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Abstract 9 
During goal-directed navigation, “what” information, which describes the experiences occurring in 10 
periods surrounding a reward, can be combined with spatial “where” information to guide behavior 11 
and form episodic memories1,2. This integrative process is thought to occur in the hippocampus3, 12 
which receives spatial information from the medial entorhinal cortex (MEC)4; however, the source 13 
of the “what” information and how it is represented is largely unknown. Here, by establishing a 14 
novel imaging method, we show that the lateral entorhinal cortex (LEC) of mice represents key 15 
experiential epochs during a reward-based navigation task. We discover a population of neurons 16 
that signals goal approach and a separate population of neurons that signals goal departure. A 17 
third population of neurons signals reward consumption. When reward location is moved, these 18 
populations immediately shift their respective representations of each experiential epoch relative 19 
to reward, while optogenetic inhibition of LEC disrupts learning of the new reward location. 20 
Together, these results indicate the LEC provides a stable code of experiential epochs 21 
surrounding and including reward consumption, providing reward-centric information to 22 
contextualize the spatial information carried by the MEC. Such parallel representations are well-23 
suited for generating episodic memories of rewarding experiences and guiding flexible and 24 
efficient goal-directed navigation5–7. 25 
 26 
Introduction 27 
Episodic memories of rewarding experiences include information about where episodes occurred 28 
and also non-spatial information about what occurred (event context)8. For example, a dinner out 29 
is an experience that consists of clear spatial navigation components but also different 30 
experiential epochs: experiencing hunger and anticipation before arriving at the restaurant, 31 
consuming dinner and experiencing the taste of the food, experiencing contentment and satiation 32 
after departing the restaurant. These experiential epochs are not obviously aligned to sensory 33 
inputs but are important components in forming episodic memories. Here we refer to such non-34 
spatial components of these epochs as reward experience epochs. 35 
 36 
The integration of spatial and experiential information is thought to occur in the hippocampus3, 37 
where place cells encode not just locations in an environment but also additional non-spatial 38 
information9,10, as evidenced by the context-dependent firing of place cells during choice 39 
tasks11,12, in response to aversive stimuli13, and more14,15. This context-dependence of place cells 40 
is especially prominent in reward-guided navigation, which leads to an overrepresentation in the 41 
number of place cells encoding the region around reward16,17 and distinct signaling of goal 42 
approach and goal departure18,19. How the “what” information about reward experience reaches 43 
the hippocampus is poorly understood, however. In particular, such information should not just 44 
encode the discovery of a reward but also represent information from the periods leading up to 45 
reward and after reward (such as of the dinner out; Figure 1a)1,2,20. 46 
 47 
The medial entorhinal cortex (MEC), a major source of cortical input to the hippocampus21, 48 
contains spatially modulated cells such as grid cells22, border cells23, and head direction cells24, 49 
which convey spatial information to the hippocampus. In addition to these spatial representations, 50 
the MEC could also be a potential source of reward experience information to the hippocampus. 51 
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As such, multiple studies have investigated the role of the MEC in reward-guided navigation25–27. 52 
Bulk MEC activity is only moderately influence by the presence of rewards27 and, while a rewarded 53 
location could distort nearby firing fields of grid cells, these changes were not shown to be specific 54 
to the trajectory25. Thus, MEC has not been shown to represent different reward experience 55 
epochs27. 56 
 57 
Alternatively, neuromodulatory systems could provide such reward experience information to the 58 
hippocampus28. Most notably, the locus coeruleus (LC) provides bursts of noradrenaline and 59 
dopamine to the hippocampus at a new reward location during navigation29,30. Inhibition of these 60 
inputs prevented the formation of overrepresentation of reward locations by place cells. 61 
Importantly, however, activation of these inputs alone was not sufficient to drive the 62 
overrepresentation, as concurrent rewards were still required29. This result indicates that LC 63 
inputs to the hippocampus provide a learning signal that can open a plasticity window for spatial 64 
information to be associated with reward experience information but, crucially, the reward 65 
experience information appears to reach the hippocampus from a separate and currently 66 
unknown source. 67 
 68 
Finally, the lateral entorhinal cortex (LEC), which similar to the MEC provides significant excitatory 69 
input to the hippocampus21, could possibly provide the reward experience information. While 70 
previous studies have uncovered a variety of roles for the LEC across a range of behaviors, 71 
including object coding31,32, timing33, olfaction34, and nonspatial associative learning35, its role in 72 
representing rewards and reward experience has not been directly addressed. Critically, prior 73 
studies did not disentangle rewards from objects, making it unclear whether LEC was encoding 74 
the object salience itself or valence related to the reward experience. Furthermore, large-scale 75 
single neuron resolution recording has proven challenging in this difficult-to-access brain region, 76 
hindering investigation of the myriad functions supported by LEC. To overcome these challenges, 77 
here we developed a novel two-photon imaging technique that allowed for simultaneous functional 78 
recordings of an unprecedented number of LEC neurons.  We also made use of a virtual reward-79 
guided navigation task, which added valence to an otherwise unmarked location, thus dissociating 80 
object salience and reward experience. 81 
 82 
Results 83 
Two-photon imaging of the lateral entorhinal cortex in behaving mice 84 
Two-photon functional imaging offers the capability to record from large numbers of neurons 85 
simultaneously, but this technique has not previously been used in the LEC during behavior34. 86 
Therefore, we first sought to develop a method for two-photon imaging of the LEC in behaving 87 
mice. As it is situated ventral to the rhinal fissure36, the LEC is a lateralized structure in rodents, 88 
and direct access with a microscope requires approaching from an angle greater than 90 degrees 89 
to the horizontal plane. A further complication is the surrounding anatomy: the pinna, nearby 90 
vasculature such as the petrosal squamosal sinus, and protrusions of the skull (zygomatic 91 
process) each impinge upon optical access with a microscope37. To overcome these limitations, 92 
we developed surgical methods to implant a cranial window (3 mm round coverslip) with an 93 
attached microprism (2.0 mm square) to rotate the imaging plane 90 degrees (Figure 1b). Using 94 
this approach in transgenic mice expressing the fluorescent Ca2+ indicator GCaMP6s38,39, we 95 
could capture a large field of view of the LEC using a conventional upright two-photon microscope 96 
and access depths > 250 µm (Figure 1c) in head-fixed mice running on a treadmill to traverse a 97 
1-D virtual track. Movies were motion corrected and cells identified and segmented using 98 
Suite2p40. Neuropil-corrected, baseline-adjusted, and deconvolved neural Ca2+ transients 99 
(referred to here as “firing”) were recovered using a novel iterative algorithm (Methods). In a 100 
typical imaging field of 700 x 700 µm, ~500 active cells were observed during behavior (mean 101 
across 47 imaging fields: 496 cells; range: 150 to 843 cells) (Figure 1d). Having established a 102 
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new method to record from large populations of individual LEC neurons in behaving mice, we 103 
next studied the encoding properties of LEC populations during reward-guided navigation. 104 
 105 

 106 
Figure 1: Two-photon imaging of the lateral entorhinal cortex 107 
a) A schematic of goal-directed navigation that requires a spatial map along with a reward experience 108 

representation. In this proposed model, episodic memories of goal-directed navigation combine spatial 109 
“where” information with experiential “what” information during each epoch of the reward experience. 110 

b) Schematic of LEC imaging preparation from three views. Green region denotes targeted region. Circle 111 
represents 3 mm No. 0 glass coverslip; square/triangle (2x2 mm) represents 45-degree microprism. 112 

c) Views of exemplar field as seen through microprism using widefield and two-photon fluorescence 113 
imaging of neurons expressing GCaMP6s. Underneath is shown segmentation of individual cells and 114 
cell masks for all 577 neurons and 12 exemplar neurons to be shown in panel d. 115 

d) Fluorescence traces for all detected neurons (clustered using k-means to aid visualization) and 116 
expanded view for 12 exemplar neurons from panel c after neuropil subtraction and baseline correction. 117 
Behavioral signals are shown underneath. 118 

 119 
Enrichment of LEC firing near reward locations segregates into pre- and post-reward populations 120 
In order to examine how the LEC may represent reward experience epochs, we designed our 121 
virtual track to be visually cue rich but the reward location itself not marked by any visual feature 122 
or object. This design helped isolate visual object coding from reward coding, which we exploit in 123 
later sections to move the reward without changing other aspects of the environment. Mice 124 
learned over several training sessions to decelerate and lick in anticipation of the reward location, 125 
where a drop of water was delivered (Figure 2a). We began by examining the firing of neurons in 126 
LEC along the track during this behavior since reward experience is expected to change along 127 
the track, leading to spatial information as an initial means to identify reward experience encoding 128 
neurons. In parallel, we also performed two-photon Ca2+ imaging of populations of neurons in 129 
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MEC and in CA1 in separate groups of mice implanted with microprisms41 or cannulas42, 130 
respectively (Figure 2b). Analyses of changes in reward location are left to later sections; here, 131 
we examine coding of a learned reward location. Three different reward locations were used in 132 
our experiments. We first show data from the most commonly used reward location (2.3 m) and 133 
pool data from the other reward locations (0.7 m and 1.5 m) where appropriate. 134 
 135 

 136 
Figure 2: Prominent reward clustering in LEC with segregation of pre- and post-reward populations 137 
a) Head-fixed mice traverse a 3.1 m linear track in virtual reality with water reward delivered at 2.3 m. 138 

Treadmill velocity and detected licks, averaged over 43 traversals, are binned at 1 cm intervals with 139 
stationary periods excluded (Methods). Training paradigm shown to the right. Once behavior reached 140 
criteria (at least two laps per minute over a ~40 minute training session along with the presence of 141 
anticipatory licking and deceleration for reward), imaging sessions began. On subsequent days, reward 142 
location was moved to either 0.7 m or 1.5 m. At least one session with the new reward location was 143 
interspersed to allow for it to become familiar to the animal as assessed by anticipatory behavior of the 144 
new reward location. 145 

b) Schematics of imaging approaches using implanted microprisms (LEC, MEC) or cannulae (CA1). 146 
c) Population spatial firing patterns for LEC, MEC, and CA1 mice. Spatial cells, defined as neurons with 147 

significant spatial information (Methods), are sorted by where their firing peaked along the track on 148 
even laps. Each row of the image is the firing of one neuron averaged over odd laps, binned at 1 cm 149 
intervals after Gaussian filtering (170 ms standard deviation), and normalized to its maximum value. 150 
Histograms underneath each plot show proportion of peak locations for neurons in 10-cm bins, with 151 
‘chance’ calculated as expected number in each bin if uniformly distributed (1/31 bins) and ‘reward 152 
cells’ those that peak within the blue rectangle (±40 cm from reward). Histogram is calculated for 153 
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individual sessions (FOV, or field-of-view); mean ± SEM are shown as dark line with light shading, 154 
respectively. 155 

d) Correlation matrix formed from the sorted heat maps in panel B. Each pixel is the Pearson correlation 156 
coefficient between pairs of neurons. Sorting is same as in B. Blue lines indicate division between pre-157 
reward and post-reward neurons. Black lines indicate 1, 2, and 3 m locations. Correlations are 158 
calculated between average firing on even and odd laps, so the diagonal is not necessarily equal to 159 
one. 160 

e) Quantification of spatial field widths in each region, computed as the distance of the track for which the 161 
firing rate is at least 30% of the maximum for each spatial cell. Each point represents the mean of 162 
spatial mean widths for all spatial cells from one imaging session; black cross represents mean ± SEM 163 
across sessions. Statistical tests performed between each pair of regions (2-sample t-test). 164 

f) Fraction of active cells that are spatial cells and fraction of spatial cells that are reward cells in each 165 
region. Each point represents one imaging session; black cross represents mean ± SEM across 166 
sessions. Statistical tests performed between each pair of regions (2-sample t-test) and, for reward 167 
cells, compared to chance as well (1-sample t-test). Chance was calculated assuming uniform 168 
distribution of spatial cell peaks along the track. Since the reward zone is 80 cm total and the track 169 
length in 310 cm, chance is 80/310, or ~0.26. 170 

g) Reward clustering ratio, calculated as the number of cells that peak in each reward zone (blue rectangle 171 
shown in c) divided by the expected number of cells if peaks were uniformly distributed along the track. 172 
Ratio greater than one (chance) indicates an increased number of cells in that reward zone. Statistical 173 
tests performed between each pair of regions (2-sample t-test) and compared to chance (1-sample t-174 
test). 175 

h) Reward clustering ratio stratified by imaging depth. For LEC: up to 150 µm below dura (layer II) and at 176 
least 200 µm below dura (layer III); for MEC: up to 150 µm below dura (nominal layer II) and at least 177 
150 µm below dura (nominal layer III). Statistical tests performed between each pair of regions (2-178 
sample t-test) and compared to chance (1-sample t-test). For all statistical tests: * indicates p < 0.05 179 
and n.s. indicates p > 0.05. 180 

