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10 Abstract

n Spatially resolved transcriptomics technologies provide high-throughput measurements of gene ex-
12 pression in a tissue slice, but the sparsity of this data complicates the analysis of spatial gene expression
13 patterns such as gene expression gradients. We address these issues by deriving a topographic map of a
14 tissue slice—analogous to a map of elevation in a landscape—using a novel quantity called the isodepth.
15 Contours of constant isodepth enclose spatial domains with distinct cell type composition, while gra-
16 dients of the isodepth indicate spatial directions of maximum change in gene expression. We develop
17 GASTON, an unsupervised and interpretable deep learning algorithm that simultaneously learns the
18 isodepth, spatial gene expression gradients, and piecewise linear functions of the isodepth that model
19 both continuous gradients and discontinuous spatial variation in the expression of individual genes.
2 We validate GASTON by showing that it accurately identifies spatial domains and marker genes across
21 several biological systems. In SRT data from the brain, GASTON reveals gradients of neuronal differen-
2 tiation and firing, and in SRT data from a tumor sample, GASTON infers gradients of metabolic activity
23 and epithelial-mesenchymal transition (EMT)-related gene expression in the tumor microenvironment.

“Correspondence: braphael@princeton.edu


braphael@princeton.edu
https://doi.org/10.1101/2023.10.10.561757
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.10.561757; this version posted October 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

» 1 Introduction

» Gene expression varies substantially across a tissue, due to both the spatial organization of cell types
2 within a tissue and localized changes in cell state through processes such as development, differentiation,
» and intercellular communication [160]. Many genes display sharp, discontinuous changes in expression
2 in certain areas of a tissue, often near the boundaries of distinct spatial domains containing different com-
» binations of cell types. For example, different cortical and neocortical layers of the brain are distinguished
» by the presence and absence of expression of certain marker genes [124, 96]. Gene expression may also
»n vary continuously in a tissue, forming gene expression ‘gradients” that distinguish different cell types or
» states and drive fundamental biological processes including development [6, 55, 48, 117] and cellular com-
;3 munication [148, 138]. For instance, gene expression gradients underlie the functional heterogeneity of
s« neurons in the hippocampus [160, 21] and hepatocytes in individual liver lobules [9, 25]. In tumors, gene
35 expression may vary continuously with the distance to the surrounding stroma due to oxygen gradients
36 or cellular interactions [125, 12].

37 Spatially resolved transcriptomics (SRT) technologies produce high-throughput measurements of spa-
s tial gene expression, quantifying the number of RNA transcripts at thousands in a tissue slice [93, 88,
» 101, 111, 134, 139]. These SRT technologies enable the inference of spatial domains in tissues as well as
w0 the identification of genes and cell types with continuous and discontinuous spatial patterns of expres-
a1 sion within and across spatial domains. However, SRT technologies typically yield sparse measurements
22 of the transcriptome: current whole-transcriptome sequencing-based technologies [1, 116, 127, 22, 78]
»»  have limited coverage (=~ 500-5,000 unique molecular identifiers (UMIs) per location) while imaging-based
w  technologies measure a much smaller and targeted panel of transcripts (typically 100-1,000 transcripts)
s [61, 143, 162, 91, 52]. This sparsity markedly complicates the analysis of spatial gene expression.

a6 Numerous computational approaches have been developed to identify spatial domains and/or genes
w7 with spatially varying expression from SRT data. These methods typically leverage correlations between
s expression measurements at nearby spatial locations to overcome the sparse measurements at individual
» locations. Many methods focus on the identification of distinct spatial domains by partitioning tissues into
so subregions having large, discontinuous changes in gene expression, e.g. [168, 58, 32, 104, 81, 153, 76, 167,
51 53], but do not model continuous gene expression gradients within these regions. Several other meth-
2 ods instead test whether the expression of an individual gene varies spatially by fitting a function to the
53 observed transcript counts at spatial locations [132, 130, 171, 18, 145]. However, these methods cannot dis-
s« tinguish continuous gradients within spatial domains from discontinuous changes in expression between
55 domains. More generally, neither approach models the geometry of a tissue slice using a coordinate system
ss that describes both the boundaries of spatial domains and the relative position of spatial locations within
57 these domains, thus greatly limiting their ability to identify continuous gradients of gene expression.

