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The lack of diversity in genomic datasets, currently skewed towards individuals of Euro-
pean ancestry, presents a challenge in developing inclusive biomedical models. The scarcity
of such data is particularly evident in labeled datasets that include genomic data linked
to electronic health records. To address this gap, this paper presents PopGenAdapt, a
genotype-to-phenotype prediction model which adopts semi-supervised domain adaptation
(SSDA) techniques originally proposed for computer vision. PopGenAdapt is designed to
leverage the substantial labeled data available from individuals of European ancestry, as well
as the limited labeled and the larger amount of unlabeled data from currently underrepre-
sented populations. The method is evaluated in underrepresented populations from Nigeria,
Sri Lanka, and Hawaii for the prediction of several disease outcomes. The results suggest
a significant improvement in the performance of genotype-to-phenotype models for these
populations over state-of-the-art supervised learning methods, setting SSDA as a promising
strategy for creating more inclusive machine learning models in biomedical research.

Our code is available at https://github.com/AI-sandbox/PopGenAdapt.

Keywords: phenotype prediction, semi-supervised, domain adaptation, underrepresented
population

1. Introduction
Genomic data has become increasingly important for biomedical research, as it can reveal
insights into the causes, diagnosis, prevention, and treatment of various diseases. However, the
available data is predominantly from individuals of European ancestry, despite their making
up only 16% of the global population. This disproportionate representation presents one of the
major challenges in developing biomedical models and studies that can effectively generalize
across diverse populations, posing the risk of exacerbating existing health disparities.1 While
widely adopted datasets such as the UK Biobank2 provide rich phenotypic information from
electronic health records, they lack diversity (see Fig. 1). On the other hand, highly diverse
datasets, such as gnomAD,3 lack phenotypic data, which makes them not directly usable to
train supervised genotype-to-phenotype machine learning models, as phenotype labels for all
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the samples are required. New algorithmic solutions are needed in order to profit from all
available data.
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Fig. 1. Broad population counts in the UK Biobank.2 Genetically inferred populations groups from
the Global Biobank Engine.4

In this work, we propose PopGenAdapt, a semi-supervised domain adaptation (SSDA)
method that can also exploit the available unlabeled data from underrepresented populations
to improve the performance of phenotype prediction models. On the one hand, the semi-
supervised nature of the proposed method makes possible the use of unlabeled data from
underrepresented populations, as well as labeled data from large biobanks. On the other
hand, the use of domain adaptation techniques makes it possible to still take advantage of
the vast amount of data from individuals of European ancestry (the source domain), but to
adapt the model predictions for a particular underrepresented population (the target domain).
While SSDA has been previously applied to other types of data such as image and text, its
application in genetics remains largely unexplored.

We adapt methods proposed for SSDA in computer vision for genotype-to-phenotype pre-
diction and evaluate them in underrepresented population groups from Nigeria, Sri Lanka,
and Hawaii. Our results predicting phenotypes including hypertension, diabetes, myxoedema,
and asthma, demonstrate that SSDA can significantly enhance the performance of genotype-
to-phenotype models in underrepresented populations, suggesting a promising direction for
developing better machine learning models for diverse populations.

2. Background
2.1. Genotype-to-Phenotype Prediction
DNA is the hereditary material in humans and all living organisms, contributing to essential
functions and appearance. While most positions in the DNA sequence are identical between
individuals of the same species, some vary. Out of more than 3 billion positions, a typical
human genome differs from the reference genetic sequence at 4 to 5 million sites (∼1.5%).5
In total, more than 600 million variable positions have been identified across different hu-
mans.6 These variable positions are called single nucleotide polymorphisms (SNPs) and can
be encoded as a ternary sequence, representing the counts of non-reference variants at each
position, with 0 indicating that both maternal and paternal positions match the reference
genome, 1 indicating that only maternal or paternal positions match, and 2 indicating that
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both are alternative variants.
Phenotypes are the observable characteristics of an organism that result from the inter-

action between its genotype (the genetic makeup determined by its DNA sequence) and the
environment. These characteristics comprise physical and behavioral traits, as well as risk of
developing certain diseases. Both the frequency distribution of genomic variants, and as a
result, the distribution of phenotypes, vary across different populations. As a consequence,
most studies developed for a particular population do not generalize well to other population
groups.1