 181 
Among active neurons in the LEC, we selected for those with significant spatial information along 182 
the track43 (Methods). From 17 fields-of-view across 7 mice with the reward located at 2.3 m, 2016 183 
such spatial cells were found, which represent 24.9% of active cells (Figure 2f). Across all reward 184 
positions, we identified 3956 spatial cells out of 14489 active neurons from 32 fields-of-view 185 
(Supplementary Tables 1 and 2). We plotted their spatial tuning, with neurons sorted by where 186 
their mean firing peaked along the track. Nearly half of spatial cells in LEC were active near the 187 
reward location, with such reward cells defined as spatial cells whose mean firing peaked within 188 
40 cm of the reward location (Figure 2c,f). By comparison, MEC spatial cells were active nearly 189 
uniformly across the track, and the fraction active around reward was as expected by chance, 190 
while in CA1 an enhanced fraction of cells was active near reward, but less than what was 191 
observed in LEC (Figure 2c,f and Supplementary Figure 2a). Track position could still be decoded 192 
from activity in non-reward spatial cells in LEC, but the decoder performance error was higher for 193 
LEC than in MEC or CA1 (p < 0.05, 2-sample t-test; Supplementary Figure 2c). Cells from all 194 
three brain regions also tended to cluster near the start and end of the track, but we focused our 195 
analysis on the cells active around the reward location. 196 
 197 
Beyond clustering near the reward, LEC spatial cells had wide spatial fields and were separated 198 
by whether they were active before or after the reward location (Figure 2c). These features are 199 
clearly visible when plotting the correlation matrix of the mean spatial firing maps, sorted by where 200 
each cell peaked (Figure 2d). While MEC shows a clear diagonal band structure, indicating narrow 201 
spatial fields across all track locations, LEC shows a block-like structure, indicating wide spatial 202 
fields (Figure 2e) that largely segregate into pre-reward-active neurons and post-reward-active 203 
neurons, a division confirmed by k-means clustering (Supplementary Figure 2d). To quantify the 204 
enrichment of spatial cells near reward, we divided the number of cells that peak in each reward 205 
zone (either pre- or post-reward) by the expected number of cells if peaks were uniformly 206 
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distributed. This reward clustering ratio was enhanced in LEC for pre-reward compared to CA1 207 
and MEC and in both LEC and CA1 for post-reward (Figure 2g). 208 
 209 
The superficial layers of LEC are known to differ in cell type and connectivity21, so we next 210 
explored whether laminar differences may relate to reward clustering within LEC. In particular, 211 
layer II contains fan cells, which receive an outsized number of dopaminergic inputs from the 212 
VTA35,44, suggesting a potential region where reward information may enter the system. We 213 
imaged at depths targeting the two layers: 80-150 µm below dura for layer II (23 fields) and 200-214 
250 µm below dura for layer III (9 fields) (Supplementary Figures 1 and 2b). While both regions 215 
show preferential firing near the reward location, the enhancement of firing in the pre-reward 216 
region was significantly larger in layer II versus layer III (Figure 2h). Importantly, such a difference 217 
did not exist for MEC, with a paucity of pre-reward neurons across imaging depths. To determine 218 
whether the differences in reward-related neural responses across LEC layers could be explained 219 
by other factors, we performed a multiway analysis of variance using imaging depth, age, gender, 220 
and deceleration (a behavioral measure of task performance) as predictors of reward clustering 221 
and found that only depth provided a significant prediction (Supplementary Table 1). 222 
 223 
Therefore, we found that LEC, unlike MEC, was highly active around the reward location, with 224 
populations of neurons segregated by their firing during either goal approach or goal departure 225 
and the goal-approach population particularly enriched in layer II of LEC. 226 
 227 
Location-invariant representation of reward by pre- and post-reward cells in the LEC 228 
We next asked whether the pre-reward and post-reward populations were dedicated to encoding 229 
particular epochs around reward irrespective of the reward’s location. To disentangle whether 230 
reward cells are encoding spatial information (track position) or reward itself, the reward location 231 
was moved without any cue, indication, or change to the environment in the middle of a session 232 
after ~40 laps with a familiar reward location. Mice learned to anticipate the new reward location 233 
by shifting their deceleration along the track (Figure 3a). Imaging was performed throughout the 234 
session, thus capturing representations both before and after the reward switch in the same cells. 235 
 236 
Some LEC neurons maintained their firing field with respect to track position (LEC stable spatial 237 
cell, Figure 3b) and others with respect to the reward location (LEC stable pre- and post-reward 238 
cells, Figure 3b). We plotted all spatial neurons before and after this change in reward location 239 
from 2.3 m to 1.5 m, sorted by their firing peaks with respect to the familiar reward location (Figure 240 
3c). Reward clustering again developed around the new reward location. Indeed, relatively few 241 
LEC neurons continued to fire at the same track location, especially compared to MEC and CA1 242 
(Figure 3d-e, Supplementary Figure 3a-b). Instead, over half of the cells active in the reward zone 243 
for the familiar location shifted their firing fields to the new reward location (stable reward cells), 244 
more than expected by chance. 245 
 246 
An even more significant picture of dedicated cell populations emerged when examining pre-247 
reward and post-reward cells as distinct groups (Figure 3c,f). We found that nearly all pre-reward 248 
cells for the familiar reward location remained pre-reward cells relative to the new reward location 249 
and, similarly, post-reward cells remained post-reward relative to the new reward location (Figure 250 
3f-h). The probability of a pre-reward cell remaining a pre-reward cell was 2.7x chance and 2.4x 251 
for post-reward cells (geometric mean of ratio for each session, Figure 3i). This dedication was 252 
largely absent in the MEC, as pre-reward cells for the familiar and new reward locations were not 253 
significantly related (Figure 3g,i) and the post-reward cells were only partially preserved (Figure 254 
3h-i). Cells in CA1 showed a mixture of the strong dedication from LEC and the weak dedication 255 
from MEC (Figure 3g-i). When we teleported mice to new environments with unmarked reward 256 
locations, we found that reward dedication was similarly maintained in the new environment (1.5x 257 
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for pre-reward and 2.3x for post-reward cells; Supplementary Figure 3c-h). Together, these 258 
results indicate that, when the reward location or environment is changed, LEC neurons largely 259 
maintained their firing patterns relative to the new reward, indicating consistent representations 260 
of pre-reward and post-reward epochs that are invariant to location and environment and 261 
suggesting potential specialized circuitry within LEC. 262 
 263 

 264 
Figure 3: Dedication of pre- and post-reward populations in the LEC 265 
a) Licking (percent of laps with contact of sensor) and velocity before (66 laps) and after (49 laps) change 266 

in reward location with ±SEM shown in light shading. In this example session, the reward was moved 267 
earlier on the track, from a familiar location (rew1, 2.3 m, blue) to a new location (rew2, 1.5 m, green). 268 
Inset shows training paradigm. Once a reward location became familiar, an imaging session was 269 
performed spanning ~15 minutes with the familiar reward location and ~15 minutes with the new reward 270 
location. 271 

b) Spatial firing (deconvolved Ca2+ transients) for three exemplar neurons from the same session as a, 272 
with ±SEM shown in light shading. Imaging was performed for a subset of laps (56 laps before and 44 273 
laps after change in reward location). 274 

c) Spatial firing patterns along the track and histogram of firing peaks for spatial cells sorted by their firing 275 
peaks with the familiar reward location, analogous to Figure 2c. Same sorting is used to plot the firing 276 
of these cells with respect to the new reward location. Only cells that pass criteria for spatial information 277 
under both conditions are included. 278 
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d) Dot raster of peaks for spatial cells in LEC, MEC, and CA1. Cells on the diagonal maintain their firing 279 
position along the track while cells at the intersection of reward locations (blue and green lines) adjusted 280 
their firing positions relative to the reward locations. 281 

e) Histograms measure the fraction of spatial cells that are stable after the reward location is moved, 282 
quantified by the peak location of the spatial tuning curve changing less than 40 cm (rew1-rew2). Data 283 
quantified for each imaging session; black cross represents mean ± SEM across sessions. For 284 
comparison, we computed the difference in peak location for even and odd trials with the original reward 285 
location (rew1-rew1); black rectangle represents mean ± SEM across sessions. Next, the fraction of 286 
reward cells that remain reward cells after the reward location change is quantified by the fraction of 287 
reward cells that maintain their peak location within 40 cm of the new reward location. 288 

f) Peak locations shown relative to reward locations with familiar reward condition on the x-axis and new 289 
reward condition on the y-axis. Each point represents one LEC neuron that was a spatial cell under 290 
both conditions. 291 

g) Peak locations for pre-reward cells relative to the familiar and novel reward locations. Selected cells 292 
are chosen for being pre-reward cells with the familiar reward location (rew1) and spatial cells in both; 293 
what is shown here is where their peak locations are for the novel reward location (rew2). Histograms 294 
are calculated for each imaging session; mean ± SEM are shown as dark line with light shading, 295 
respectively. 296 

h) Same as panel g but for post-reward cells. 297 
i) Histograms quantify cells that are stable pre- or post-reward cells at both reward locations, either as a 298 

fraction of all spatial cells or as a fraction of the pre- or post-reward cells for the familiar reward location. 299 
Each point represents one imaging session; black cross represents mean ± SEM across sessions; 300 
black rectangle represents mean ± SEM expected by chance. Statistical tests performed between each 301 
pair of regions (2-sample t-test). * indicates p < 0.05 and n.s. indicates p > 0.05. 302 