58 We introduce gene expression topography, a fundamentally different approach to modeling spatial vari-
v ation in gene expression. We derive a “topographic map” of a tissue slice using the isodepth, a 1-dimensional
s coordinate over the tissue slice which describes both the arrangement of spatial domains and the relative
¢1 position of each spatial location within its corresponding spatial domain. Thus, just as the topographic
2 map of a landscape demarcates mountains and valleys by their elevation, our topographic map of gene
& expression delineates spatial domains by their isodepth. Moreover, like the elevation of a landscape, the
« isodepth varies continuously over a tissue slice, providing a coordinate to model continuous variation in
s the expression of individual genes. In particular, our topographic map describes gene expression gradients,
s similar to how a topographic map of elevation shows whether a direction is a steep ascent or a flat plateau.
67 We develop Gradient Analysis of Spatial Transcriptomics Organization with Neural networks (GASTON),
¢ anunsupervised and interpretable deep neural network algorithm that learns the isodepth of a tissue slice,
o the vector field of spatial gradients of gene expression, and spatial expression functions for individual genes
7 directly from SRT data. In particular, GASTON models gene expression as a piecewise linear function of
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n  the isodepth, thus describing both continuous gradients and sharp discontinuities in gene expression. We
7 demonstrate that the isodepth and spatial gradients learned by GASTON reveal the geometry and continu-
73 ous gene expression gradients of multiple tissues across multiple SRT technologies including 10x Genomics
7+ Visium [1], Slide-SeqV2 [116, 127], and Stereo-Seq [22]. On SRT data from the mouse and human brain,
75 we show that GASTON more accurately identifies spatial domains and marker genes compared to exist-
76 ing methods, derives maps of spatial variation in cell type organization, and uncovers spatial gradients
77 of neuronal firing and differentiation. Using SRT data from a colorectal tumor sample, we demonstrate
75 that GASTON identifies gradients of metabolic activity in the tumor interior, and gradients of epithelial-
» mesenchymal transition (EMT)-related gene expression at the tumor-stroma boundary.

» 2 Results

s 2.1 GASTON learns the topography of a tissue slice using interpretable deep learning

52 We introduce the isodepth d, a scalar quantity that models the “topography” of a tissue slice and is analogous
83 to the elevation in a topographic map of a land surface. A small number of contours of equal isodepth d
s partition the tissue slice into spatial domains, while the intermediate isodepth contours define the relative
s position of a location within a domain. Moreover, the gradient Vd of the isodepth d at each location
ss describes the spatial gradient, or the direction of maximum change in gene expression within each spatial
s domain. The collection of spatial gradients defines a spatial transcriptomic vector field v(x, y) across the
ss  tissue slice T (Figure 1A). Thus, the isodepth describes the geometry of a tissue slice, i.e. the arrangement
» of distinct spatial domains in the tissue, as well as directions of continuous variation within each spatial
o domain (Methods).

o1 To learn the isodepth d from spatially resolved transcriptomics (SRT) data, we develop Gradient Anal-
92 ysis of Spatial Transcriptomics Organization with Neural networks (GASTON). GASTON models the ex-
93 pression fy(x,y) of each gene g at spatial location (x,y) as a piecewise linear function of the isodepth

94 d(x, y):

P
FO09) = D (pg+ Bpg - A% ) - T(xog)er,)- (1)
p=1
o where the pieces Ry, . . ., Rp are spatial domains, and a5 and f,, 4 are the y-intercept and slope, respectively,

% in the pth spatial domain R,. We use piecewise linear functions as they are a simple class of models
o7 that incorporates both continuous variation in gene expression within each domain, i.e. “gradients” of
os expression, while allowing for discontinuities in expression at the boundaries of the spatial domains. The
9% boundaries of each spatial domain R, are given by contours of equal isodepth d(x,y) (Methods). We
w0 emphasize that our model does not restrict the spatial domains R, to be contiguous regions; thus, GASTON
w1 is able to model long-range spatial correlations in gene expression [101], in contrast to many existing
w2 approaches that only model local spatial correlations (Methods).

103 GASTON jointly learns the isodepth d and piecewise linear gene expression functions f; in a com-
s pletely unsupervised manner using an interpretable deep learning model. Specifically, GASTON trains
s a neural network to learn a composite function f o d(x,y) from spatial coordinates to gene expression
ws features, where the isodepth d(x, y) corresponds to an interpretable hidden layer of the network (Figure
w7 1B). GASTON then uses segmented regression [83, 3, 7] to learn the spatial domains R, as well as the
ws parameters a, ff of the piecewise linear expression functions f; for each gene g. We demonstrate below
o that GASTON’s interpretable approach uncovers meaningful spatial domains (Figure 1C), and continuous
no gradients and discontinuities in gene expression (Figure 1D) and cell type composition (Figure 1E) across
m  awide range of SRT technologies and biological systems including the brain and the tumor microenviron-
12 ment (Figure 1F).
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Figure 1: GASTON, an interpretable deep neural network, learns the topography of a tissue. (A)
GASTON takes in spatially resolved transcriptomics (SRT) data from a tissue slice and outputs the isodepth,
a coordinate describing a topographic map of the tissue slice, with contours of constant isodepth in gray
and spatial gradients shown as streamlines. (B) GASTON trains a deep neural network to predict gene
expression from spatial coordinates, where the isodepth is the value of an interpretable hidden layer of the
trained neural network. The isodepth learned by GASTON enables many downstream tasks including: (C)
identification of spatial domains, or tissue regions characterized by different cell type composition and gene
expression patterns; (D) identification of genes with continuous gradients and/or discontinuous variation
in expression as a function of isodepth; (E) modeling of variation in cell type composition as a function of
isodepth; and (F) analysis of continuous gene expression gradients in the tumor microenvironment.
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i 2.2 GASTON recapitulates spatial organization in mouse and human brain slices

s We first used GASTON to learn the isodepth d and the spatial gradients Vd in a tissue slice from the mouse
ns  cerebellum where the expression of 23,096 transcripts at 9,985 spatial locations was measured using the
6 Slide-SeqV2 platform [116, 127]. The learned isodepth d provides a “topographical map” of the layered
17 geometry of the cerebellum, including the boundaries of distinct layers of the cerebellum, with the depth
ns  within each layer scaled to approximate ym (Figure 2A, Methods). The spatial expression gradients Vd are
1o perpendicular to the cerebellar layers (contours of constant isodepth) and indicate the spatial direction of
10 maximum change in gene expression.