The goal of genotype-to-phenotype prediction is to use the genetic variation (SNP se-
quences) to estimate the phenotypes of an individual. Multiple machine learning models have
been applied to solve this task, either using general-purpose methods like logistic regression,
gradient boosting machines, or neural networks,7,8 or through linear models specifically tai-
lored to genetic data, such as PRS-CS,9 SBayesR,10 or snpnet.11

2.2. Semi-Supervised Domain Adaptation
Supervised learning is the framework most often adopted to train predictive models by using
input samples and label pairs. However, in many real-world scenarios, such as in biomedical
applications, obtaining labeled data can be challenging, involving time-consuming and expen-
sive collection procedures. This limitation suggests the application of semi-supervised learning
techniques, which can leverage both labeled and unlabeled data for training, providing better
generalization than traditional supervised learning approaches.12

Both supervised and semi-supervised methods assume that the distribution of the train-
ing data (source domain) is the same as the one found during real-world deployment (target
domain). However, this is not always the case, leading to distribution shifts that can drasti-
cally decrease the predictive performance. In order to address this shift, domain adaptation
techniques have been proposed to properly adjust the models to bridge the gap between dis-
tributions and achieve accurate predictions in both the source and target domains.

SL SDA

Labeled Source
Labeled Target
Unlabeled Source

SSL SSDA

Fig. 2. Illustration of supervised learning (SL), semi-supervised learning (SSL), supervised domain
adaptation (SDA), and semi-supervised domain adaptation (SSDA) in the case of binary classifi-
cation. Circle and cross markers represent negative and positive classes, opaque and transparent
markers represent labeled and unlabeled points, and blue and orange markers represent source and
target domains, respectively.

Semi-supervised domain adaptation (SSDA) combines both semi-supervised learning and
domain adaptation paradigms. The goal of SSDA is to leverage labeled data from a source
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domain, unlabeled data from the target domain, and a limited set of labeled data from the
target domain, in order to obtain a machine learning model that achieves good performance
within both domains.

In this paper, we adapt for genotype-to-phenotype prediction the state-of-the-art method
of SSDA via Minimax Entropy (MME)13 with Source Label Adaptation (SLA),14 which was
originally proposed in computer vision, considering different image domains, like photos, draw-
ings, or paintings. Here, instead, we will consider different domains to be different populations.

2.2.1. Minimax Entropy
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Fig. 3. Overview of the model architecture and minimax entropy proposed in Ref. 13.

Minimax Entropy (MME, Ref. 13, Fig. 3) proposes to use a neural network model con-
sisting of a feature extractor F and a classifier C. At the output of F , ℓ2 normalization and
temperature scaling are applied, inspired by Ref. 15. In the original work, F is a pre-trained
ResNet34,16 an image classification network, and C is a single layer which takes 1

T
F (xi)

∥F (xi)∥ as
input and outputs g(xi) = σ

(
1
T

WTF (xi)
∥F (xi)∥

)
. The weight vectors W = [w1, ..., wK ] can be regarded

as a representative point of each class k, or “prototype”.
Both C and F are trained to classify labeled examples correctly by minimizing the cross-

entropy loss LCE on the labeled data, from both the source and target domains. However, to
avoid overfitting on the source domain, which contains a larger amount of samples, as well
as to take advantage of the unlabeled target data, it has been proposed to use an adversarial
regularization term, the Minimax Entropy. MME is formulated as adversarial training between
F and C, in which F is trained to minimize the conditional entropy H of the neural network
predictions from unlabeled target data p(xt), whereas C is trained to maximize the entropy of
the predictions p(xt). This adversarial learning forces F to learn discriminative features, while
C estimates domain-invariant prototypes reducing the overfitting to the source domain. The
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overall adversarial learning objective functions are:
θ̂F = argmin

θF

LCE + λH (1)

θ̂C = argmin
θC

LCE − λH (2)

where λ is a hyperparameter to control the tradeoff between classification on labeled examples
and the minimax entropy training. To simplify the training process, MME makes use of a
gradient reversal layer17 to flip the gradient between C and F with respect to H, allowing to
perform the minimax training with a single forward and backward pass.