 303 
LEC pre-reward ramping activity is partly composed of behaviorally linked population state 304 
transitions 305 
The pre-reward period, during which the mouse may be anticipating reward, is a particularly 306 
interesting reward experience epoch. Both behavioral changes (slowing, Figure 2a) and the firing 307 
in pre-reward neurons in LEC (ramping, Figure 4b) precede the reward, which led us to investigate 308 
two questions: first, what are the dynamics of population activity of the pre-reward cells, which 309 
may give insight into to the internal state of the network; second, does this LEC state relate to the 310 
behavior of the animal in a way that might help precisely define the pre-reward epoch. 311 
 312 
On average, mean firing in pre-reward LEC neurons ramped up until the reward was delivered 313 
(Figure 4b), similar to activity previously observed in other brain regions such as the ventral 314 
tegmental area45 and the orbitofrontal cortex46. We first asked what underlying population 315 
dynamics could give rise to this observed mean ramping signal. Various models have been 316 
proposed47–49. For example, an increasing number of neurons might be recruited or firing in 317 
individual neurons could increase as the animal approaches reward, in which case ramping 318 
activity would be observed across the population on both individual trials and the trial averages 319 
(recruitment model, Figure 4a). Alternatively, the pre-reward population might undergo coherent 320 
state changes at different times or positions with respect to reward on each trial, in which case 321 
discrete changes in activity, not ramping, would be observed across the population on individual 322 
trials and ramping would only be observed in trial averages (state model, Figure 4a). To examine 323 
these possibilities further, we quantified the number of pre-reward neurons active in the period 324 
leading up to reward on individual trials. We often observed step-like increases in the active 325 
number of neurons (Figure 4d-e). Indeed, when we used a hidden Markov model (HMM) to identify 326 
such transition times from inactive to active population states (Supplementary Figure 4a) and then 327 
plotted the firing rate of the pre-reward neurons aligned to these transition times (with each ‘epoch’ 328 
spanning the time between transitions using linear interpolation), we observed a clear step-like 329 
increase across the population of individual pre-reward neurons (Figure 4b,c). We further 330 
calculated that 44% of the variance in single-lap activity was explained by a step increase. 331 
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However, some ramping activity was still observed on top of the step-like change (Figure 4b). 332 
Thus, part of the increasing ramp in average LEC pre-reward neuron activity could be explained 333 
by a discrete switch in firing state occurring at variable times and positions with respect to reward 334 
on different traversals, but some contributions from an increasing number of active neurons (or 335 
an increase in firing in individual neurons) as the animal approaches reward were also present. 336 
 337 

 338 
Figure 4: Pre-reward cell activation is partly composed of state changes linked to behavior 339 
a) Pre-reward population activity exhibits a ramp up until the reward delivery. Two potential models that 340 

can give rise to mean ramping activity are shown. In a recruitment model, cell activity or the number of 341 
active cells increases as the reward location is approached on each individual trial. In a state model, 342 
the whole population activates together at some location before reward, but this location is variable 343 
across trials. 344 

b) Mean activity of LEC pre-reward population as a function of time relative to reward or by epoch, where 345 
the three epochs are defined by the start of the traversal, the HMM-detected transition of pre-reward 346 
cells to an active state (as in e), and the reward delivery time, and intervals within each epoch are 347 
linearly interpolated across time between the transitions. Data is calculated for individual sessions 348 
(mean of all pre-reward cells) and normalized to their maximum values; mean ± SEM are shown as 349 
dark line with light shading, respectively. 350 

c) Activity for individual neurons by time or by epoch. Each row is data for one LEC pre-reward neuron. 351 
Data is averaged across laps in a session, normalized to the maximum, and grouped by session. 352 

d) Representative sample of behavior and pre-reward activity during two traversals on virtual track. The 353 
number of pre-reward cells active (out of 61) is shown as the raw value (gray trace) and after applying 354 
a 2 s Gaussian filter (dark trace). 355 

e) Running velocity and number of pre-reward cells active on each lap. Detected deceleration and HMM-356 
detected state transition times are shown with black and red dots. Top plots are sorted by lap number 357 
for this session. Bottom plots are sorted by deceleration times on each lap. 358 

f) Times of deceleration and state changes for exemplar session from e. Each point represents data from 359 
one lap. r indicates Pearson correlation coefficient. 360 

g) Pearson correlation coefficients for each session, calculated as in f, for fields with at least 10 pre-reward 361 
cells. Each point represents one imaging session; black cross represents mean ± SEM across sessions. 362 
Statistical tests performed between each pair of regions (2-sample t-test) and to zero as well (1-sample 363 
t-test). 364 

 365 
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Next, we asked whether the state transitions in LEC related to the behavior of the animal. 366 
Interestingly, on individual trials we also observed state changes in mouse behavior: mice 367 
switched from a fast running speed to a much slower speed ahead of the reward location and 368 
maintained this slow speed until the reward was encountered (Figure 4d and Supplementary 369 
Figure 4b-c), with the timing and position of this deceleration varying across trials (Figure 4e). To 370 
investigate whether the discrete behavior changes correlated with the LEC population state 371 
changes, as suggested by individual example trials (Figure 4d), we examined the relationship 372 
between the HMM state transition times with the deceleration times on each trial (Figure 4e). We 373 
found these times were highly correlated, both for the example session (Figure 4f) and across all 374 
LEC sessions (Figure 4g). A similar effect was observed for CA1 pre-reward cells, but no 375 
correlation was observed for MEC pre-reward cells (Figure 4g). Thus, the discrete transitions in 376 
population firing state in LEC pre-reward neurons correlates with slowing behavior. 377 
 378 
Location-invariant representation of reward consumption in the LEC 379 
Pre-reward and post-reward periods are separated in time by a period of reward consumption, 380 
during which the animal is stationary and consuming water. Signaling in this epoch (during the 381 
successful discovery and consumption of a reward) is necessary to forming a representation of 382 
the experience of the reward. Since this epoch is typically excluded from analysis of spatial coding 383 
properties of cells (which excludes times when velocity is zero), we examined LEC firing relative 384 
to reward time, focusing on the period of reward delivery and consumption, in order to investigate 385 
how LEC represents this reward consumption epoch. At the time of reward delivery, we observed 386 
that LEC population firing increased dramatically and transiently, a signal not prominent in either 387 
MEC or CA1 (Figure 5a). Nearly 1 in 8 LEC neurons peaked within the first second after reward 388 
delivery. Using a shuffle test for significance of this firing peak, we developed criteria for ‘reward 389 
consumption active’ (RCA) neurons20 that contain such a peak in firing at reward, or RCA cells. 390 
Across all sessions, 13.7% of active LEC neurons (1978 of 14489) qualified as RCA cells (Figure 391 
5b-c), and this proportion was similar between layers II and III of the LEC (Supplementary Figure 392 
2b). The fraction of RCA cells was much lower in the MEC (299 of 9488, or 3.1%), while CA1 was 393 
intermediate (816 of 11564, or 7.1%) (Figure 5d). 394 
 395 
Given that the reward consumption epoch, which determines whether a neuron is an RCA cell, is 396 
excluded from the calculation of spatial cells, we next asked whether and how the RCA cell 397 
population overlapped with spatial cells in LEC. We found that similar fractions of spatial and non-398 
spatial cells were RCA cells (Figure 5d). The non-spatial ‘pure’ RCA cells, such as the exemplar 399 
shown (Figure 5c), were robustly active only during reward consumption. As for spatial cells, RCA 400 
cells were more common within the pre-reward cell population of LEC, but they were found within 401 
the post-reward population as well (Figure 5d). Importantly, when the reward location was moved, 402 
the reward consumption signal occurred at the new reward (Figure 5c,e), with a third of RCA cells 403 
in LEC maintaining their firing pattern with respect to reward time, higher than in CA1 and MEC 404 
(Figure 5e). When the environment was changed, again RCA cells in LEC maintained their firing 405 
pattern with respect to reward time in the new environment (Figure 5e). Therefore, we find that 406 
LEC represents the epoch of reward delivery and consumption with a dramatic transient increase 407 
in firing that is generated by a population of neurons with a significant level of dedication to 408 
providing this signal. 409 
 410 
To investigate whether the signals in LEC surrounding reward delivery were due to reward itself 411 
or to the experiences surrounding reward, in separate experiments we measured the reward-412 
triggered signal in LEC for randomly delivered rewards outside of the context of virtual reality-413 
based spatial navigation. In these sessions, we still observed a dramatic and transient increase 414 
in firing immediately after reward delivery (for 1 s), as seen for RCA cells, but did not observe the 415 
increasing ramp in firing leading up to reward delivery nor the later increase in firing 2-4 s after 416 
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reward delivery (Supplementary Figure 6). Thus, the signal carried by RCA cells appear to be a 417 
generalizable reward signal while the pre-reward and post-reward signals are specific to our 418 
navigation task. 419 
 420 

 421 
Figure 5: A population of LEC neurons signal reward consumption 422 
a) Mean transient rate relative to the time of reward delivery, shown for LEC, MEC, and CA1 imaging 423 

fields averaged by imaging session. Bottom plot is a histogram of the timing of peak firing for individual 424 
cells from each session. All active cells are included. Mean ± SEM are shown as dark line with light 425 
shading, respectively. Blue bar highlights first second after reward delivery. 426 

b) Reward consumption active (RCA) LEC neurons (selection criteria in Methods) from all imaging 427 
sessions are sorted by their peak firing location along the track, averaged over all laps for a session. 428 
Each neuron (one row) is normalized to its maximum firing rate in this time window. 429 

c) Exemplar non-spatial RCA cell in LEC. Fluorescence traces for a subset of laps are shown, with 430 
averages of all laps underneath for both fluorescence and inferred transient rate following 431 
deconvolution relative to a familiar reward location (rew1, blue) and a new reward location (rew2, green) 432 
in the same imaging session. Mean ± SEM are shown as dark line with light shading, respectively. 433 

d) Fraction of cells that are RCA cells in each region, further subdivided as a fraction of spatial, non-434 
spatial, pre-reward, and post-reward cells in LEC. Each point represents one imaging session; black 435 
cross represents mean ± SEM across sessions. Statistical tests performed between pairs of regions 436 
(2-sample t-test) or paired tests within LEC (1-sample t-test). * indicates p < 0.05 and n.s. indicates p 437 
> 0.05. 438 

e) Fraction of stable RCA cells (reward consumption active for both a familiar and a new reward location), 439 
either as a fraction of all active cells or as a fraction of RCA cells for the familiar reward location (rew1). 440 
Data is shown for both a reward move in the same environment or for an environment switch. Each 441 
point represents one imaging session; black cross represents mean ± SEM across sessions; black 442 
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rectangle represents mean ± SEM expected by chance. Statistical tests performed between each pair 443 
of regions (2-sample t-test). * indicates p < 0.05 and n.s. indicates p > 0.05. 444 