121 GASTON divides the tissue into four contiguous spatial domains, which are visually consistent with
122 the four distinct layers of the cerebellum - the oligodendrocyte layer, the granular layer, the Purkinje-
13 Bergmann layer, and the molecular layer - that were identified in prior imaging studies [116, 26] and SRT
s analyses [116, 19, 18] (Figure 2B). We compared the spatial domains learned by GASTON to those identified
15 by Non-negative Spatial Factorization (NSF) [135], SpaGCN [58], and SpiceMix [24] (Figure 2C-E), three
s recent methods that showcase the major approaches currently used to model local spatial correlations in
17 spatial transcriptomics data: Gaussian processes (GPs), graph convolutional networks (GCNs), and hidden
s Markov random fields (HMRFs), respectively. We observed that GASTON’s spatial domains have much
129 larger spatial coherence [159] compared to the other methods (Figure 2F), showing that the domains iden-
o tified by GASTON better align with the structured geometry of the cerebellum [140]. Next, we compared
1 the spatial domains to the cell types reported in the original publication of the data (Figure 2G). These cell
1w types were obtained from RCTD [19], a method which performs cell type deconvolution using a reference
113 SCRNA-seq dataset and does not take spatial information into account. The GASTON, SpaGCN, and NSF
14 spatial domains have similar agreement with the cell types inferred by RCTD and with each other, while
s the SpiceMix spatial domains have low agreement with the RCTD cell types and the other methods (Figure
s 2H). These results demonstrate that the global model of spatial variation used in GASTON identifies more
1w spatially coherent spatial domains than existing methods while still preserving cell type information.

138 A key distinguishing feature of GASTON is that it learns the isodepth d, which provides a coordinate
1 to analyze the continuous variation in cell types within and across the layers of the cerebellum. Such
w continuous variation is not modeled by the three methods above nor by the numerous other methods that
wr divide a tissue slice into spatial domains, e.g. [168, 32]. We find that the proportion of cell types varies
w2 considerably as a function of the isodepth (Figure 2I). First, we observe that oligodendrocytes and granule
13 cells have large and nearly constant proportion throughout the range of isodepth d that corresponds to
s the named layers. Moreover, there is a sharp transition in proportion at the isodepth value that GASTON
us marks as the boundary between these layers, indicating that the learned isodepth d and spatial domains
us are accurately separating the oligodendrocyte and granule layers.

147 In contrast, the proportion of Purkinje cells and Bergmann glia exhibit spatial variation with the
us Purkinje-Bergmann layer. Purkinje cells are concentrated at the start of the layer (small isodepth), while
s  the Bergmann glia peak in proportion inside the layer and are present over a wider range of isodepths
1o (Figure 2J). These results agree with prior imaging and microscopy-based studies which show that Purk-
151 inje cells form a “monolayer” in the cerebellum, i.e. a layer with single-cell depth [170, 126, 13] while the
152 Bergmann glia do not form a monolayer but are more diffusely spread out across the Purkinje-Bergmann
153 layer [5, 72]. Interestingly, previous studies have found that the Bergmann glia form a monolayer during
154 the development of the cerebellum [68, 54], and thus the observed arrangement of Bergmann glia here
155 could indicate that the spatial arrangement of Bergmann glia changes after development. We also observe
156 that the Bergmann glia are closer to the molecular layer of the cerebellum compared to Purkinje cells,
157 which agrees with previous studies on cerebellar organization [115].

158 We emphasize that GASTON learns the isodepth de novo and in an unsupervised manner. In contrast,
159 existing approaches for learning depth or depth-like measurements either require prior anatomical knowl-
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Figure 2: Spatial gradients learned by GASTON recapitulate the spatial organization of the mouse
cerebellum. (A) The isodepth d(x, y) and spatial expression gradients Vd, shown as streamlines, learned
by GASTON on Slide-SeqV2 data from the mouse cerebellum [18]. Gray curves denote contours of equal
isodepth. (B-E) Spatial domains (layers) Ry, . . ., Ry identified using (B) GASTON, (C) Non-negative Spatial
Factorization (NSF), (D) SpaGCN, and (E) SpiceMix. The spatial domains are colored according to the most
prevalent RCTD cell types in the domain. (F) Spatial coherence score of spatial domains identified by each
method. (G) Layer-specific cell types identified by RCTD. (H) F-measure between spatial domains identi-
fied by GASTON, NSF, SpaGCN, SpiceMix, and layer-specific cell types identified by RCTD. (I) Proportions
of layer-specific cell types as a function of the isodepth d. Dashed lines indicate boundaries of GASTON
spatial domains. (J) Layout of granule (green), Purkinje (red), and Bergmann (purple) cells as a function
of isodepth near the Purkinje-Bergmann layer of the cerebellum.
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o edge [83, 84], which is difficult to obtain for a complex tissue like the cerebellum, or use scRNA-seq-based
61 trajectory inference approaches which do not learn a spatially continuous measurement (see comparison
12 to SpaceFlow [113] in Supplement C, Figure S1).

