 

among inputted 2-D z-slice images. Users input a parameter, γ, that divides the output of the 

MATLAB function graythresh (Otsu algorithm) used for binarization. We chose γ = 1 or 1.5 

for our low output category, γ = 2 for our middle output category, and γ = 2.5 or 3 for our 

high output category. These γ values were chosen on a per-z-stack basis by observing how 

different γ values change the binarizations, then visually determining a ‘reasonable’ output 

for each category.

2.3.5 Imaris—Imaris is a microscopy image analysis software that computes VVF by 

binarizing z-stacks before generating a triangulated mesh of solid regions and computing 

VVF from the resulting 3-D surfaces. Imaris requires a user-inputted ‘absolute intensity 
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threshold’ parameter that is globally applied to all images in the z-stack. Therefore, 

differential light intensity among z-stacks contributes to less accurate binarization. Light 

intensity cannot be easily normalized within z-slices or across z-slices in Imaris. Selecting 

threshold parameters for our low, middle, and high output categories was done on a per-

scaffold basis and was up to user discretion following the aforementioned protocol.

2.3.6 3-D Particle Segmentation—The complete process for our 3-D Particle 

Segmentation approach includes intensity compensation, binarization, distance transform, 

and watershed. We first convert z-stacks into 3-D intensity images then pre-process the 3-D 

volume to reduce the data size and improve the image quality. We resize each 3-D volume 

according to a specified cubic voxel size, and we compensate for intensity variation over 

depth by subtracting each x-y plane with its 1% percentile. We binarize the 3-D volume 

by selecting foreground (tentative-particle) voxels using three sequential conditions: (1) The 

voxel intensity is larger than a minimum intensity, Imin; (2) The voxel intensity is not lower 

than the mean of neighboring voxels by more than Idiff. When particles are densely packed, 

the gap between particles is sometimes narrow, resulting in a void region that is brighter than 

Imin. These void voxels are identified using relative intensity because they are significantly 

dimmer than neighboring voxels; (3) The voxel intensity is higher than a maximum intensity, 

Imax. Because the relative brightness used in Condition (2) is based on absolute intensity 

difference, voxels with very high intensity may show high relative intensity variation that 

satisfies Condition (2). Therefore, we consider voxels with very high intensity as particle 

voxels, regardless if they satisfy Condition (2). Foreground (tentative-particle) voxels are 

marked as 1 if they satisfy Condition (3) or if they satisfy Conditions (1) and (2). We 

consider all other voxels as background (void space) voxels, marked as 0. To generate our 

low, middle, and high outputs, we set Imin to the same absolute intensity threshold that was 

used for the corresponding image in Imaris for each category. For the remaining parameters, 

we set Idiff = Imin ∕ 3, and Imax = Imax ∗ 3.33 based on reasonable test outcomes.

Next, we use watershed to segment the foreground voxels into discrete particles. We 

compute the 3-D distance transform of the volume, D, as the distance of each voxel to 

the nearest background voxel. We find the local maxima of D as the initial seeds. To avoid 

finding multiple seeds within the same particle, we identify close local maxima (defined 

as local maxima whose distance is smaller than the mean radius of the particles). If the 

intensities of the voxels between the close local maxima do not drop significantly relative to 

the local maxima, then we remove the lower local maximum and only keep the higher one. 

We then use 3-D watershed seeded with the remaining local maxima to segment the volume 

of −D.

Next, we refine the segmentation results by removing small discrete volumes. For each 

putative segmented particle from the previous step, we calculate the surface-to-volume ratio. 

If the ratio is larger than a threshold of 0.5, we remove these ‘false’ particles along with 

their seeds. We choose a threshold of 0.5 so that 1) most small false volumes and most 

false volumes with irregular shapes are removed and 2) most large true volumes with regular 

shapes are retained. We then apply watershed to −D again using the remaining seeds, 

which allows some original ‘false’ particles to get absorbed into nearby ‘true’ particles. We 
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recursively apply watershed to each resulting segmented volume, as long as the surface-to-

volume ratios of the smaller volumes are smaller than the threshold. Finally, we smooth the 

segmented regions by removing sharp boundary voxels.