 445 
Trajectory of LEC population firing encodes the reward experience 446 
Inspired by a prior study using a cue-reward association task to investigate layer II fan cells in the 447 
LEC35, we applied principal component analysis to our population of 9554 active LEC neurons for 448 
the 22 imaging sessions performed during a change in reward location and visualized the LEC 449 
population firing using first two principal components (PC1 and PC2), which explained 20% and 450 
10% of the variance, respectively (Supplementary Figure 7). The LEC population firing was 451 
plotted with respect to reward experience epochs as established in Figure 4. We made two 452 
observations. First, in this state space, jumps in the neural activity trajectory occur during 453 
transitions between the (previously defined) experience epochs (post-reward/running to pre-454 
reward approach to consumption), which was quantified as the magnitude of the difference 455 
between successive points (Supplementary Figure 7b). Second, after the reward was moved, the 456 
neural activity was largely unperturbed, following a similar trajectory as for the familiar reward 457 
(Supplementary Figure 7a). This observation was quantified by taking the difference between the 458 
state space trajectories in the first two principal component dimensions (Supplementary Figure 459 
7c). For reference, we compared this quantity to the same measure applied to MEC and CA1. 460 
Unlike LEC, the trajectories in MEC and CA1 differed more after the reward location was moved. 461 
Thus, this state space analysis adds further support to our conclusions about LEC coding of 462 
reward location but from a new perspective; as a population, the LEC population robustly tracks 463 
reward experience epochs. 464 
 465 
Stability of LEC reward representation during learning 466 
Thus far, we have established that three different LEC populations – pre-reward, post-reward, 467 
and reward consumption active – largely maintain their same representation around different 468 
reward locations. We next investigated the lap-by-lap changes in these representations following 469 
a reward location change to determine if the cells quickly and stably encoded the new reward or 470 
whether they slowly formed their representations, as seen for CA1 place cells in prior studies27,50. 471 
 472 
As mice learned a new reward location, they adapted their behavior by slowing down for a longer 473 
time and distance before the reward and running slowly until receiving the reward (Figure 6a-b). 474 
Over subsequent laps, the mice slowed closer and closer to the new reward zone, with their 475 
running behavior converging to the same stable pattern observed around familiar rewards, but 476 
relative to the new reward location. While mouse behavior adapted over several laps, throughout 477 
this time the pre-reward population and the post-reward population continued to fire before and 478 
after the new reward location on each lap (Figure 6a). 479 
 480 
In particular, the pre-reward population appeared to evolve during the learning period. Initially, 481 
these cells were broadly active across a large portion of the track, which gradually sharpened to 482 
be active only in locations just before the reward (Figure 6a). This switch from inactive to active 483 
on individual laps, fit with an HMM as in Figure 4, captured this evolution as well (Figure 6b). 484 
Moreover, activation of the pre-reward cells was highly correlated to slowing behavior on 485 
individual laps for both the familiar and the new reward locations (Figure 6b). Indeed, when 486 
reexamining cell firing with respect to the approach epoch, defined by the time from deceleration 487 
until reward delivery (as in Figure 4c), the stability of the pre-reward representation across the 488 
switch becomes evident (Figure 6c). When mean activity is evaluated for this pre-reward epoch, 489 
no detectable change in firing rate across the pre-reward population was observed during learning 490 
of the new reward location (Figure 6c). 491 
 492 
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 493 
Figure 6: LEC stably represents reward experience during learning while optogenetic inhibition of 494 
LEC disrupts learning 495 
a) Mice learned a new reward location over the course of a few laps. In this exemplar session, the reward 496 

location is moved later along the track. Velocity along the track, binned at 1 cm intervals, is shown for 497 
the final 10 laps with the familiar reward location and the first 15 laps with the new reward location. Pre-498 
reward and post-reward population firing as a function of track position is similarly shown as mice learn 499 
the new reward location, averaged over all neurons for that population in this exemplar session. Inset 500 
shows imaging paradigm (similar to Figure 3a). 501 

b) Line plots show deceleration and HMM transition times during the learning period, averaged across 502 
imaging sessions (only sessions with at least 10 pre-reward neurons are included; further, the first 503 
session with any reward location move is excluded for each mouse). Mean ± SEM are shown as dark 504 
line with light shading, respectively. Pearson correlation coefficients between pre-reward HMM 505 
transition and decelerations on each lap, shown for all laps with the familiar reward location (rew1) and 506 
the new reward location (rew2). Each point represents one imaging session in LEC; black cross 507 
represents mean ± SEM across sessions. Statistical tests performed between rew1 and rew2 508 
conditions (Wilcoxon signed-rank test) and to zero as well (1-sample t-test). * indicates p < 0.05 and 509 
n.s. indicates p > 0.05. 510 

c) Mean firing for pre-reward neurons, RCA cells, or post-reward neurons. For pre-reward cells, data 511 
resampled as a function of behavioral epoch, shown for 20 laps before and 30 laps after reward location 512 
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change. Insets show firing averaged over subsets of laps (rew1: last 20 laps with familiar reward 513 
location; +1: first lap after reward location change; 2-5: next 4 laps; 6+: remaining laps with new reward 514 
location). Underneath, mean transient rate for LEC pre-reward cells as a function of lap number, 515 
averaged over the pre-reward epoch. For RCA or post-reward cells, mean firing shown as a function of 516 
time relative to reward delivery, with mean transient rate averaged over the first 2 s after reward delivery 517 
for RCA cells or the remaining time after reward (2 to 10 s) for post-reward cells. 518 

d) Velocity and licking behavior for exemplar sessions for control (mCherry injections) and Jaws mice. 519 
Trials with optogenetic inhibition by 633 nm light are indicated by red bar (light delivered over entire 520 
track traversal for these trials), which is delivered for the final 10-20 laps with the familiar reward location 521 
(rew1, blue line) and the first ~20 laps with the new reward location (rew2, green line). Velocity max for 522 
the color scale is 30 cm/s for the control and 50 cm/s for Jaws. Underneath, the lap-by-lap measures 523 
of deceleration time relative to reward and the lick selectivity index (LSI, Methods) are shown, with dots 524 
representing the value for individual laps and the line the smoothed data (5-point rectangular filter). LSI 525 
ranges from -1, indicating 100% of the licks are near the familiar reward location, and +1, indicating 526 
100% of the licks are near the new reward location. Inset shows paradigm across days. At least one 527 
session was conducted between reward location changes to allow familiarity of that reward location. 528 

e) Session averages of deceleration times relative to reward and lick selectivity. For Jaws data, the mean 529 
control trace is reproduced using light gray for comparison; moreover, the difference between Jaws 530 
and control data is shown underneath, with baseline adjusted for the deceleration data for each session 531 
(calculated as the mean deceleration times for laps before reward switch but with 633 nm light on). 532 
“Mean during learning” quantifies mean value of deceleration times (on laps 13-20 after reward is 533 
moved) relative to baseline (calculated as mean deceleration times on the 10 laps before reward is 534 
moved) and mean value of lick selectivity on laps 2-6. Each point represents one imaging session; the 535 
first session with any reward location move is excluded for each mouse. Data is shown both for all mice 536 
(‘all’) and broken up by individual mice (C1 to C4 are control mice; J1 to J5 are Jaws mice). Black cross 537 
represents mean ± SEM across sessions. * indicates p < 0.05, 2-sample t-test. n.s. indicates p > 0.05. 538 