163 As additional validation, we evaluated GASTON using SRT data of the human dorsolateral prefrontal
s cortex (DLPFC) [89]. GASTON more accurately identified the manually annotated layers of the DLPFC
s compared to two graph neural network approaches: SpaGCN [58] and STAGATE [32] (Figure S3). More-
166 over, GASTON has comparable performance to Belayer [83], which previously achieved state-of-the-art
17 performance in DLPFC layer identification using prior annotation on the layer boundaries. In contrast,
s GASTON, an unsupervised algorithm, achieves similar performance without any no prior knowledge. See
10 Supplement D for details.

170 These analyses demonstrate that the isodepth d learned by GASTON provides a powerful computa-
1 tional approach for modeling the spatial organization of cells and cell types in complex biological tissues.

2 2.3 Continuous and discontinuous spatial variation in gene expression

3 We next investigated whether GASTON identifies biologically meaningful spatial patterns of gene expres-
s sion in sparse SRT data, particularly in low coverage Slide-SeqV2 data (median ~ 500 UMIs per spatial
s location [127]) where such patterns may not be apparent. For each gene g, GASTON learns a piecewise
76 linear function hy(d) of the isodepth d that models both continuous variation in expression within or
177 across spatial domains and sharp discontinuities in gene expression between adjacent spatial domains.
s These learned gene expression functions (Supplementary Table) indicate genes that have spatially varying
179 expression patterns. For example, SBK1 - reported to be a marker gene of Purkinje cells [71] — has partic-
1w ularly sparse expression in the Slide-SeqV2 cerebellum tissue, with only 15% of all spatial locations having
11 non-zero UMI count, and only 2% of spatial locations in the GASTON-estimated Purkinje-Bergmann layer
2 having UMI count > 1. (Figure 3A). By aggregating expression across contours of constant isodepth (Fig-
13 ure 2A), GASTON learns a piecewise linear gene expression function for SBK1 that peaks in the Purkinje-
s Bergmann layer and exhibits continuous variation in the granule layer as a function of isodepth (Figure
s 3B). The corresponding 2D expression function clearly demarcates the Purkinje-Bergmann layer (Figure
s 3C) compared to the sparse expression values (Figure 3A).

187 The gene expression functions learned by GASTON vyield a substantially better predictor of known
s marker genes in the cerebellum than existing methods for identifying spatially variable genes (SVGs) or
w9 differentially expressed genes (DEGs). Specifically, by ranking genes according to a measure of the variance
wo  of the GASTON expression function across spatial domains (Methods), GASTON achieved notably higher
w1 performance (AUPRC ~ 0.31) in the identification of marker genes compared to HotSpot [31]; trendsceek
w2 [35]; SpatialDE [132]; SPARK-X [130, 171]; C-SIDE [18]; and SpaGCN [58] which have AUPRC ranging
w3 from 0.07 to 0.25 (Figure 3D). A major reason for GASTON’s improved performance is because many
wa  of the other methods test only whether the expression of each gene varies in 2D space, and are unable
ws  to distinguish between different types of continuous and discontinuous variation in spatial expression.
ws In contrast, GASTON’s piecewise linear gene expression function explicitly models both continuous and
w7 discontinuous variation in expression. We highlight two genes ranked highly by GASTON but not by
ws other methods: SBK1, described previously, and FRMPD4. FRMPD4 is not a known marker gene but has
ws  high expression in the molecular layer (Figure 3E). Recent studies report that the FRMPD4 protein regulates
20 neurons in the molecular layer, with mutations of FRMPD4 causing intellectual disabilities [105].

201 As another demonstration of the utility of the isodepth d learned by GASTON, we used the isodepth
22 as a covariate for C-SIDE [18], which identifies cell type-specific differentially expressed (DE) genes from
23 SRT data. This variation of C-SIDE, which we call C-SIDE-iso, identifies a substantially different set of
20 DE genes compared to the original C-SIDE, with only a 10% overlap between the DE genes identified
25 by both approaches. C-SIDE-iso achieved better performance than the original C-SIDE in marker gene
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Figure 3: GASTON reveals continuous and discontinuous spatial variation in gene expression
in the mouse cerebellum. (A) SBK1 expression, shown in log counts per million (CPM). (B) Isodepth
versus expression for SBK1. Lines denote piecewise linear function h,(d) learned by GASTON. (C) SBK1
expression function f(x, y) learned by GASTON. Curves denote contours of constant isodepth d. (D) Com-
parison of GASTON and several existing methods in marker gene identification, quantified using the area
under precision-recall curve (AUPRC) and a list of known cerebellum marker genes [40, 71, 118, 69]. trend-
sceek™ uses the Seurat [50] implementation and C-SIDE-iso runs C-SIDE using the isodepth d learned by
GASTON as a covariate. (E) Isodepth versus expression for FRMPD4 which was ranked highly by GASTON
as a marker gene in (D). (F) (Left) Isodepth versus expression for CALB1, which has (Right) granule-
attributable intradomain variation since the expression function restricted to granule cells has large slope.
(G) (Left) Isodepth versus expression for SECISBP2L which has (Right) oligodendrocyte-attributable in-
tradomain variation since the expression function restricted to oligodendrocyte cells has large slope. (H)
SECISBP2L expression shown in log CPM. (I) SECISBP2L expression function f(x,y) learned by GASTON
in the GASTON-inferred oligodendrocyte layer. (J-K) Isodepth versus expression for (J) CAMK2B and (K)
CAMK 1D which have (Left) intradomain variation in the Purkinje-Bergmann layer and molecular layer,
respectively, that is (Right) not attributable to cell type, as the expression functions for the most abundant
cell types in the respective layers have zero slope.
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s identification (Figure 3C), demonstrating the advantages of the isodepth d. Nevertheless, unlike GASTON,
27 C-SIDE-iso cannot identify spatial domains and thus cannot test for changes in expression across different
s spatial domains, and consequently C-SIDE-iso has lower performance than GASTON in identification of
20 marker genes (Figure 3C).