2.2.2. Source Label Adaptation
Source Label Adaptation (SLA, Ref. 14) is a framework that considers source data as a noisily-
labeled version of the target data and gradually adapts the source labels to the target space.
Specifically, inspired by Refs. 18,19, for each source point xsi , one constructs a modified source
label ỹsi by combining, with a tradeoff ratio α, the original source label ysi and the prediction
of a source label adaptation model p:

ỹsi = (1− α)ysi + αp(xsi ) (3)
Note that p cannot be the current unadapted model g as it would overfit to the source

data due to the larger number of samples, resulting in almost no effect. Thus, it has been
proposed to train on the target domain data. However, to avoid simple memorization of the
target data due to the low number of labeled samples available, it has been proposed to use
a prototypical network (protonet),20 a model for few-shot learning. Given a feature extractor
F , the prototype of class k is defined as the center of features with the same class:

ck =
1

Nk

N∑
i=1

1{yi=k}F (xi) (4)

Then, a protonet produces a distribution over classes for a query point xi based on a
softmax with temperature τ over the Euclidean distances to the prototypes in the embedding
space:

p(xi)k =
exp(−d(F (xi), ck)τ)∑
k′ exp(−d(F (xi), ck′)τ)

(5)

Moreover, in Ref. 14 it is proposed to derive the prototypes using the unlabeled data
available by using, for each unlabeled target instance xui , pseudo labels ỹui computed by the
current model g:

ỹui = argmax
k

g(xui )k (6)

Using these pseudo labels, we can get pseudo centers by Eq. 4, and further define with them a
Protonet with Pseudo Centers (PPC) by Eq. 5. Next, the PPC is applied to Eq. 3 to compute
the modified source labels ỹsi for each source instance xsi . Finally, the real source labels ysi
are replaced by the cleaned source labels ỹsi in the computation of the cross-entropy for the
labeled source part of the whole dataset. The loss for labeled target data can still be a standard
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cross-entropy loss. Other loss terms can still be included, like the minimax entropy proposed
in Ref. 13.

In practice, the SLA framework is only applied after W warmup steps in which the model
is trained normally with the original source labels to obtain an initial robust model, and then
the pseudo labels are only recomputed every I steps for efficiency. Since the SLA14 paradigm
of considering the source labels as noisy from the target domain viewpoint and cleaning them
is orthogonal to the ideas in MME,13 both approaches can be combined to get superior results.
We refer to this combination as MME-SLA.

2.3. Semi-Supervised Learning and Domain Adaptation for
Genotype-to-Phenotype Prediction

Semi-supervised learning techniques have been previously applied in genotype-to-phenotype
prediction. For example, Ref. 21 proposed a method to predict the residual feed intake in
dairy cattle using both labeled and unlabeled samples. However, the samples are assumed to
be from the same domain, so the method would still have the problem of not generalizing to
other populations.

Likewise, domain adaptation techniques have also been applied in genotype-to-phenotype
prediction. For instance, Refs. 22–24, proposed several transfer learning techniques to also
improve prediction performance for underrepresented populations. However, the proposed ap-
proaches cannot utilize unlabeled samples, thereby still grappling with the scarcity of labeled
data from underrepresented populations. Consequently, the achieved performance improve-
ment remains limited. To our knowledge, this is the first work to combine both approaches
by applying semi-supervised domain adaptation for genotype-to-phenotype prediction.

3. Method
3.1. Data
We apply these methods to predict multiple disease outcomes, including hypertension, dia-
betes, myxoedema, and asthma, for individuals from populations underrepresented in com-
monly used datasets, including Nigeria, Sri Lanka, and Hawaii, available in the UK Biobank2

and the PAGE study.25 In order to have meaningful results, we limit the phenotypes to these
four, as they have a high enough case count within the three target populations. For each
phenotype, we use balanced data from white British individuals as the source domain, ob-
tained by removing samples from the majority class. Then, for each phenotype and target
population, we use the labeled source domain data as well as labeled and unlabeled data from
the target domain. To test the method’s efficacy, we use a subset of labeled data exclusive to
the target underrepresented population.