 539 
Surprisingly, both the RCA population and the post-reward population began encoding the reward 540 
consumption epoch immediately on the first traversal after the switch (Figure 6c). Even though 541 
the receipt of reward was unexpected at the new location, the amplitude of the transient increase 542 
in firing in the RCA population did not change across the reward switch laps (Figure 6c). The post-543 
reward population rapidly shifted to fire at the new reward location (Figure 6a), thus encoding the 544 
new post-reward epoch from the first traversal after the switch and with no detectable change in 545 
firing rate (Figure 6c). 546 
 547 
Overall, these results indicate that pre-, post- reward and RCA populations in LEC shift their firing 548 
immediately to the new reward location during learning. Given such stable location-invariant 549 
reward representations, even while reward location and animal behavior dramatically changed, 550 
the firing patterns of these neurons provide reliable experiential information of the epochs 551 
surrounding reward. 552 
 553 
Inhibition of LEC disrupts learning of a new reward location 554 
Given the stable representation by LEC of the experiential epochs surrounding reward during 555 
learning of a new reward location, we asked whether LEC itself was causally involved in the 556 
behavioral changes that occur after reward switch. We expressed the inhibitory opsin Jaws51 or 557 
a nonfunctional fluorescent marker (mCherry) as a control in LEC and, using 633 nm illumination 558 
delivered to chronically implanted fibers in bilateral LEC, inhibited LEC activity in the 10-20 laps 559 
prior to moving the reward and through the first 20 laps during learning of the new reward location 560 
(Figure 6d, Supplementary Table 3). We found no change in behavior when we inactivated LEC 561 
before moving the reward location, as assessed by anticipatory deceleration and licking selectivity 562 
(LSI, Methods) at the reward location. When the reward was moved, control mice quickly adapted 563 
their behavior to the new reward location, shifting their decelerations and licking within the first 564 
~10 laps (Figure 6d-e), similar to the behavior seen in mice during two-photon imaging of the LEC 565 
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(Figure 6b). However, mice expressing Jaws took longer to adapt their behavior to the new reward 566 
location (Figure 6d-e). Both deceleration behavior and licking selectivity adapted more slowly 567 
when compared to control mice. These results indicate that LEC is necessary for the learning of 568 
new reward locations but not for already learned reward locations. 569 
 570 
Discussion 571 
The original proposal of a cognitive map52 described not just a representation of spatial position 572 
but information to guide goal-directed navigation, a dichotomy exemplified by the context-573 
dependence of place cells in the hippocampus9,10. In particular, a representation of reward 574 
experiences provides information needed to contextualize a spatial code1,2. How this reward 575 
experience information reaches the hippocampus has been uncertain. Here, by developing a 576 
novel imaging approach (Figure 1), we find that the LEC contains cell populations that signal goal 577 
approach, the reward consumption period itself, and goal departure; these populations are largely 578 
invariant to spatial location or environment (Figures 3 and 5); these populations maintain stability 579 
during learning; and inhibition of LEC significantly slows learning of a new reward location (Figure 580 
6). We further show that these signals differ drastically from the MEC, which shows little change 581 
around reward and does not represent reward experience epochs in an obvious way. 582 
 583 
Previous studies have found a role for LEC in tasks with some similarities to the goal-directed 584 
navigation paradigm used here. Ablation of the LEC impairs association of objects with context53 585 
and location54, LEC neurons signal goal approach in open field navigation55, and the LEC is 586 
involved in forming associative memories35. Our results add to these previous findings, particularly 587 
by dissociating reward from object representations. We find that, among other roles, the LEC can 588 
provide the “what” information of an experience56, which during reward-guided navigation 589 
correspond to the epochs relative to the reward. And, consistent with past lesioning studies in the 590 
hippocampal formation57,58 and the role of LEC in associating objects with location54,54, silencing 591 
LEC disrupts learning of a change in reward location but does not disrupt behavior around a 592 
reward location that is already learned. The LEC, therefore, provides information about the reward 593 
experience that the hippocampus could use alongside MEC spatial inputs. By providing these 594 
stable representations of reward experience in parallel to spatial information, the entorhinal cortex 595 
could provide a computationally efficient and flexible system for learning to associate them5,7. A 596 
novelty signal could then be provided by neuromodulatory systems such as the locus 597 
coeruleus29,30 or VTA59, which can open a window for plasticity when needed, such as when 598 
encountering a new environment. 599 
 600 
The reward experience information from our three functional populations of LEC neurons could 601 
encode the behavioral actions of the animal, the sensory experiences during that epoch, or some 602 
other internal or latent state. For example, the pre-reward population may represent deceleration 603 
behavior, visual inputs that predict the reward, or anticipation of the reward itself. Irrespective of 604 
which information is represented, the signal is informative to the hippocampus. A further 605 
elaboration of this idea is that each functional population may be involved in a more active 606 
computation during its respective epoch beyond just signaling the experiential information, and 607 
these specializations may have implications for each population’s role in the hippocampal circuit. 608 
We briefly discuss here some of the evidence and implications for these specializations in each 609 
cell population. 610 
 611 
During goal approach, activation of the pre-reward population coincides with the deceleration of 612 
the animal (Figure 4). A possibility is that the pre-reward population is only indicating a read-out 613 
of running speed, but three properties of this population argue for broader encoding properties. 614 
First, these cells are enriched in layer II of the LEC. This layer contains the dopamine-recipient 615 
fan cells35, which project to dentate gyrus34, and pyramidal cells that project to CA321. Thus the 616 
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circuitry of this population appears to be uniquely positioned to be modulated by direct dopamine 617 
release during reward anticipation45. Further research may delineate whether fan cells themselves 618 
are enriched in the pre-reward population and, if so, what role dopamine plays in modulating firing 619 
in this population during goal approach60. Second, the goal approach epoch contains rich and 620 
interesting behavior, reflected in the slower running speed and variable deceleration times, which 621 
may indicate the need for gathering more information for optimal foraging61,62. During this period, 622 
the LEC population firing increases, opposite of what we observed in the MEC. Finally, despite 623 
the increase in firing, the LEC population decorrelates during goal approach, consistent with 624 
increased information coding (Supplementary Figure 5)63,64. Together, this evidence points to the 625 
goal approach epoch and especially the LEC pre-reward population as playing an important role 626 
for the hippocampus and other downstream regions in forming memories of the experience and 627 
improving predictions that could guide future behavior7,65. This pre-reward population shares 628 
many qualities with cue-active cells previously identified in the LEC using a different task35. These 629 
cells – identified among fan cells in layer II of the LEC – fired in the period between cue onset and 630 
reward delivery, consistent with our results. Thus, this population may be encoding expectation 631 
or value, which may be generated in cooperation with signals from dopaminergic cells66. 632 
 633 
During reward consumption, firing in LEC increases transiently and dramatically (Figure 5 and 634 
Supplementary Figure 6). This signal is observed in a population of neurons we have termed RCA 635 
cells. These cells are widespread: they are found in both layer II and layer III of the LEC, in both 636 
spatial and non-spatial cells, and in both pre-reward and post-reward populations. While CA1 on 637 
average did not exhibit a similar increase, perhaps reflecting the balance of increased drive from 638 
LEC with decreased drive from MEC (Figure 5a), a fraction of CA1 neurons qualified as RCA 639 
cells, which may be neurons that receive stronger inputs from LEC than from MEC67. Thus a large 640 
burst of excitation may be sent from the LEC to the hippocampus during the initial moments of 641 
reward consumption and could drive behavioral timescale synaptic plasticity68 or dendritic spikes69 642 
in CA1 pyramidal neurons and in turn drive an overrepresentation of reward locations27. 643 
 644 
During goal departure, post-reward cells in LEC became active. Interestingly, MEC and CA1 were 645 
also enriched in the number of post-reward cells (Figure 2). Along with signaling the goal 646 
departure experience itself, neurons active in the post-reward epoch might be coordinated across 647 
all three regions to provide a trace signal, which could be used to associate post-reward locations 648 
with the reward70,71. An alternative interpretation is that the post-reward signal is due to reward 649 
consumption or satiation and has no special role in spatial navigation; however, the absence of a 650 
prominent post-reward signal for randomly delivered rewards outside of a task structure 651 
(Supplementary Figure 6) supports the notion that post-reward firing is specific to encoding 652 
information that relates to predicting the goal location during future behavior. 653 
 654 
Our findings revisit the discussion about the dueling identities of MEC and LEC and how to frame 655 
the distinction (or the similarities). These differences have been cast in terms of “where” versus 656 
“what”, spatial versus nonspatial, self and non-self, and more56,72,73. Recent work found support 657 
for an allocentric versus egocentric distinction55. During open field navigation, neurons in LEC 658 
were found to encode egocentric coordinates relative to items in the environment, which 659 
contrasted with the allocentric encoding of neurons in MEC. A parsimonious explanation of our 660 
findings, particularly the populations of pre-reward, RCA, and post-reward cells, is that these cells 661 
encode egocentric coordinates, but rather than representing position relative to physical objects 662 
they represent position relative to a more abstract object, which is the reward itself (or, more 663 
concretely, when and where the reward experience will occur). Indeed, the past study identified 664 
goal-related egocentric tuning. We propose a subtle yet important distinction to this interpretation. 665 
Our finding that pre-reward populations are activated in a behaviorally-dependent manner argues 666 
that the proper coordinate system to consider is not a physical distance metric (such as reward 667 
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vector coding) but instead a more abstract or internal behavioral space that we describe broadly 668 
as experiential epoch coding, consistent with a past proposal that LEC encodes the “content of 669 
an experience”56. Interestingly, previous work that had found a prominent trajectory encoding 670 
signal in rat entorhinal cortex during reward navigation12 was likely sampling LEC, not MEC, 671 
consistent with our findings and further distinguishing the role of these two regions. 672 
 673 
Our results provide an important complement to recent papers studying the role of LEC in reward-674 
based tasks. First, during a task requiring rats to hold a lever before receiving reward, multiple 675 
reward-related signals were observed in the LEC and CA174, including “hold-type” cue-active cells 676 
that may be similar to the pre-reward cells we observed during reward guided navigation. In 677 
another study, during an odor cue-reward association task, cue-active cells were found in fan 678 
cells of the LEC (which exclusively reside in layer II)35, similar to our finding of an enrichment of 679 
pre-reward cells in layer II of the LEC. Thus, despite the differences in our tasks and our recording 680 
techniques, the same cells in LEC may generalize to perform a similar function. Beyond these 681 
parallels, our findings also provide novel insights. By using a spatial navigation task, we were able 682 
to describe a number of new categorizations that go beyond what was described in prior research. 683 
While our pre-reward cells may parallel the cue-active cells mentioned above, we describe a 684 
behaviorally-linked state transition in pre-reward firing, and variability in the timing of state 685 
transitions contributes to the observed ramping activity (Figure 4). This result may be important 686 
not just for reward navigation signals in the hippocampus but may be of interest to studies of 687 
ramping signals in the dopamine system47,75. Further, analogues of our reward consumption 688 
active cells and post-reward (goal departure) cells have not been previously described. This latter 689 
group of goal departure cells may be unique to spatial navigation tasks. 690 
 691 
In another recent study, axons from LEC and MEC were imaged in CA1 during a reward 692 
navigation task in virtual reality76, similar to the task used here. They found that the CA1-projecting 693 
axons from layer III of the LEC represented reward but also strongly coded spatial position as 694 
well. Our approach complements these results as our imaging method allows us to sample both 695 
CA1-projecting layer III cells and layer II stellate and pyramidal cells that project to the dentate 696 
gyrus and CA3, although our method does not allow us to confirm projection targets of individual 697 
cells. Our results indicate layer III of LEC does indeed carry more spatial information than layer II 698 
(Supplementary Figure 2b), thus explaining why a relatively high degree of spatial information 699 
was reported in CA1-projecting LEC axons76. Together our methods provide a more 700 
comprehensive picture for how information from LEC is reaching the hippocampus during reward 701 
navigation behaviors, with layer II providing the strongest pre-reward information that is likely 702 
routed to DG and CA3 while layer III is providing stronger spatial information that is routed to CA1. 703 
Both layers contribute reward consumption and post-reward information. 704 
 705 
Our results help bridge a gap between models of goal-directed navigation and known properties 706 
of the entorhinal-hippocampal circuit. For example, a critical component of the successor 707 
representation model of the hippocampus7 is the presence of a source of reward prediction 708 
information1. The presence of pre-reward, reward consumption, and post-reward cell populations 709 
strongly implicates the LEC as the source of this reward information. Further, the preservation of 710 
these signals after moving the reward location or changing the environment completely lends 711 
support for dedicated functional modules within the LEC. Such organization has implications for 712 
computational models of the entorhinal cortex77. 713 
 714 
Finally, the LEC is known to be involved in many tasks and behaviors beyond what was studied 715 
here, such as in olfaction34 and timing on the order of minutes33. Indeed, the spatial and reward-716 
encoding populations we identified represent only a third of neurons active during our spatial 717 
navigation task. Thus, it is yet to be determined precisely how these diverse roles are supported 718 
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by the same brain region or what the remaining two-thirds of neurons are encoding. One 719 
possibility is that different subcircuits within the LEC each specialize in encoding a particular type 720 
of information or experience but, without behavioral measures of these other aspects of 721 
experience, it was not possible here to determine their coding. Instead, we first identified a subset 722 
of neurons with “spatial” information. In actuality these neurons encoded the reward experience, 723 
which changed with spatial position and thus our analysis could identify their firing properties. Our 724 
findings also provide support for the hypothesis of functional specialization of LEC subcircuits 725 
since many pre-, post- reward and RCA cells maintained their encoding across reward and 726 
environment switches; thus, perhaps they are recruited from largely non-overlapping pools of LEC 727 
neurons, each with its own specialized circuitry and dedicated function. Unraveling the precise 728 
nature of the LEC’s role across a variety of tasks and behaviors will be made possible by 729 
combining large-scale population imaging with an ever-expanding suite of genetically-targeted 730 
optical tools. 731 
 732 
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Methods 
All animal procedures were approved by the Northwestern University Institutional Animal Care 
and Use Committee. For imaging of the medial and lateral entorhinal cortices (MEC and LEC, 
respectively), mice expressing GCaMP6s  were generated by crossing tetO-GCaMP6s mice (JAX 
No. 024742) with Camk2a-tTA mice (JAX No. 007004). For imaging of CA1 or optogenetic 
inhibition of LEC, wild type offspring of these crossings were injected with adeno-associated virus 
(AAV) as detailed below. 
 
Surgery 
Mice were anesthetized with isoflurane (4% for induction, 1-2% for maintenance in 0.5 L/min O2) 
while temperature was maintained by a heating pad at 37ºC as measured by rectal probe. 
Ointment was applied to the eyes. Dexamethasone (5 mg/kg, i.m.) was given for inflammation, 
buprenorphine-SR-LAB (1 mg/kg, s.c.) for pain, and normal saline (0.5-1.0 mL, i.p.) for 
dehydration. Details for the surgeries to implant prisms to access the MEC and the LEC, to inject 
virus and cannulate to access CA1, or to inject virus and implant fibers to optically inhibit LEC are 
provided in the next sections. In all cases, after implantation, a titanium headplate was attached 
to the skull with dental cement (Metabond, Parkell). Mice were monitored closely for 24 hours and 
given 3-5 days to recover before water restriction and behavioral training were begun. 
 
Lateral entorhinal cortex surgery 
As the LEC lies on the ventrolateral surface of cortex and is surrounded by soft tissue, bony 
protrusions, rich vasculature, and the pinna, a lateral optical approach is difficult and complicates 
concurrent head-fixed behavior. Prior work utilized a lateral approach in anesthetized animals and 
achieved two-photon imaging field sizes of 200 µm and up to 50 neurons at a time1. Thus, we 
strove to develop an imaging approach compatible with behavior that could yield field sizes of at 
least 500 µm and over 500 neurons at a time. We devised an overhead imaging approach using 
a microprism to provide optical access to the LEC2–4. A 3 mm craniotomy was made over the right 
lateral surface of the skull and positioned so that the posterior edge aligns with the ventral portion 
of the transverse sinus and the anterior edge with the insertion of the zygomatic protrusion from 
the squamosal bone, centered at ~3.5 mm caudal to Bregma. The dorsal edge was 1-2 mm dorsal 
of the rhinal fissure and the ventral edge was extended as far ventral as possible without incurring 
large amounts of bleeding or damage to soft tissue structures. Once the brain was exposed, any 
soft tissue overlying dura was removed. A 3 mm round No. 0 coverslip (CS-3R-0, Warner 
Instruments) was lowered and held in place with a 1.0 mm diameter pipette (Q100-70-7.5, Sutter 
Instrument) positioned by a micromanipulator while the top and side edges of the coverslip were 
cemented (Metabond, Parkell). Then a small dab of UV-cured adhesive (NOA81, Norland) was 
placed on the outer surface of the coverslip and a 2.0 mm microprism (MPCH-2.0, Tower Optical) 
placed against the coverslip and positioned as far ventral as possible before UV-curing the 
adhesive (CS20K2, Thorlabs), thus fixing the microprism in place. Dental cement was then used 
to fill in the remaining gaps while leaving the dorsal face of the prism clear for optical access. 
 