210 In addition to marker gene identification, the piecewise linear expression functions learned by GASTON
an reveal distinct spatial patterns of gene expression including discontinuities in expression — i.e. large dif-
a2 ferences in expression between adjacent spatial domains — or continuous intradomain variation — i.e. a
23 large slope S of the piecewise linear expression function within a spatial domain (Methods). GASTON
24 identifies 513 spatially varying genes with either discontinuities or intradomain variation (Figure S2A).
us  Approximately half of these genes have discontinuities in expression, indicating that a gene is selectively
26 expressed or not expressed within cells in a specific spatial domain. For example, GASTON finds that
27 CPLX2 has discontinuities in expression at the boundaries of the granule layer, which matches prior stud-
zs  ies showing that large expression of CPLX2 in granule cells suppresses differentiation pathways [155]
a9 (Figure S2B). Furthermore, more than 60% of the spatially varying genes identified by GASTON have con-
20 tinuous intradomain variation (Figure S2A), indicating that continuous variation is fairly common in the
o cerebellum. This observation may explain why SpaGCN, whose clustering algorithm assumes there is no
22 continuous variation in gene expression, is less accurate in resolving the layers of cerebellum layers (Figure
23 2D).

2 Continuous intradomain variation in gene expression may be due to a continuum of cell states within
»s  a cell type, continuous variation in the proportion of cell types in a tissue, or other causes [160]. We
26 evaluated whether the intradomain variation identified by GASTON was attributable to the annotated cell
27 types in each domain, which distinguishes whether there is (1) a spatial component in the continuum of
2s  cell states within a cell type [160] or (2) spatial variation in either the proportion of cell types or other
2 causes (Methods). Specifically, we say that intradomain variation is cell type-attributable if the slope S,
20 estimated only from cells annotated as cell type ¢ has magnitude |f.| close to or larger than the magnitude
21 |f| of the slope f estimated from all cells (Methods). We find that 217 of the 338 genes that GASTON
a2 reports to have intradomain variation have cell type-attributable intradomain variation (Figure S2A).

233 The cell type-attributable intradomain variation identified by GASTON reveals important cell type-
24 specific processes including neuronal firing and differentiation. For example, CALB1, which is involved
25 in calcium binding, has granule-attributable intradomain variation in the granule layer (Figure 3F). This
zs granule-attributable CALB1 continuous variation identified by GASTON provides a potential molecular ex-
27 planation for the reported spatial gradients in neuronal firing thresholds for granule cells in the granular
23 layer [128]. A second example is SECISBP2L, which exhibits large oligodendrocyte-attributable intrado-
2» main variation in the oligodendrocyte layer (Figure 3G). SECISBP2L was recently shown to be specifically
20 expressed in differentiating oligodendrocytes, with SECISBP2L more highly expressed in less mature oligo-
2 dendrocyte cells [29]. The observed decrease in SECISBP2L expression as a function of isodepth suggests
22 that oligodendrocyte differentiation may occur along the isodepth axis, i.e. along the spatial gradients
3 Vd, in the oligodendrocyte layer (Figure 2A). Notably, continuous variation in SECISBP2L expression in
24 the oligodendrocyte layer is not apparent from individual expression values per spot (Figure 3H), but is
us revealed by the expression function learned by GASTON, which pools expression values along contours
us  of constant isodepth (Figure 3I).

247 Approximately 35% of the intradomain variation in gene expression identified by GASTON is not at-
25 tributable to cell type (Figure S2A). For example, CAMKZ2B, which is overexpressed in granule cells, has
2o large intradomain variation in the Purkinje-Bergmann layer (Figure 3], left). However, this intradomain
250 variation is not attributable to the Purkinje or Bergmann cell types, as the Purkinje- and Bergmann-specific
1 expression functions for CAMKZB have zero slope (Figure 3], right). Instead, the intradomain variation of
12 CAMKZBiis likely attributable to the large decrease in proportion of granule cells in the Purkinje-Bergmann
»3 layer as a function of isodepth (Figure 2I). CAMK1D, a calcium-dependent protein kinase whose aberrant
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¢ behavior has been linked to Alzheimer’s disease [47] and glioma [63], exhibits intradomain variation in
»s  the molecular layer (Figure 31, left) that is not attributable to either MLI1 or MLI2 neurons (Figure 31, right).
»6 This variation could be attributable to other causes such as cellular interactions or neuronal firing.