2.4 Statistical methods

Statistical analysis and plotting were performed using Prism 9. For experiments in 3.1, N 
= 10 and N = 5 independent simulated domains for spherical and non-spherical particles, 

respectively. Simple linear regression is used to study VVF relationships, while one phase 

decay is used to study the number of particles. To test scale-independence across particle 

diameters, p-values were calculated from an F test. For each experiment in 3.2 and 3.3, N = 

5 independent simulated domains. All error is reported as the standard deviation.

3 Results and Discussion

3.1 How does particle composition influence VVF?

Particle packing theory tells us that VVF is scale-independent for monodisperse spheres, 

i.e., particle diameter should theoretically not influence VVF. However, this relationship 

is not always observed in real data because of particle polydispersity and stiffness, image 

resolution, and edge effects (11). We simulate a variety of granular scaffolds, referred to 

as particle domains, in order to observe how VVF changes with particle composition. VVF 

is defined as Φ = S ∕ V , where S is void space volume and V  is total volume. In our 

computational experiments, S is the non-particle region within the convex hull, V , of the 

particle centers. Defining the void space in this way helps to reduce edge effects by focusing 

our computation on the interior of the scaffold. Our results for monodisperse spheres show 

a general trend of scale-independence for square (p-value = 0.1443), hexagonal (p-value 

= 0.2727), and random packing (p-value = 0.0002; slope = 3.1e-5) (Figure 1a, left). On 

average, Φ = 0.47, 0.26, and 0.39 for square, hexagonal, and random packing, respectively. 

We also fit an exponential decay for predicting the number of particles per picoliter for 

square (R2 = 0.9967), hexagonal (R2 = 0.9988), and random packing (R2 = 0.9992), 

respectively:

y = 0.18e−0.063x + 0.00042,
y = 0.15e−0.057x + 0.00041,
y = 0.15e−0.058x + 0.00045,

where x is particle diameter in μm (Figure 1a, right). Expanded data for these plots are 

shown in Supplementary Figure 4.

We next study bidisperse and polydisperse mixtures of spherical particles. For binary 

sphere packing, we homogeneously mix 100 μm diameter spheres with 40 to 90 μm 

spheres at different proportions. Details and validation of the simulation setup are shown 

in Supplementary Figure 1. Our outputs reveal that VVF is minimized around 35% of 

the smaller particle population (by volume) for all particle diameters (Figure 1b), which 

is consistent with the literature (17, 18). To studying polydispersity, we generate domains 

whose particle diameters follow a normal distribution with mean (μ) equal to 100 μm 
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(Supplementary Figure 5). We range standard deviation (σ) from 0 to 25 μm and find that 

there is no clear relationship between σ and VVF (Figure 1c, left). In contrast, we see a 

dependence between σ and the number of particles per picoliter (R2 = 6247), described by:

y = − 0.00021x2 − 0.00058x + 0.93,

where x is σ in μm (Figure 1c, right). Our results highlight the unreliability of VVF as a 

metric to distinguish granular scaffolds with variable polydispersity.

Lastly, we study VVF of non-spherical monodisperse particles to address less common 

particles used in granular biomaterials. We present data for ellipsoids, rods (cylinders), 

and nuggets (flattened egg-like shapes), where comparable particle diameters refer to the 

diameter of spheres with equivalent volume (Figure 1d-f). For each particle type, we fit 

a simple linear regression to VVF data. Small slopes are indicative of theoretical scale-

independence for VVF, though non-spherical particles are influenced more by edge effects 

(Supplemental Figure 6). For comparison, the average VVF across our experimental groups 

is Φ = 0.39, 0.36, 0.45, 0.41 for spheres, ellipsoids, rods, and nuggets, respectively. Our 

results support known findings that ellipsoids can pack more tightly than spheres in random 

packing (19), while rods in random packing produce larger VVF compared to spheres, 

ellipsoids, and nuggets. Again, we can describe the relationship between particle diameter 

and the number of particles per picoliter for ellipsoids (R2 = 0.9996), rods (R2 = 0.9991), 

and nuggets (R2 = 0.9991), respectively:

y = 0.11e−0.051x + 0.00044,
y = 0.099e−0.050x + 0.00037,
y = 0.099e−0.050x + 0.00037,

where x is particle diameter in μm (Figure 1d-f, right). Relative to the number of particles, 

VVF is more variable across replicate granular scaffolds. For an in-depth review of particle 

packing that discusses VVF, we recommend (18).