The location of the window over the LEC was confirmed in three ways (Supplementary Figure 1). 
First, expression of GCaMP6s is enriched in the entorhinal cortex in the tetO-GCaMP6s x 
CaMKIIa-tTA transgenic mouse line. We confirmed this overlap through retrograde labeling of 
CA1-projecting neurons. Labeled neurons in layer III of the LEC and the MEC coincided with 
increased brightness of GCaMP6s fluorescence in the same regions as visualized in histological 
slices. Second, this expression and the location of the LEC is found ventral to the rhinal vein. As 
this is a prominent structure seen during surgical implantation of the window and during 
subsequent in vivo imaging, it provided a reliable landmark for locating the LEC and, under 
epifluorescence imaging, matched the area of increased GCaMP6s fluorescence. Finally, the 
drastic difference in the location and angles of our MEC and LEC prisms (they are perpendicular 
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to each other, with the MEC prism facing anterior and the LEC prism facing medial) ensures that 
they are targeting different regions of cortex, and this was confirmed by the presence of a lamina 
dissecans between layers II and III of cortex in only the lateralized and not the posteromedial 
portions of entorhinal cortex5. 
 
Medial entorhinal cortex surgery 
This surgery is a modified version of the MEC prism implant surgery previously described3. A 2-3 
mm craniotomy was performed over the right cerebellum with the anterior edge positioned along 
the transverse sinus, just posterior of the lambdoid suture and the medial edge 2 mm lateral of 
midline. The craniotomy was extended posteriorly and laterally to where the skull begins its ventral 
descent. To make drilling easier, the mouse was rotated to bring the edge of the craniotomy in 
plane (counterclockwise roll of 20-30 degrees and downward pitch of 5-10 degrees). Next, a 2 
mm incision was made in the dura over cerebellum along the posterior edge of the transverse 
sinus and the flap of cerebellar dura reflected posteriorly away from the sinus. A portion of 
cerebellum was then suctioned until the caudal surface of the cortex was clearly visible and 
expanded to yield a ~2 mm opening. A 45-degree 1.5 or 2.0 mm microprism (MPCH-1.5 or MPCH-
2.0, Tower Optical) was mounted onto a custom stainless-steel mount with UV-cured adhesive 
(NOA81, Norland) and this microprism assembly was wedged with the front surface of the prism 
abutting the MEC and the back surface against the caudal portion of the skull. Once inserted, the 
prism assembly could be gently adjusted to achieve maximal exposure of the MEC, angled to 
match the natural surface of the MEC and to maximize optical clearance for imaging (typically at 
a clockwise roll of 10 degrees and an upward pitch of 10-15 degrees). Dental cement was then 
applied around the prism and surrounding skull to hold the prism in place; gentle anterior pressure 
was applied against the posterior edge of the prism assembly to provide some mechanical stability 
against the MEC. 
 
CA1 cannulation 
A small craniotomy (~0.5 mm) was performed at 2.3 mm caudal and 1.8 mm lateral (right 
hemisphere) relative to Bregma. The virus, pAAV.Syn.GCaMP6f.WPRE.SV40 (Addgene catalog 
#100837-AAV1, diluted ~10x from 2e13 GC/ml stock into phosphate buffered solution (PBS)), 
was injected by a beveled glass micropipette at a depth of 1.3 mm beneath dura. Typically, two 
injections, each 60 nL, were performed at spots ~500 µm apart within the same craniotomy. Next, 
typically in a separate surgery 2-4 days later, a stainless steel cannula with a glued (NOA81, 
Norland) 2.5 mm No. 1 glass coverslip (Potomac Photonics) was implanted above the 
hippocampus. 
 
Retrograde labeling 
CA1-projecting neurons were labeled by injection of rAAV2-Retro-CAG-TdTomato (Janelia, 
diluted 20x from 1.8e12 GC/ml stock into PBS) into the right CA1 using the same procedures for 
injection of virus as detailed above (“CA1 cannulation”). For in vivo imaging, an LEC prism was 
implanted on the same day using the procedures as above for “Lateral entorhinal cortex surgery,” 
and three weeks later two-photon imaging was performed. For histology, injection of virus into 
CA1 was performed in a transgenic mouse expressing GCaMP6s. After three weeks, the mouse 
was anesthetized with 5% isoflurane and perfused with 4% paraformaldehyde (PFA). After leaving 
the extracted brain in PFA at 4ºC overnight, it was moved to 30% sucrose in PBS for a few days. 
Using a freezing microtome, 50 µm horizontal slices were cut and placed on slides. Images were 
taken with a slide scanner microscope (VS120, Olympus). 
 
Implantation of optical fibers for optogenetic inhibition of LEC 
Inhibition of LEC was achieved by bilateral expression of the inhibitory opsin Jaws6 followed by 
implantation of a pair of tapered optical fibers7. First, a craniotomy was performed over right LEC 
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as detailed in “Lateral entorhinal cortex surgery.” The head was rotated 40 degrees 
(counterclockwise roll), allowing direct access to LEC using a pipette from above. The pipette was 
positioned ~3.5 mm caudal to Bregma and punctured dura just ventral to the rhinal vein. The 
pipette was then advanced ~0.5 mm for the first injection and another 0.5 mm for a second 
injection. Either AAV2/8-hSYN-JAWS-tdTomato-ER2 (Neurophotonics, diluted 2.5x from 9.8e2 
GC/ml stock into PBS) or AAV8-hSyn-mCherry (Addgene catalog #114472, diluted ~6x from 
2.6e13 GC/ml stock into PBS) was injected for a set of Jaws mice and a set of control mice, 
respectively. The pipette was withdrawn after 5 minutes. After another 10-15 minutes, the head 
rotation was reduced to 15 degrees (counterclockwise roll) and a fiber cannulae (Lambda-B Fiber: 
0.39 NA, 200 µm with a slotted 1.25 mm ceramic ferrule, 1.5 mm active length plus 1.5 mm 
tapered implant length; Optogenix) was inserted. The fiber was positioned at ~3.5 mm caudal to 
Bregma and punctured dura 1.5 mm dorsal to the rhinal vein before being advanced 3 mm and 
then secured in place with dental cement. The procedure was then repeated for the left LEC. After 
experiments were completed, horizontal brain slices were taken as detailed above under 
“Retrograde labeling.” 
 
Behavior 
Water restricted mice received 1.0 mL of water per day. Weights and health were monitored daily. 
Training and behavior were performed in virtual reality (ViRMEn8)  and custom-written code 
(MATLAB, Mathworks) was used to control and synchronize signals with two-photon imaging 
using a data acquisition card (National Instruments). Head-fixed mice running on a one-
dimensional treadmill moved through a virtual reality environment displayed on a set of 5 monitors 
covering a 225-degree field-of-view (horizontal axis)3. Water rewards of 4 µL were delivered at a 
fixed location on the virtual track. Water volume was controlled by a solenoid that was calibrated 
based on open duration; typically, a 20 msec opening delivered a 4 µL volume. Once the end of 
the track was reached, a 4 s “time-out” period was included where the mice were kept at the end 
of the virtual track before returning to the start of the virtual track. Licks were monitored by a 
capacitive sensor attached to the lick spout. During imaging experiments, we also monitored the 
face of the mouse using a camera (Zelux CS165MU1, Thorlabs) synced to the two-photon 
microscope frame times. 
 
Imaging sessions were performed once the behavior reached a satisfactory level, judged by a) 
number of laps per minute (> 2 laps per minute in a 40-minute session) and b) anticipation of 
reward (deceleration and licking before reaching the reward location, judged by examining 
reward-triggered average of behavior traces). This point was usually reached after 1 to 2 weeks 
of training (5-10 sessions). On the first 1-3 days of imaging, the reward location was kept fixed (at 
2.3 m). Then, in the middle of an imaging session, the reward was moved, and this new position 
was used for the remainder of the session and the next session as well (Figure 2a). For the next 
couple weeks, we interleaved more reward location moves between three possible positions: 0.7 
m, 1.5, and 2.3 m. Where appropriate, we pooled data from the three reward positions 
(Supplementary Table 2). We considered the possibility that the direction the reward location was 
moved (either earlier or later along the track relative to the familiar reward) may influence our 
results. We repeated the analysis for Figure 3 and Figure 6 for LEC imaging sessions stratified 
by which direction the reward was moved (earlier: n = 15 FOVs; later: n = 7 FOVs). We did not 
observe any significant differences. Thus, we pooled data for both directions of reward changes. 
For environment switch experiments, we began with the same environment used for reward 
location changes as above (env1), but then moved through the following sequence in a single 
session: env1-1.5m, env1-2.3 m, env2, env3, env4, and then back to env1-1.5m, with roughly 20 
laps (5-10 minutes) in each environment (Supplementary Figure 3c). 
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To assess the response in LEC to reward delivery and consumption outside of the context of 
virtual navigation, water restricted naïve mice (n = 3) were habituated to head fixation and 
provided randomly delivered rewards while imaging was performed of the LEC (Supplementary 
Figure 6). During these sessions, the display monitors were off. After these imaging sessions, 
one of the mice was trained on the virtual reality navigation task as described above. Imaging was 
repeated once behavior reached the criteria detailed above. 
 
Imaging 
Widefield images were taken with a custom-built fluorescence microscope with a GFP filter cube 
through a 2X objective (TL2X-SAP, Thorlabs) and captured with a scientific CMOS camera (Prime 
BSI Express, Teledyne Photometrics). 
 
Two-photon imaging was performed using a customized microscope with a resonant scanning 
module (Sutter Instruments) and a 20X objective (LUCPlanFL N, Olympus). Excitation was 
provided by a mode-locked Ti:Sapphire laser tuned to 920 nm (Chameleon Ultra II, Coherent) 
with roughly 100 mW of average power coming out of the objective. Emission light was split by a 
560 longpass dichroic (FF560-Di01, Semrock) and filtered into red (FF01-620/52, Semrock) and 
green (FF01-510/84, Semrock) channels before being detected by a pair of GaAsP PMTs 
(H10770PA-40, Hamamatsu Photonics). Imaging was controlled by ScanImage software (Vidrio). 
A frame sync signal was sent to the data acquisition card on the virtual reality computer. 
 
Time series movies ranging from 32,000 to 60,000 frames per imaging session were collected at 
29.8 Hz. At full magnification, the field size was 700 x 700 µm with 512 x 512 pixels, with most 
imaging performed at magnifications of 1.0 to 1.5x (maximum of 2.2x). At the start and end of 
each imaging session, the depth of the imaging field from the surface (dura for entorhinal cortex 
imaging or the axonal layer for CA1 imaging) was estimated by focusing up using a calibrated 
micromanipulator to move the microscope relative to the mouse (MP-285, Sutter Instrument). In 
LEC, we could distinguish layer II and layer III as a cell-free zone separates them, providing a 
convenient method to differentiate the layers5 (Supplementary Figure 1). Such a clear distinction 
between layers was not present in MEC; we used a threshold of 150 µm below dura to distinguish 
nominal layer II and nominal layer III. To block stray light from the VR monitors from contaminating 
the detected emission signal, a light blocking cylinder formed from electrical tape was placed 
between the headbar and the objective. 
 
Optical inhibition of LEC during behavior 
Once implanted mice learned the task (as described under “Behavior”), optical inhibition sessions 
were performed. A 633 nm fiber-pigtailed laser diode (LP633-SF50, Thorlabs) was split 50:50 
using a fiber optic coupler (TW630R5F1, Thorlabs) and coupled to the implanted fiber cannulae 
using a pair of patch cables (M83L01, Thorlabs). The laser diode driver (LDC205C, Thorlabs) was 
used alongside an LD/TEC mount (LDM9LP, Thorlabs) driven by a temperature controller 
(TED200C, Thorlabs). Driver current was set to produce 6-8 mW of total power coming into each 
implanted fiber cannulae (typically 130 mA of total current from the laser driver). Power was 
switched on and off using TTL control of the driver. 
 