To establish which samples constitute the target population domain, we propose two ap-
proaches, which show two different ways in which we can take advantage of the availability of
datasets, even when the labeled data in the target domain is very scarce. The first approach
is adopted for the Nigerian and Sri Lankan populations, and the second one for the Hawaiian
population.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2023. ; https://doi.org/10.1101/2023.10.10.561715doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.10.561715
http://creativecommons.org/licenses/by-nc/4.0/


0 20 40 60 80
PC1

20

10

0

10

20

30

40

PC
2

Population
White British
Non-British White
South Asian
East Asian
African
Hawaiian
Sri Lankan
Nigerian

Fig. 4. Two-dimensional PCA projection of the samples in the UK Biobank and the Hawaiian
dataset. The PCA was fitted with only the samples from the UK Biobank. Note that all samples
marked as Sri Lankan fall within the South Asian genetic ancestry cluster, and all the Nigerian ones
fall within the African cluster.

The first approach only uses data from the UK Biobank.2 To establish which samples
constitute the target population, we combine the genetically inferred ancestry available from
the Global Biobank Engine4 (white British, non-British white, South Asian, East Asian, or
African) and the country of birth reported in the UK Biobank.2 We use both fields because the
inferred genetic ancestry provides a continental-level description, encompassing many regions
within each label. On the other hand, the country of birth alone is not representative of the
ancestry composition within the UK Biobank due to high selection bias, as the samples were
collected in assessment centers in the United Kingdom, so many individuals in the data born
outside the United Kingdom are still of English genetic ancestry. By filtering both by inferred
population group and country of birth, we ensure that the definition of the target domain is
precise.

In particular, for the case of Nigeria, we only keep the samples that are of African genetic
ancestry and born in Nigeria, and for the case of Sri Lanka, the samples that are of South
Asian genetic ancestry and born in Sri Lanka. This results in a total of 852 samples for the
Nigeria group and 535 samples for the Sri Lanka group. Once we have the samples from the
target domain, since the UK Biobank has phenotype labels for all the samples, we artificially
unlabel half of them for the purpose of evaluating the proposed method. For training, we use
all the unlabeled samples plus only 10 labeled samples from the target domain, 5 negative and
5 positive, alongside all the labeled samples from the source domain. The rest of the labeled
individuals of the target domain are split into two equal parts using stratified sampling to
create the validation and test sets. Note that we can only use labeled data for validation and
testing.
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The second approach to define the target domain shows how additional unlabeled datasets
can be employed. To achieve this, in addition to the UK Biobank,2 we use a dataset of SNP
sequences (without phenotype labels) of 5,862 Native Hawaiian individuals from the PAGE
study.25 In this setting, we only have unlabeled data from the target population. Note that we
cannot use the country of birth field, as the people born in Hawaii are labeled as born in the
USA. To have labeled data in the target domain, we propose to use the nearest neighbor of
each sample from the Hawaiian dataset within the UK Biobank, excluding the white British
individuals to avoid having repeated samples in both the source and target domains. For
efficiency, we compute the distances between samples on the first 50 principal components,
instead of using the raw SNP sequences. After removing duplicated individuals that are the
nearest neighbor to more than one sample from the Hawaiian dataset, we obtained 1,689
labeled samples. While it is unlikely that the UK Biobank contains this many individuals of
Hawaiian ancestry, the closer distribution of these samples to the Native Hawaiian population
makes the domain more apt to model them than using samples of predominantly European
ancestry.

The second approach to defining the target domain is less accurate than the first one, as it
includes samples from other similar populations. However, it has the advantage that it results
in a larger number of samples, which can be helpful for unbalanced phenotypes with a low
positive case count, and to counteract the effect of having a noisier target domain definition.
In this scenario, we use 50% of the labeled target samples for the training set, 25% for the
validation set, and 25% for the test set. Note that the unlabeled samples used for training are
the ones from the Hawaiian dataset from the PAGE study.25

Table 1. Size of sets used for training and evaluation for each population. Note that
a combination of white British as the source domain plus another population as the
target domain is always used.

Population Training labeled Training unlabeled Val. + Test labeled Total

White British * 0 0 *
Nigeria 10 213 106 + 107 852
Sri Lanka 10 134 67 + 67 535
Hawaii 822 5,862 412 + 413 7,507

*White British set size depends on class balancing, but in all cases is >40,000.

We use the variants that are both in the UK Biobank data and the Hawaiian dataset,
resulting in 83,362 overlapping SNPs. Note that we decided to not impute the SNPs outside
the intersection to avoid introducing a bias. Most algorithms to perform statistical imputation
are based on the available samples, and since in this scenario most of them are not from the
underrepresented population, the imputation could result in incorrect values.
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Table 2. Case counts for each disease and population (only considering labeled samples).