3.2 How does microscope magnification affect VVF, and how accurate are 2-D 
approximations of VVF?

In the biomaterials field, computing VVF of granular scaffolds typically starts with 

obtaining fluorescent microscope images of the sample. Imaging techniques require setting 

an objective lens magnification (with corresponding numerical aperture), which affects 

the field of view. As magnification increases, fewer and fewer particles stay in view, 

and therefore, a smaller sample of void space is used when computing VVF. To study 

how magnification influences the accuracy of VVF, we mimic higher magnification by 

cropping simulated particle domains to achieve an image-enlarging effect (Figure 2a). At 

each magnification, we maintain a similar voxel count (107), which increases the sampling 

rate. In this way, we see finer detail for each particle, which is what we would expect 

from a higher magnification lens in a real microscope. Real scaffold images at 10x, 20x, 

and 40x magnification are used to calibrate our crop percentages. In these computational 

experiments, we avoid edge effects by cropping, so we simply define void space as the 
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non-particle regions. We simulate five different scaffolds that are cropped to 10x, 20x, 

and 40x magnification and report the corresponding VVF (Figure 2b). Our results reveal 

that VVF measured at 10x versus 40x magnification can produce greater than 5% relative 

difference. In general, the variability in VVF increases as magnification increases, which 

we expect considering that smaller regions, and therefore fewer particles, are being sampled 

when working at higher magnifications. We use our simulated data from Figure 1a to derive 

an equation for how standard deviation of VVF changes as a function of the number of 

particles in the sample (Supplementary Figure 7).

To isolate the influence of resolution on VVF, we range the voxel size (dx) for our 

10x magnification particle domain. Smaller values of dx correspond to finer detail and 

increased resolution (Supplementary Figure 8a), which can be achieved in practice with 

better camera specs or image tiling. Our experiments are performed using significantly fewer 

pixels compared to real microscope images due to memory constraints. Nonetheless, results 

reveal that image resolution does not dramatically influence VVF within reasonable dx
(Supplementary Figure 8b,c). For example, a jump from dx = 0.8 (920 pixels along x-axis) 

to dx = 5 (147 pixels along x-axis) results in a 1.002-fold increase in VVF.

We next consider the common approach of approximating VVF of a granular scaffold 

by computing the average void area fraction across 2-D z-slices. We are interested 

in understanding how sampling 2-D z-slices influences the accuracy of the VVF 

approximation. To study this, we simulate five different scaffolds of 100 μm diameter 

particles at three magnifications and track how VVF changes as a function of the z-gap size 

(Figure 3a). For each z-gap size, we extract the z-slices that lie within the middle half of the 

scaffold and that are ‘z-gap’ apart from one another, which mimics some wet lab practices 

aimed at avoiding edge effects. We then compute the average void area fraction among z-

slices and report the accuracy of this approximation relative to the true VVF of the scaffold 

at the given magnification. The true VVF values are reported in Supplementary Table 1. 

As expected, as z-gap increases, relative accuracy decreases, and fluctuations become more 

dramatic. Our results show that a z-gap of less than ~15 μm is necessary to achieve a stably 

accurate approximation for all magnifications, with most scaffolds converging to within 5% 

of the true VVF at these step sizes. Relating this to particle size, these results translate to a 

z-gap of less than ~15% of the average particle diameter in the scaffold.

With this information, we select a reasonable z-gap of 13 μm and study how the number 

of z-slices influences the relative accuracy of the VVF-approximation (Figure 3b). Starting 

at the bottom of the scaffold, we sample z-slices at increments of 13 μm until the entire 

length of the scaffold along the z-axis has been sampled. We report the relative accuracy 

of the average void area fraction as a function of the number of z-slices. As expected, 

relative accuracy improves as the number of z-slices increases. Our results show that after 

~20 z-slices are taken, relative accuracy stays within 4% for all magnifications, which 

corresponds to a z-slice count of ~20% of the average particle diameter in the scaffold.