257 These analyses demonstrate that GASTON’s combined model of continuous and discontinuous varia-
s tion of gene expression reveals biologically meaningful marker genes and continuous gradients of expres-
20 sion not found by existing approaches.

w 2.4 Spatial gradients in the tumor microenvironment

21 We next used GASTON to investigate spatial gene expression patterns in the tumor microenvironment
2 (TME). The TME is strongly correlated with tumor development and prognosis [43], but is challenging
23 to quantify accurately without spatial information [157]. However, existing analyses of tumor SRT data,
w e.g. [12, 36, 62], examine only differentially expressed (DE) genes or pathways between the tumor and
25 surrounding stromal regions. We hypothesized that GASTON’s ability to quantify continuous variation
xs  might reveal more subtle variation in gene expression relative to the boundary of the tumor.

267 We applied GASTON to SRT data from a colorectal (CRC) tumor tissue slice (Figure 4A) where the
x5 expression of 36,601 transcripts in 3,900 spots was measured using the 10x Genomics Visium platform
20 [149]. GASTON identifies five spatial domains (Figure 4B) that are visually distinct in the H&E-stained
a0 image (Figure 4A), including the tumor (domain 1), the tumor-adjacent stromal region (domain 2), and
o other stromal regions not directly adjacent to the tumor (domains 3-5). In contrast, the the published
a2 analysis of this data performed unsupervised clustering of spots based on gene expression alone [121] and
13 was unable to distinguish between the different stromal regions of the the tissue slice (Figure S4).

m We analyzed spatial variation in the TME by examining the expression of each gene as a function of
zs  the isodepth d, which varies smoothly from the tumor boundary to the interior (Figure 4C, Supplementary
26 Table). GASTON identifies 1,572 spatially varying genes in the tumor and adjacent stromal domains which
27 exhibit one of seven different spatial expression patterns: intratumoral variation, a discontinuity at the
zs tumor-stroma boundary, intrastromal variation, or any combination of these (Figure 4D). For six of the
v seven spatial gene expression patterns, the genes exhibiting the spatial pattern are enriched (p < 0.01,
20 GSEA [74]) for cancer hallmark gene sets (Figure 4E). We further group the genes in the six enriched
1 spatial gene expression patterns found by GASTON into three different types: (1) Type I genes, which
22 have intratumoral variation and no discontinuity in expression; (2) Type II genes, which have intrastromal
23 variation and a discontinuity at the tumor-stroma boundary; and (3) Type III genes, which have either
14 intrastromal variation or discontinuity at the tumor-stroma boundary but no intratumoral variation.

285 The three types of spatially varying genes identified by GASTON reflect distinct biological processes
16 occurring in the TME. The 742 Type I genes (intratumoral variation) are enriched for oxidative phospho-
27 rylation and cholesterol homeostasis gene sets; moreover, 39 of the 42 Type I genes involved in oxidative
s phosphorylation or cholesterol homeostasis have positive slopes within the tumor domain, indicating an
2 increase in expression from the margin to the interior of the tumor. Thus, Type I genes likely indicate
»0 an increasing gradient of metabolic activity from the tumor boundary to the interior [74]. For example,
21 COX7B (Figure 4F) is a Type I gene in the oxidative phosphorylation pathway and a component of the
22 cytochrome c oxidase protein complex which transfers electrons to oxygen in the electron transport chain
»3 and leads to ATP synthesis [144]. Several other genes in this complex are also Type I genes, including
»  COX17, COX7A2, COX6C, and COX8A. Another Type I gene is Stearyl-CoA desaturase (SCD, Figure 4G),
»s a fatty enzyme that is key component of lipid metabolism [122], with SCD deficiency being linked to re-
»s duced lipid synthesis and other poor health outcomes [38]. Interestingly, the expression of both SCD and
»7  COX7B are directly affected by oxygen availability [151], with lower expression in hypoxic conditions. The
»s higher expression of these genes in the interior of the tumor suggests that the interior of this CRC tumor
29 slice is more oxygenated than the boundary. This observation is consistent with a previous clinical study
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Figure 4: GASTON identifies spatial gene expression patterns in the tumor micro-environment.
(A) H&E stain of a 10x Genomics Visium colorectal tumor sample. (B) Spatial domains learned by
GASTON. Domains 1 and 2 are labeled as tumor and tumor-adjacent stroma, respectively, based on the
histology image in (A). (C) Isodepth d and spatial gradients learned by GASTON restricted to tumor and
tumor-adjacent stromal domains. (D) GASTON identifies 986 spatially varying genes which are classi-
fied into three spatial expression patterns: genes with intrastromal variation in expression; genes with a
discontinuity in expression at the tumor-stroma boundary; and genes with intratumoral variation in ex-
pression. (E) Enrichment for hallmark cancer gene sets reported by gene set enrichment analysis (GSEA)
for six of the seven spatial expression patterns in (D). The spatial expression patterns are grouped into
three types according to expression pattern and enriched cancer pathways. (F-I) Isodepth d versus expres-
sion for Type I genes (F) COX4l1 and (G) SCD, and Type II genes (H) ACTA2 and (I) TAGLN. (J) COL1A2
expression shown in log CPM. (K) Expression versus isodepth for Type II gene COL1A2. (L) GASTON
COL1A2 expression function shows a gradient of expression at the tumor-stroma boundary.
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s0 which found that that stage IV CRC tumors may have lower hypoxia response — and thus higher oxygen
s availability — in the tumor interior compared to the boundary [2].