The protocol was as follows. A “reward move” session was run as described under “Behavior” but 
with the inclusion of inhibition laps. On an inhibition lap, the laser light turned on once the mouse 
reached 30 cm along the track and stayed on until a position of 270 cm. These positions were 
chosen so that they would encompass all possible reward positions (70, 150, and 230 cm). In a 
given session, the first 20-30 laps were run with no light with the reward in the familiar position. 
Then, at least 10 inhibition laps were run (min: 10, max: 25) with the reward still in the familiar 
position. Next, ~20 more inhibition laps were run (min: 17, max: 23), but now with the reward in 
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the new position. Finally, at least another 20 laps were run with no light and the reward in the new 
position. 
 
Once mice learned the first reward position (230 cm), we performed an acclimation session with 
optical inhibition for ~20 laps but with no reward move. The next day, the reward was moved from 
230 cm to 150 cm with inhibition laps as described above. Then, we interleaved days with no 
reward move (and no inhibition) with days with reward moves (and inhibition), thus giving mice an 
opportunity to adjust to each reward location before the next move. 
 
Image processing 
To extract inferred firing of individual cells from two-photon movies, we performed the following 
steps: registration to correct for motion artifacts, segmentation to identify cells, extraction to 
calculate fluorescence signals for each cell (and associated neuropil signals), and integrated 
iterative inference to estimate an interpretable and decomposed version of cell activity. First, two-
photon time-series movies were motion corrected using rigid registration9. A target image was 
found from repeated rounds of registration for a subset of frames (typically 4000). The full movie 
was then registered to that target image. Cells were then segmented and raw fluorescence traces 
extracted using a customized implementation of Suite2p10 in MATLAB. Movies were 
downsampled 20x in time (every 20 frames averaged). The first 200 spatial components identified 
by singular value decomposition of the downsampled movie were then passed into Suite2p 
(typical parameters: cell diameter = 10 µm, neuropil ratio = 12x or 120 µm). Next, cells were semi-
manually curated based on a number of properties, such as size, shape, and brightness. A 
brightness-over-time signal was produced for each cell mask along with the corresponding 
neuropil signal surrounding it. 
 
Next, to decompose the activity signal into interpretable units, we used an integrated iterative 
algorithm we developed to recover an estimate of r, the ratio of neuropil contamination into the 
cell signal; F0, the baseline fluorescence of the cell; and S, the firing rate of the cell. F0 is the 
linear summation of a set of basis functions, chosen to be slowly varying sinusoids and 
exponentials. S is estimated from deconvolution11; thus, we assume ΔF/F0 is a convolution of S 
with a kernel. We chose the kernel to be a two-exponential function with ‘on’ and ‘off’ time 
constants taken from published data12,13 for GCaMP6s and GCaMP6f. S is not an exact measure 
but does correlate with [Ca2+] and thus the number of action potentials fired in a given time 
window14. Thus we scaled S by a number based on the transient dynamics to a number that is 
meant to approximate the number of action potentials (120x for GCaMP6s and 80x for GCaMP6f, 
chosen so that the mean value of S matches the measured number of action potentials that 
generate the same mean ΔF/F0 as observed for simultaneous imaging and cell-attached 
recordings of neurons in vivo12,13). The units for S are meant for convenience since the true signals 
are nonlinear and the dynamics can vary from cell to cell, especially when the sensor is virally 
expressed15. For analysis, S was then smoothed with a gaussian filter (standard deviation of 5 
bins or 170 ms). 
 
Analysis 
Analysis was performed in four different reference frames, calculated lap-by-lap and peak 
locations are defined by the peak in the lap-averages in a given reference frame: 
 
1) Absolute position: calculated by taking frames with positive velocity (at least 10 cm/s) and 
excluding the first 2 s after reward delivery (if within 10 cm of reward location) and then binning 
inferred firing S by position into 1 cm bins. 
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2) Relative position: calculated similar to absolute position but for the 100 cm before and after the 
reward location, also in 1 cm bins. 
 
3) Relative time: no frames excluded, for the 10 s before and the 10 s after the reward time, 
binned at 30 Hz. While mice could run the 3.1 m track in under 10 s, they typically took ~20 s 
(across 2888 laps in our LEC dataset, the mean lap time was 18.7 s with only 1 lap faster than 10 
s). This discrepancy is because a) the mice peaked at 50 cm/s or more but ran at a lower speed 
along a significant portion of the track, b) the mice spent some time (typically 2-4 s) stopped to 
consume the reward, and c) the end of the track included a “time-out” period of 4 seconds to help 
separate each lap as a distinct trial. Ultimately, any choice of window is a compromise as it 
depends on the exact behavior of each mouse. We chose 10 s as a more generous window so 
that we could ensure we captured most of the dynamics in activity before and after reward 
delivery. 
 
4) Epochs: formed by defining three events for each lap and linearly interpolating in time 60 bins 
for each epoch. The three events are start of running, deceleration or HMM transition time, and 
reward time. These three events were found automatically for each lap by examining the recorded 
behavior. Start of running after reward was found by examining the position of the animal in the 
virtual world and finding when the animal first passed 15 cm beyond the reward position. Next, 
deceleration time (or HMM transition time for the pre-reward population) was found as defined 
below (under “Deceleration criteria” and “HMM transition criteria”; which measure was used is 
indicated as appropriate in the text). Finally, reward delivery time was recorded by the virtual 
reality program and defined the third event. For each inter-event period, we then linearly 
interpolated the time span between events into 60 bins using the interp1 function in MATLAB. 
 
Criteria for categorizing cells are as follows: 
 
Active cells: mean ΔF/F0 > 0.1. The fluorescence signal was averaged over all laps and time 
points for the imaging session. 
 
Spatial cells: spatial information >0.3 bits/event and significance on 98% or more of shuffles. 
Spatial information16 was calculated by taking frames with positive velocity (at least 10 cm/s) and 
excluding the first 2 s after reward delivery (if within 10 cm of reward location) and then binning 
inferred firing S by position into 60 bins (5 cm). For the shuffled data, firing on individual laps was 
randomly permuted and the spatial information calculated for the shuffled data. This procedure 
was repeated 100 times. The spatial information of the cell was considered significant if at most 
2 shuffles returned a higher spatial information score. 
 
Reward cells: spatial cells with a peak within 40 cm of the reward location (pre-reward: 40 cm 
before reward and up to and inclusive of reward location; post-reward: after reward and up to and 
inclusive of 40 cm after reward location). 
 
Reward consumption active (RCA) cells: peaks between 0 and 1 second after reward (inclusive), 
98% or above on shuffle test for first second after reward (considered significant if at most 2 
shuffles out of 100 returned a higher mean firing rate in a 1 second bin than the actual mean firing 
rate between 0 and 1 s. 
 
Other measures used in the manuscript are defined here: 
 
Reward clustering ratio: for spatial cells, the number of cells with peak locations in the zone of 
interest (reward, pre-reward, or post-reward) was divided by the number of cells with peak 
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locations anywhere along the track, normalized by the expected fraction if cells were uniformly 
distributed. For example, for a 40 cm pre-reward zone along a 310 cm track, if 20 cells out of 100 
have peaks in the pre-reward zone, then the ratio is 20/100 (actual) divided by 40/310 (expected), 
which yields a pre-reward clustering ratio of 1.55. 
 
Tuning width: length of track over which lap-averaged cell firing is greater than 30% of the max. 
 
Transient duration: the autocorrelation for ΔF/F0 was calculated after mean subtraction and 
smoothing with a 9-point rectangular filter. The half-height half-width was then found as a proxy 
measure of transient duration. This measure is of course influenced not just by the kinetics of the 
Ca2+ indicator itself but also by the concentration of the indicator in the cell17, endogenous buffers 
and other properties of each cell, and the autocorrelation in time of the cell’s actual action potential 
train.  
 
Deceleration criteria: 98th percentile of velocity (after smoothing with a 31-point rectangular filter, 
~350 ms) was used as the ‘peak’ velocity, vpeak. Vth = vpeak*0.8-5, so if peak velocity was 50 
cm/s, we used 35 cm/s as the threshold. We then detected when the smoothed velocity (11-point 
rectangular filter, ~120 ms) last was above this threshold in a time window from 10 s to 0.5 s prior 
to reward. 
 
HMM transition criteria: for imaging sessions with at least 5 pre-reward cells, we calculated 
transitions from inactive to active in the 10 s period leading up to reward using a hidden Markov 
model. The sequence was the number of cells that passed a firing threshold in each time bin (>1.8 
events/s). The model assumed only two states, inactive and active, with each lap beginning in the 
inactive state and transitioning to an absorbing active state. This transition matrix and the 
probability distributions for number of active cells in each state was estimated using the Baum-
Welch algorithm (hmmtrain, MATLAB). Then, for each lap, this model was used to estimate the 
posterior state probabilities (hmmdecode, MATLAB) and hence the time of transition from inactive 
to active. To calculate variance explained, we modeled the 10 s pre-reward period for each lap 
as a step function using the HMM to set the transition point of the step. Then we calculated one 
minus the variance of the difference between the data and the step function divided by the 
variance of the data itself: 1 – var(data-step)/var(data). 
 
Velocity HMM criteria: we also detected decelerations using a hidden Markov model. Velocity was 
rounded up to the nearest integer value in cm/s. Similar to the model used above for pre-reward 
cells, we used two states with a single transition to the absorbing state. In this case, the first state 
was a high velocity state and the second absorbing state was a lower velocity state. We compared 
the results of this method to the first method (‘Deceleration criteria’) and also re-ran our analysis 
comparing HMM-detected decelerations to HMM-detected changes in pre-reward and found both 
methods produced similar results (Supplementary Figure 4c). 
 
Population correlation: cell-cell correlations were calculated at a given position (or time point 
relative to reward) across laps. For an imaging session, the mean population correlation was then 
taken as the average cell-cell correlation across all cell pairs (autocorrelations excluded). 
Positions were binned in 20 cm intervals and time in 1 s intervals. 
 
Lick selectivity index: the ratio of licking at the familiar (rew1) or new (rew2) reward locations. L1 
is the licking in a zone around rew1, stretching from 30 cm before to 10 cm after the reward 
location, and excluding any stationary periods. L2 is the licking in a zone around rew2. The lick 
selectivity index is then calculated as (L2-L1)/(L2-L1) for each lap. A value of -1 indicates licking 
at rew1 and not rew2 (and the opposite for a value of +1), while a value of 0 indicates equal 
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amounts of licking at both locations. If no licking was detected at either reward location on a given 
lap, the index was undefined and that particular lap is excluded when calculating averages across 
sessions. 
 