Our computational experiment indicates that both magnification, z-gap, and the number of 

z-slices play a role in the accuracy of approximating VVF with average void area fraction 

among 2D-slices. Our conclusions of a z-gap less than 15 μm and at least 20 z-slices (Figure 
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3) aligns with protocols in the field used for real granular scaffolds (11). We next explore 

how magnification and the method of analysis affects the precision of VVF measurements 

on real microscope images.

3.3 How sensitive is VVF to the method of analysis?

We move from simulated data to real granular scaffold data and study four different 

examples of software used to compute VVF. The first software is Fiji, an open-source 

image processing software that has built-in methods for processing microscope images 

and reporting void area fraction for each z-slice. The second method is simple in-house 

MATLAB code that uses built-in morphological operations to binarize and threshold 2-D 

z-slice images in order to compute void area fraction for each z-slice. The third software is 

Imaris, an image analysis software specifically designed for microscope images that converts 

2-D slice data into 3-D surfaces renders and computes multiple measurements, including 

VVF. Lastly, we have developed a custom 3-D approach in Python for computing VVF that 

converts 2-D z-stack data into a 3-D matrix. The code segments and labels individual 3-D 

particles from 2-D microscope z-stacks, which can then be used to extract VVF. We refer to 

this method as 3-D Particle Segmentation.

All software that analyze real images implement techniques from image processing to 

classify void space versus non-void-space pixels, and these steps require user input. We are 

interested in studying the variability of VVF that can arise from a reasonable range of user-

inputted threshold parameters or settings. For each software, we determine a user-inputted 

range that generates a ‘low,’ ‘medium,’ and ‘high’ version of the output image, where the 

categories represent the relative number of void space pixels in the final binarized image. 

Specifically, low output images show many ‘false particle’ regions but at least one ‘false 

void’ region; middle output images show both ‘false particle’ and ‘false void’ regions; and 

high output images show many ‘false void’ regions but at least one ‘false particle’ region.

To study VVF of granular scaffolds made in lab, we have chosen to focus on fluorescently-

labeled particles as opposed to fluorescently-labeled dextran (which illuminates the void 

space) in order to take advantage of software developed by our lab that focuses on particles. 

Both labeling options are conceptually the same. We study two different microporous 

annealed particle (MAP) scaffolds, which are a specialized type of granular scaffold 

comprising interlinked hydrogel microparticles (microgels) (20). The first MAP scaffold 

contains ~70 μm diameter microgels made of modified polyethylene glycol (14), and the 

second contains ~100 μm diameter microgels made of modified hyaluronic acid (15). For 

each piece of software, we analyze 10x, 20x, and 40x images of each scaffold and plot 

VVF based on input parameters that result in images classified as low, medium, and 

high, where the bottom, middle, and top line of each box plot corresponds to the image 

classifications, respectively (Figure 4). Below each software type, we show representative 

images from each magnification, as well as the corresponding binarized image output for 

our three categories. We see notable variability among different types of software, among 

different magnifications, and even among the reasonable range of user-inputted settings. 

While there is no statistical difference in VVF range (high minus low) among the four 

software (Supplementary Figure 9), we do notice wider box plots in our 70 μm diameter 
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particle scaffold compared to our 100 μm diameter particle scaffold. 70 μm diameter 

particles will inherently be more difficult to image relative to 100 μm diameter particles 

because smaller particles reflect more light. In addition, discrepancies in the homogeneity 

of fluorescent labeling across particles will influence image quality. These results highlight 

how thresholding effects are impacted by image quality.

For each scaffold, we also include a summary plot that compares the middle-range VVF 

values for all methods at each magnification (Figure 5). Our results reveal discrepancies 

among different magnifications, as well as different software. For example, Figure 5b shows 

a range (absolute measure) in VVF of ~20% among software outputs for 10x magnification.

We unfortunately have no way of testing the accuracy of the outputs since no gold standard 

exists, but our results are striking because they reveal how the most commonly-reported 

scaffold measurement of VVF may, in fact, be subject to substantial variance. At minimum, 

they reveal that VVF is highly dependent upon parameters used in their computation, 

including microscope magnification, the software being used, and user-inputted threshold 

settings. When imaging granular scaffolds, 40x magnification produces sharper particle 

borders, which makes void space delineation more accurate. Figure 2b indicates that 40x 

magnification shows the greatest variation in VVF relative to lower magnifications; however, 

the relative percent difference of ~10% suggests decent precision among samples. Therefore, 

sampling several regions of interest at 40x magnification across the scaffold and reporting 

the average VVF should give a reasonable approximation to true VVF. From a microscopy 

standpoint, VVF accuracy will be optimized by maximizing the size of the sampled region 

and the image resolution, such as with image tiling at high magnification. Despite the 

inability to determine the accuracy of VVF from microscope images, relative VVF values 

can be more accurately compared within an experiment by using the same method with 

consistent parameter settings; however, this is only true if image quality is comparable 

across samples.