302 The 106 Type II genes (intrastromal variation and discontinuity) primarily describe the upregulation
303 of epithelial-mesenchymal transition (EMT) genes immediately outside the tumor boundary. Several stud-
304 ies have shown that upregulation of EMT genes within tumor-associated stromal cells is associated with
w5 aggressive, poor prognosis CRC subtypes [20, 60, 73]. Of the 15 type II genes in the EMT pathway, 14
ws had positive slopes with isodepth in the tumor-adjacent stroma domain, i.e. expression increased closer
57 to the tumor boundary, suggesting that this stage IV colorectal tumor was likely an aggressive subtype.
ws For example, ACTA2 and TAGLN, two genes that were reported to be markers of a subtype of colorec-
s tal cancer-associated fibroblasts with upregulated EMT-related genes [73], have positive slopes and large
s discontinuities at the tumor boundary (Figure 4H, I). GASTON also finds that ACTA2 and TAGLN have
sn  constant, low expression in the tumor region, consistent with previous studies that find no evidence for
sz upregulation of EMT-related genes in CRC tumor cells [20, 60]. The upregulation of EMT genes — such as
s ACTA2 and TAGLN - in tumor-associated stromal cells could be an important mechanism underlying the
su  aggressiveness of this CRC tumor, where these stromal cells may facilitate local invasion and metastasis
a5 [65]. Notably, the overexpression of several Type II genes is concentrated on the right side of the tumor
3.6 boundary (Figure S5A,B), suggesting that the local invasion and metastasis may be localized to a specific
s part of the tumor boundary. We also highlight the Type II gene LGR5, which has large expression at the
s tumor boundary and has been reported to be a potential marker for CRC stem cells [92] (Figure S5C,D).
s The co-expression of LGR5 and ACTA2 / TAGLN suggests a potential interaction between tumor-adjacent
s0 stromal cells and CRC stem cells.

321 We emphasize that the upregulation of EMT genes near the tumor boundary is not readily apparent
s2  from the sparse UMI counts. For example, COL1AZ2 is a Type II gene involved in EMT [146], but the spatial
223 distribution of COL1A2 expression is difficult to discern directly (Figure 4J), with nearly half of all spots
324 having no measured COL1A2 transcripts while only a small fraction of spots (5%) have more than 10 tran-
25 scripts. GASTON aggregates the sparse COL1A2 expression measurements across the contours of constant
ns isodepth and learns a piecewise linear COL1A2 expression function of isodepth (Figure 4K), revealing con-
s tinuous variation in COLIA2 expression. In particular, GASTON finds that COL1A2 expression peaks at
»s the tumor boundary and decays in the interior of tumor and in the tumor-adjacent stroma (Figure 4L). This
s expression pattern is consistent with a recent report demonstrating that COL1A2 expression is lower in
30 primary CRC tumors compared to adjacent stromal tissue [156].

331 The 657 Type III genes (no intratumoral variation) identified by GASTON primarily describe immune
s response in the stroma as well as cell signaling and proliferation in the tumor. For example, THBS1 has
33 a large discontinuity in expression at the tumor-stroma boundary and has high expression in the tumor-
s adjacent stroma (Figure S5E), consistent with reports that THBS1 expression promotes immune cell re-
135 sponse in other cancer types [106, 166]. Another Type III gene, FUCA1, is involved in fucosylation of pro-
16 teins and a member of the p53 signaling pathway [37]. GASTON finds that FUCAT has large, negative slope
s in the stroma region; no discontinuity in expression at the tumor boundary; and constant, low expression
33  in the tumor region (Figure S5F). This spatial expression pattern suggests that FUCA1 is downregulated
s»  in the tumor region, agreeing with several recent studies which found that FUCA1 is downregulated in
s0 highly aggressive and metastatic CRC and breast tumors [16, 99].

341 Overall, the spatial gene expression patterns identified by GASTON suggest that the interior of this
s2 CRC tumor sample is growing slowly — since aerobic metabolism through oxidative phosphorylation in-
s dicates slow cellular growth and proliferation [169] — while the boundary is undergoing EMT to stem-like
s4 states [86]. These features of the tumor interior and boundary indicate a late-stage, vascularized primary
us  tumor with a fully metastatic margin, a characterization which aligns with the tumor’s clinical information
us [149]. Thus, this analysis demonstrates how the gene expression topography learned by GASTON enables
s7 the characterization of the spatial and molecular organization of the TME.
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Figure 5: GASTON reveals variation in cell types and gene expression in the mouse olfactory bulb.
(A) DAPI stain of mouse olfactory bulb [42] produced by [22]. (B) Isodepth d and (negative) spatial gra-
dients —Vd (shown as streamlines) learned by GASTON. Curves denote contours of constant isodepth d.
(C) Spatial domains learned by GASTON and labeled based on annotations in (A). (D) Cell type proportion
as a function of isodepth d. Dashed lines indicate boundaries of spatial domains identified by GASTON.
Most abundant cell types in each spatial domain are highlighted. (E) (Left) Isodepth versus expression for
CCK which (Right) has mitral/tufted-attributable intradomain variation in the glomerular layer (GL) and
external plexiform layer (EPL). (F) (Left) Isodepth versus expression for GAD2 which (Right) has granule-
attributable intradomain variation in the granule cell layer (GCL). (G) (Left) Isodepth versus expression
for DCX which has continuous variation in the rostral migratory stream (RMS) which is (Right) not at-
tributable to cell type, as the expression function for the most abundant cell types have zero slope. (H)
DCX expression shown in log CPM. (I) DCX expression function learned by GASTON.
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us 2.5 Spatial gradients of cell type and gene expression in the mouse olfactory bulb