Population Hypertension Myxoedema Diabetes Asthma

White British* 114,687 (50.00%) 21,471 (50.00%) 23,099 (50.00%) 45,192 (50.00%)
Nigeria 105 (47.08%) 11 (4.93%) 38 (17.04%) 21 (9.41%)
Sri Lanka 60 (41.66%) 18 (12.50%) 41 (28.47%) 29 (20.13%)
Hawaii 535 (31.68%) 69 (4.09%) 153 (9,05%) 197 (11.66%)

*White British phenotypes are balanced by undersampling the negative class.

3.2. Model
We adopt the MME-SLA13,14 method originally proposed for classification tasks in computer
vision for genotype-to-phenotype prediction by replacing the ResNet3416 backbone model
used in the original works with a multi-layer perceptron (MLP). Specifically, we use a 4-layer
MLP with GELU activations,26 layer normalization,27 and a residual connection16 between the
output of the first layer and the input of the last one. The choice of activation and the use of
layer normalization and a residual connection is commonly adopted in modern architectures
such as Transformers28 and has been proven to help improve the performance of the models,
as well as their stability during training. The initial layer of the network takes an input size
corresponding to the number of SNPs and reduces it to a hidden size of 256. Subsequently,
the two middle layers maintain the same input and output dimensions of 256. Next, before
the last layer, ℓ2 normalization and temperature scaling with T = 0.05 is applied, as proposed
in Refs. 13,15. Lastly, the last layer, which acts as the classifier, produces an output size
equivalent to the number of classes. We call the complete model PopGenAdapt.

NSNPs Nclasses

Nhidden

Fig. 5. Diagram of the backbone MLP model for PopGenAdapt.

The backbone MLP model without the MME-SLA components is also used as the base-
line model to compare how applying SSDA improves against a typical supervised learning
approach.

We train the baseline and PopGenAdapt models for each combination of target population
and phenotype using a batch size of 64, the AdamW optimizer29 with weight decay of 0.01, and
the same learning rate scheduler used in Ref. 14. We use randomized hyperparameter search
to tune several hyperparameters. For the baseline method, we only tune the learning rate. For
PopGenAdapt, we tune both the learning rate and the MME-SLA13,14 hyperparameters (λ, α,
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τ , W , and I). Table 3 shows the hyperparameter space from which the values were sampled.
Our experiments showed that the resulting performance is highly sensitive to the choice of
hyperparameters, as also pointed out in the paper which introduced SLA.14 We select the
model with the best validation AUROC on the target domain and perform the final testing
on a separate hold-out test set also using AUROC on the target domain.

Table 3. Definition of the distribution of the hyperparameter space.

Hyperparameter Probability distribution

Learning rate LogUniform(10−5, 10−2)
MME tradeoff λ Uniform(0, 1)
SLA mix ratio α Uniform(0, 1)
SLA temperature τ Uniform(0, 1)
SLA warmup W UniformChoice({100, 500, 1000, 2000, 5000})
SLA update interval I UniformChoice({5, 10, 100, 500, 1000, 2000, 5000})

Note that while PopGenAdapt employs both the labeled and unlabeled samples, the base-
lines are trained on the subset that is labeled, as it has no way of using the unlabeled samples.

The training and inference was performed with an NVIDIA GeForce GTX 1080 Ti GPU
(11 GB), and took between 10 and 50 minutes, depending on the number of samples and the
hyperparameters, for each configuration.

4. Results
We compare PopGenAdapt with the baseline model consisting only of the backbone MLP
(MLP Base), as well as with the state-of-the-art genotype-to-phenotype snpnet11 model, and
PRS-CSx,30 which is an extension of PRS-CS9 to improve polygenic prediction in ancestrally
diverse populations. Note that since snpnet and PRS-CSx are supervised models, like in the
case of the baseline model, they can not exploit the unlabeled samples.

We show the results obtained for each of the four phenotypes on the three tested target
underrepresented populations in Tables 4–6.