4 Conclusion

In the biomaterials field, void space characterization is often summarized with a single 

reported value of VVF. Since there is currently no gold standard for measuring VVF of 

real granular scaffolds, we generate simulated packed particle scaffolds so we may attain 

the true VVF. We report the VVF for a library of 134 different categories of ideal granular 

scaffolds with varying particle size, form, and composition. For monodisperse scaffolds, we 

generally see variability in VVF across replicate scaffolds, whereas we see invariability in 

the number of particles per picoliter. Given parameters like particle diameter and form, we 

report equations to predict the VVF for monodisperse scaffolds; however, relative to VVF, 

our results reveal that one can more reliably predict the number of particles in a scaffold.

In practice, VVF is computed from microscope z-slice images; however, the accuracy of 

VVF is highly dependent upon multiple factors, including microscope magnification, the 

region of interest, z-slice sampling, z-intensity corrections, the software used to compute 

VVF, and user-selected settings. To address these issues, we analyze both ideal and 

experimental data. By using 3-D simulated scaffolds, we have access to the true VVF 
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by which to compare approximations. Our deterministic study reveals how microscope 

magnification influences the accuracy of VVF. While average VVF is consistent, our 

results show that higher magnifications produce more imprecise approximations. This is 

true because increasing the magnification reduces the sample size. Next, we extract 2-D 

z-slices from our simulated scaffolds to study how the microscope step size (z-gap) and the 

number of sampled z-slices influence the VVF measurement. Based on the results from our 

study of 100 μm diameter particle scaffolds, we recommend using a z-gap of less than 15 

μm (15% of the average particle diameter in the scaffold) and at least 20-slices (20% of the 

average particle diameter in the scaffold) for optimal sampling.

Since protocols for measuring VVF from microscope images are not standardized, we 

study sources for variation in VVF among techniques. We use four different software 

options to analyze microscope images of real granular scaffolds at different magnifications. 

We sample a range of user-inputted parameters or settings to obtain a reasonable range 

of VVF outputs for each software, and our results highlight the variation in VVF that 

can be attributed to magnification, software, and user-bias when selecting parameters. In 

contrast to our simulated results that reveal increased VVF variation at 40x magnification 

across multiple samples, experimental data shows decreased variation at 40x magnification 

across different thresholds for the same sample. Recall that 40x magnification produces 

the sharpest microscope images, leading to greater consistency across binarizing threshold 

values; however, this precision across thresholds does not speak to accuracy since we do not 

know the true VVF of non-simulated scaffolds. Sampling multiple regions of interest at the 

highest magnification or tile-stitching images will help to obtain the most accurate VVF for 

real granular scaffolds.

Further investigation may expand upon our work to elucidate the relationship between VVF 

and packed particle scaffolds, such as using soft-body simulations to capture more realistic 

hydrogel microparticles or considering the influence of signal-to-noise ratio in microscope 

image analysis. In addition, while it is important to be mindful of parameter nuances when 

computing and reporting VVF, our findings also highlight the need for more quantitative 

descriptors for characterizing the void space of granular scaffolds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Void volume fraction (VVF) of simulated packed particles in 600 x 600 x 600 μm3 
container.
a, Monodisperse spheres in square, hexagonal, and random packing configuration. Showing 

VVF and # of particles per picoliter (pL) for increasing particle diameter. N = 10 domains. 

b, Binary mixtures of spheres. Domain images are showing 40 + 100 μm diameter spheres 

at increasing percentage of the 40 μm diameter population (by volume). Plotting VVF of 

different binary mixtures (see key). For each pair of particle species, we report VVF at 

varying percent mixtures by volume. N = 10 domains. VVF of square packing (pink square) 

and hexagonal packing (green hexagon) shown for reference. c, Polydisperse spheres that 

follow a normal distribution with mean = 100 μm. Domain images are showing increasing 

polydispersity due to increasing standard deviation (σ). Showing VVF and # of particles 

per pL for increasing σ. N = 10 domains. d, Monodisperse ellipsoids. Showing VVF and # 

of particles per pL for increasing particle diameter. N = 5 domains. e, Monodisperse rods. 