Bayesian decoding18 was performed with respect to absolute position for datasets with reward 
located at 2.3 m (Supplementary Figure 2c). Data was binned every 10 cm and training and test 
datasets were formed from odd and even laps, respectively. 
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Supplementary Figures 
 

 
Supplementary Figure 1: Histological confirmation of imaging window over LEC 
a) Histology of lateral entorhinal cortex (LEC). Injection of retrograde tracer in CA1 labels CA1-projecting 

LIII pyramidal cells of entorhinal cortex in a mouse with GCaMP6s expression. Horizontal section is 
taken after PFA fixation. 

b) Zoomed in images of tdTomato and GCaMP6s labeling of the LEC in this horizontal slice. Histogram 
quantifies the amount of fluorescence from each of these channels as a function of depth from the dural 
surface. The cell-free zone separating layers II and III is approximately 150 to 200 µm beneath dura. 

c) To validate the prism placement, CA1-projecting LIII cells in LEC were again labeled with a retrograde 
tracer and two-photon imaging was performed on an implanted mouse. Labeled cell bodies were only 
seen at depths of at least 200 µm. 

d) Simplified diagram of connectivity between superficial layers of entorhinal cortex and regions of the 
hippocampus along with dopaminergic inputs from the ventral tegmental area (VTA). 
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Supplementary Figure 2: LEC firing peaks around reward and differs by layer 
a) Histogram of spatial cell peaks and mean transient rates relative to the reward location. Datasets were 

combined across days where the reward location was either at 2.3 m (as in Figure 2a-d), 0.7 m, or 1.5 
m. Histograms are binned every 10 cm; transient rate is sampled every 1 cm. Mean ± SEM are shown 
as dark line with light shading, respectively. Green LEC+MEC trace is the average of the LEC and MEC 
curves. 

b) Comparison of Ca2+ transients and cell firing properties from LII (23 fields) and LIII (9 fields) of the LEC 
and LII (22 fields) and LIII (10 fields) of the MEC. Data quantified for each imaging session; black cross 
represents mean ± SEM across sessions. Statistical tests performed compared between pairs (2-
sample t-test, Bonferroni correction). * indicates p < 0.05 and n.s. indicates p > 0.05. Non-significant 
pairwise comparisons are not shown. Imaging depths for all LEC and all MEC fields (47 and 44 fields 
total, respectively, which include some sessions with tasks not included here) shown on left. 

c) Bayesian decoding of spatial position for sessions with the reward location at 2.3 m. A random subset 
of 40 non-reward spatial cells from each field of view was used to train a decoder (odd laps) and tested 
on the remaining laps (even laps). Because not all imaging fields contained at least 40 non-reward 
spatial cells, we only used data for the sessions with enough cells. Data was binned every 10 cm. In 
each bin, the decoded error was taken as the mean absolute difference between the most likely 
decoded position and the actual position. * indicates p < 0.05 using 2-sample t-test. Shuffle (shown as 
dashed lines) was achieved by randomly permuting the position data for the test set (even laps) and 
performing the same decoding analysis. 

d) Unsupervised k-means clustering of spatial firing patterns for LEC with reward location at 2.3 m (data 
shown in Figure 2c). Using the Calinski-Harabasz criterion, the optimal number of clusters was 
identified as 2. The cluster centroids are shown in purple and green, along with the fraction of pre-
reward cells and post-reward cells that identify as each cluster. Dot raster shows relative distance to 
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each centroid for all spatial cells (gray) or spatial cells that are also RCA cells (red), taken as (d2-
d1)/(d2+d1), where d1 is the squared Euclidean distance to centroid 1 and d2 to centroid 2. 
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Supplementary Figure 3: Additional details on dedication or pre- and post-reward populations for 
both reward moves and environment switches 
a) Spatial firing patterns along the track and histogram of firing peaks for spatial cells sorted by their firing 

peaks with the familiar reward location for MEC and CA1. Same format as Figure 3c. 
b) Distribution of difference in peak location for MEC and CA1 spatial cells across the two conditions. 

Dashed line is the distribution for cross-validated data with the familiar reward location (even versus 
odd laps). 

c) Paradigm for environment switches. Four different environments were visited in the same session, with 
~20 laps run in each environment before switching to the next one. 

d) The fraction of reward cells that remain reward cells after the environment is changed, quantified by 
the fraction of reward cells that maintain their peak location within 40 cm of the new reward location. 
Data quantified for each environment switch in an imaging session; black cross represents mean ± 
SEM across switches. 

e) Peak locations shown relative to reward locations with first environment on the x-axis and second 
environment on the y-axis. Each point represents one LEC neuron that was a spatial cell in both. 

f) Peak locations for pre-reward cells relative to reward locations in the two environments. Selected cells 
are chosen for being pre-reward cells with the first environment (rew1) and spatial cells in both; what 
is shown here is where their peak locations are for the second environment’s reward location (rew2). 
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Histograms are calculated for each environment switch in an imaging session; mean ± SEM are shown 
as dark line with light shading, respectively. 

g) Same as panel f but for post-reward cells. 
h) Histograms quantify cells that are stable pre- or post-reward cells in both environments, either as a 

fraction of all spatial cells or as a fraction of the pre- or post-reward cells for the first environment. Each 
point represents one environment switch in an imaging session; black cross represents mean ± SEM; 
black rectangle represents mean ± SEM expected by chance. Statistical tests performed between each 
pair (2-sample t-test). * indicates p < 0.05 and n.s. indicates p > 0.05. 
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Supplementary Figure 4: Additional details on hidden Markov model used to model LEC pre-reward 
population firing 
a) A hidden Markov model (HMM) was used to detect transitions in the pre-reward population activity. The 

10 seconds before reward delivery were considered. The system begins in an inactive state and can 
transition to an absorbing active state on each lap. The number of active cells is the observed data. 
The HMM is trained to learn the emission probabilities for each state (number of cells active) and the 
transition probability matrix. 

b) Deceleration times and position relative to reward are highly correlated, thus indicating that the running 
velocity is fairly consistent during the period of approach to reward. The analysis in the main text uses 
time because it was more reliable in practice. 

c) Transition from high running speed to lower running speed during reward approach was measured in 
two ways: deceleration time and velocity HMM time (see Methods). For exemplar session (top left: 
points represent transition times for individual laps; top right: exemplar laps where velocity HMM time 
agreed or disagreed with the deceleration time, indicated by green or red highlight, respectively) and 
across sessions (bottom left: each point represents correlation between the two measures for one 
imaging session; black cross represents mean ± SEM across sessions), the two measures were highly 
correlated. Both measures were also similarly highly correlated to the HMM-detected state change in 
the pre-reward cell firing (bottom right: Pearson correlation coefficients for each session, calculated as 
in Figure 4g; each point represents one imaging session; black cross represents mean ± SEM across 
sessions). Statistical tests performed against zero (1-sample t-test; * indicates p < 0.05) and between 
each pair of regions (Wilcoxon signed-rank test; n.s. indicates p > 0.05). 
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Supplementary Figure 5: Pairwise correlations between LEC neurons across trials decrease near 
rewards 
a) Correlation matrices were formed for the activity patterns of a neural population in a given imaging 

session at a given position. We calculated the correlation between the activity of each pair of cells at a 
given position on the track across all the laps for that session. 

b) Example correlation matrices at two track positions are shown. 
c) Correlations as a function of track position or time relative to reward. At a given position (or time), the 

correlation matrix was averaged across all cell-cell pairs (excluding the diagonal) and computed for 
each imaging session. 
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Supplementary Figure 6: Pre- and post-reward firing in LEC is specific to a virtual navigation task 
a) Mean running velocity at track positions surrounding reward are similar (pre: 40 cm before reward, 

mean of 22.8 cm/s; post: 40 cm after reward, mean of 25.0 cm/s) but lower than running speed along 
the rest of the track (other: all track positions excluding 40 cm around reward, mean of 37.6 cm/s). Each 
point represents one imaging session in LEC for reward at 2.3 m; black cross represents mean ± SEM 
across sessions. Statistical tests performed between each group (Wilcoxon signed-rank test; * indicates 
p < 0.05 and n.s. indicates p > 0.05). 

b) VR (left column): mean velocity, lick rate, and transient rate across all active cells in LEC, as a function 
of time relative to reward. LEC transient rate plot is reproduced from Figure 5a. Inset shows mean 
transient rate for pre-reward neurons and post-reward neurons relative to reward time. Gray boxes 
highlight periods when pre-reward and post-reward cells are highly active outside of the immediate 
reward consumption period. No VR (right column): same measures but for naïve head-fixed mice (7 
FOVs in 3 mice) receiving random (unpredictable) rewards. We only included rewards with immediate 
consumption (first lick within 0.5 s of reward delivery) and with some treadmill movement in the 2.5 s 
preceding reward. 

c) In one exemplar mouse, after imaging LEC during delivery of random rewards (‘no VR’ condition), the 
same mouse was trained in virtual reality over a few days and imaging was performed during a reward 
navigation task in virtual reality (‘VR’ condition). Transient rate was averaged across all active neurons 
for each session. Mean ± SEM are shown as dark line with light shading, respectively. After normalizing 
transient rate (by dividing by the mean transient rate in the period from -10 s to -5 s), the difference in 
bulk firing between ‘VR’ and ‘no VR’ conditions was calculated. This difference curve shows two periods 
of large difference: pre-reward and post-reward, relieved by a brief moment of equality for the 0.5-1 s 
immediately after reward delivery. 
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Supplementary Figure 7: Trajectory of LEC population firing using state space analysis 
a) Population LEC firing with respect to behavioral epochs is reduced to two dimensions using principal 

component analysis. The mean trajectory is plotted, with the color coded by the behavioral epoch 
(yellow: post-reward/running, gray: reward approach, blue: reward consumption). Open circles highlight 
the points in the trajectory that correspond to the transition points between epochs. The same 
components are used to plot the population firing for familiar reward (rew1) and novel reward (rew2). 
The trajectory for familiar reward is reproduced on the right plot using a thin blue line for comparison. 

b) Magnitude of the difference between successive points (1-norm of the derivative) using the first 10 
principal components. 

c) Quantification of the difference between the trajectories for familiar and novel rewards using the first 
two principal component dimensions, taken as the 2-norm of the difference normalized by the 2-norm 
of the familiar reward trajectory. 
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Supplementary Table 1 

 LEC MEC CA1 
# mice (F/M) 7 (4/3) 6 (2/4) 8 (3/5) 
# fields 32 32 39 
Age (mean +/- std) 22.5 ± 9.6 weeks 22.5 ± 4.4 weeks 17.4 ± 1.8 weeks 

ANOVA: F (p-value) 
Depth 6.80 (0.01) 0.05 (0.82) 0.52 (0.47) 
Deceleration 3.53 (0.07) 2.42 (0.13) 2.68 (0.11) 
Gender 0.29 (0.59) 1.30 (0.26) 3.66 (0.06) 
Age 0.41 (0.53) 1.42 (0.24) 0.63 (0.43) 

Multiway analysis of variance (ANOVA) was performed using the anovan function in MATLAB. The effects 
of the following factors were tested for their effect on reward clustering for each imaging session: 1) imaging 
depth, discretized into 50 µm bins; 2) degree of anticipatory deceleration, measured as mean velocity in 1 
s before reward dropping to at least half of the maximum velocity; 3) gender, 4) age, in weeks. 
 
 
Supplementary Table 2 

Reward location # FOVs Total neurons Active neurons Spatial neurons 
0.7 m 5 2106 2001 577 
1.5 m 10 4812 4387 1363 
2.3 m 17 8538 8101 2016 
Total (familiar reward) 32 15456 14489 3956 
Total (reward change) 22 10208 9554 2890, 2447 

Number of LEC imaging fields and number of neurons for each of the three reward locations used. Final 
row shows data for sessions where the reward location was changed. For this data, ‘Spatial neurons’ shows 
number of spatial neurons for familiar and novel reward location, respectively. 
 
 
Supplementary Table 3 

 control Jaws 
# mice (F/M) 4 (1/3) 5 (0/5) 
# sessions 25 26 
Age (mean +/- std) 25.3 ± 2.8 weeks 23.3 ± 1.7 weeks 

Number of sessions for optogenetic inhibition experiments in LEC. 
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