PopGenAdapt outperforms snpnet, PRS-CSx, and the baseline model on average and in the
majority of evaluated scenarios. Moreover, we observe that snpnet, PRS-CSx, and the baseline
model obtain in multiple cases an AUROC below 0.5, indicating a predictive performance
worse than the one obtained by random guessing. We note that this does not happen in any
of the experimented cases for PopGenAdapt. Considering that snpnet and the MLP baseline
methods do not perform any type of domain adaptation, it makes sense for this to happen,
as the models are tested on a domain that differs from the one in which most of the training
samples are.

We hypothesize that a possible reason for the poor performance of snpnet on non-European
populations is due to the use of the lasso in the method, which performs SNP selection, thus
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Table 4. AUROC for the Nigerian population.

Method Hypertension Myxoedema Diabetes Asthma Average

snpnet11 0.4647 0.7949 0.4699 0.4646 0.5485
PRS-CSx30 0.3884 0.1827 0.6046 0.4306 0.4016
MLP Base 0.5488 0.4423 0.5376 0.4886 0.5043
PopGenAdapt 0.5088 0.8109 0.5516 0.5619 0.6083

Table 5. AUROC for the Sri Lankan population.

Method Hypertension Myxoedema Diabetes Asthma Average

snpnet11 0.4500 0.4631 0.4603 0.5871 0.4901
PRS-CSx30 0.4852 0.4863 0.3991 0.5379 0.4771
MLP Base 0.5898 0.5137 0.5952 0.5939 0.5731
PopGenAdapt 0.5778 0.5902 0.6723 0.6091 0.6123

Table 6. AUROC for the Hawaiian population.

Method Hypertension Myxoedema Diabetes Asthma Average

snpnet11 0.6132 0.6148 0.5235 0.4857 0.5593
PRS-CSx30 0.5423 0.5881 0.4577 0.5087 0.5242
MLP Base 0.6104 0.5162 0.5041 0.5666 0.5493
PopGenAdapt 0.6135 0.5556 0.5791 0.5811 0.5823

excluding completely some variants. Possibly, as the training data is mostly from the source
domain, many of the SNPs excluded are the ones that remain useful for making the prediction
on the target population. All this reflects the usefulness and need for domain adaptation
techniques to be used when the data of the target domain is limited, like in the case of
underrepresented populations.

Furthermore, PRS-CSx has poor performance in most settings. We believe that the small
number of samples of the target population still had an effect on this case, reflecting the
value of incorporating unlabeled samples when the labeled data is scarce. Another possible
limitation that could result in bad performance is the use of a relatively small number of
SNPs, although this is shared across all four methods.

Finally, we also observe that the supervised methods suffer less in the Hawaiian dataset,
probably due to the higher number of labeled samples for training that are used in this scenario
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and the fact that the Hawaiian target domain is less precise, resulting in less advantage for
domain adaptation. The target domain, in this case, is less precise due to the nearest neighbor
approach used to establish the labeled samples, as well as due to the fact that Pacific Islanders
are admixed populations, resulting in more variability across the samples, as can be observed
in Fig. 4.

5. Conclusion
In this work, we presented PopGenAdapt, a model that applies semi-supervised domain adap-
tation techniques for genotype-to-phenotype prediction. We also proposed two approaches to
set the target domain samples and evaluated the model to predict several disease outcomes
in three different underrepresented populations. The results show that by using SSDA on un-
derrepresented populations, the prediction performance can be improved over state-of-the-art
supervised methods. Consequently, we show SSDA is a promising technique to help overcome
health disparities in precision medicine by exploiting the availability of unlabeled data from
underrepresented populations while still taking advantage of the greater magnitude of labeled
data available from populations of European ancestry.

Nonetheless, there are still some limitations and avenues for future work. Due to the lim-
ited data on the underrepresented population we had available from the UK Biobank,2 we did
not study the influence the ratio of labeled and unlabeled samples could have on the attained
performance, as using more samples for training would have left too few for validation and
testing. Moreover, the scalability of the method to a larger number of SNPs also remains to
be assessed. Further work on the approach could also include the possibility of learning from
GWAS summary statistics instead of the SNP sequences or to also support continuous phe-
notypes apart from categorical ones. Possibly, there is also room for improvement on the base
model used, as more powerful deep learning architectures could be evaluated. Furthermore,
considering the integration of PopGenAdapt on emerging paradigms such as federated learning
or differential privacy31 could further enhance the applicability of the method in biomedical
research and healthcare.
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