Showing VVF and # of particles per pL for increasing particle diameter. N = 5 domains. 

f, Monodisperse nuggets. Showing VVF and # of particles per pL for increasing particle 

diameter. N = 5 domains. See Supplementary Figure 6 for simple linear regression equations 

of VVF data.
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Figure 2. Simulating microscope magnification.
a, Sample z-slice images from real granular scaffolds are used to calibrate our simulated 

scaffolds at varying magnifications. b, VVF of simulated domains is compared at different 

magnifications. Higher magnification yields less precise VVF. Average number of particles 

in 3-D domain at each magnification are shown above the x-axis. N = 5 domains for each 

category. Scale bars = 100 μm. Errors bars denote standard deviation.
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Figure 3. Studying z-gap and number of z-slices.
a, Using simulated scaffolds of 100 μm diameter particles to mimic microscope data, we 

approximate VVF using average void area fraction across 2-D z-slices and report how 

the relative accuracy of the approximation changes as a function of the step size (z-gap) 

taken. Z-slices are sampled within the middle 50% of each scaffold. A z-gap of less than 

~15 μm ensures a stable approximation of VVF that stays within 7% accuracy for all 

scaffolds across all magnifications. b, We again plot the relative accuracy of average void 

area fraction compared to the true VVF, but this time we hold the z-gap constant at 13 

μm and incrementally increase the number of z-slices starting at the bottom of the scaffold. 

Sampling 20 or more z-slices ensures a stable approximation of VVF that stays within 4% 

accuracy for all scaffolds across all magnifications. N = 5 domains. The true VVF for each 

scaffold at each magnification is reported in Supplementary Table 1.
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Figure 4. Variation in void volume fraction (VVF) of granular scaffolds across different software, 
magnification, and user-bias.
a, Scaffolds comprising 70 μm diameter polyethylene glycol (PEG) particles were analyzed 

for VVF using Fiji, a custom MATLAB code, Imaris software, and a custom particle 

segmentation code. For each magnification, we report box plots indicating a low (bottom 

line), middle (middle line), and high (top line) VVF that reflect variation in user-inputted 

parameters or settings. Below each software plot, we show sample z-slice microscope 

images from the sample, as well as low, middle, and high binarization outputs. Scaffolds 

were imaged with the following z-gap and number of z-slices: (10x) 4.075 μm, 36 slices, 

(20x) 1.20 μm, 118 slices, (40x) 1.00 μm, 142 slices. b, Scaffolds comprising 100 μm 

diameter hyaluronic acid (HA) particles were analyzed in the same manner as (a). Z-gap and 

number of z-slices were as follows: (10x) 3.875 μm, 40 slices, (20x) 1.20 μm, 101 slices, 

(40x) 1.10 μm, 192 slices. The number of particles at each magnification are approximated 

with the 3-D Particle Segmentation code and reported above the x-axis in the corresponding 

plots for (a) and (b).
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Figure 5. Microscope magnification and analysis software influences VVF measurements.
a, Our PEG scaffolds highlight the variation in VVF that can be seen across different 

software when ‘middle’ range parameters and settings are used. b, Our HA scaffolds 

highlight the variation in VVF that can be seen across different microscope magnifications. 

Sample z-slice images are shown below for comparison.
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Table 1.

Sample microscopy parameters used in the literature for computing void volume fraction.

Magnification Sample
thickness (μm) z-gap (μm) Number of

z-slices Reference

unspecified 150 7.1 21 (1) Sideris, 2016

unspecified 100 5 20 (2) Mendes, 2021

10x 400 12 33 (3) Caldwell, 2017

25x 100 5 (average) 20 (average) (4) Muir, 2021

unspecified 100 unspecified ≥ 6 (5) Alexis, 2021

unspecified 100 1.3 77 (6) Sheikhi, 2019

10x 200 unspecified ≥ 4 (7) Truong, 2019
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