s Finally, we used GASTON to analyze Stereo-seq [22] data from the mouse olfactory bulb which measures
30 the expression of 27,106 transcripts at 9,825 spatial locations. Stereo-seq achieves single cell spatial res-
31 olution using DNA nanoball patterned array chips, but the data is highly sparse, with a median UMI of
352 less than 350 per location. At the same time, the olfactory bulb has a radial geometry consisting of several
33 concentric layers (Figure 5A), and this geometry provides spatial constraints that may help overcome the
14 severe data sparsity.

355 GASTON learns the radial geometry of the olfactory bulb nearly perfectly, with the isodepth d pro-
16 viding a topographic map that reflects the geometry of the olfactory bulb (Figure 5B). Using the learned
17 isodepth, GASTON divides the tissue into seven contiguous spatial domains (Figure 5C) that visually cor-
33 respond to the seven distinct layers of the olfactory bulb (Figure 5A). In comparison, the spatial domains
3 found by SpaGCN, a method based on a graph convolutional neural network, are less spatially coherent
s0  than the GASTON domains and do not reflect the layered geometry of the olfactory bulb. Notably, SpaGCN
s poorly resolves the innermost rostral migratory stream (RMS) layer (Figure S6A,B).

362 The olfactory bulb is one of two regions in the brain where adult neurogenesis occurs, with immature
33 neurons migrating outward from the RMS (large isodepth) towards the outermost olfactory nerve layer
3¢ (ONL, small isodepth) [90, 80]. Thus, in this tissue, the isodepth d learned by GASTON provides a measure
35 of potency in the olfactory bulb, and the negative gradients —Vd show the spatial trajectories of neural
s maturation and migration (Figure 5B).

367 GASTON reveals substantial variation in cell type composition as a function of isodepth d in the ol-
s factory bulb (Figure 5D). While the cell type composition of the different layers of the olfactory bulb is
30 well-studied, GASTON uncovers the spatial arrangement of cell types within each layer which has not
sn  been fully characterized in the literature [94]. For example, while previous studies have found that both
s mesenchymal cells and olfactory ensheathing cells (OECs) are in the outermost olfactory nerve layer (ONL)
s [75], GASTON identifies that these two cell types have different spatial arrangements in the ONL: mes-
w3 enchymal cells are concentrated on the outer edge of the layer (isodepth d < 50) while OECs peak at a larger
s isodepth (d = 85) and are spread more diffusely throughout the ONL. This arrangement of mesenchymal
w5 cells aligns with studies showing that ONL neuron axons grow towards mesenchymal cells during de-
we velopment [33, 109], as axons in the olfactory bulb point outwards [75], i.e. towards small isodepth. In
s7  the interior of the olfactory bulb, GASTON finds that immature neurons are most prevalent in the rostral
ys migratory stream (RMS), with the proportion of immature neurons increasing sharply with isodepth, in
s agreement with studies showing that neurogenesis occurs starting from the RMS interior [90, 80].

380 The isodepth d also distinguishes different cell types or cell states with similar gene expression profiles.
s For example, mitral cells and tufted cells are grouped together in the single-cell reference dataset [133] used
32 for cell type annotation, and also by SpaGCN (Figure S6A), due to the similar gene expression profiles
33 of these cell types. However, GASTON reveals that the proportion of mitral/tufted cells peaks at two
34 different isodepth values, d = 350 and d = 600, with a larger proportion of mitral/tufted cells at the second
35 peak versus the first peak (Figure 5D). This suggests that the mitral/tufted cells at isodepth d ~ 350 are
16 tufted cells, which previous studies have shown are spread diffusely in the external plexiform layer (EPL)
7 [94], while the mitral/tufted cells at isodepth d ~ 600 are mitral cells, which have been shown to form a
s  monolayer in the mitral cell layer (MCL) [41]. GASTON also distinguishes between different granule cell
10 states. While there is a single category of granule cells in the single-cell reference dataset [133], previous
10 studies have shown that there are morphologically distinct granule cell subtypes in different layers of the
w olfactory bulb [94]. GASTON shows that while granule cells are most prevalent in the granule cell layer
3 (GCL), there is a small population of granule cells in the EPL and in the MCL with roughly constant cell
w3 type proportion (Figure 5D). The spatial segregration of these two granule cell populations suggests that
w4 the granule cells in the EPL and MCL may have a different cell state compared to granule cells in the GCL.
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»s Notably, neither the distinction between mitral and tufted cells nor the prevalence of immature neurons
»s in the interior of the bulb are apparent using an alternative 1-D coordinate computed by SpaceFlow [113]
w7 that is based on diffusion pseudotime [49] (Supplementary Section C and Figure S6).

308 GASTON identifies 704 genes with spatially varying expression — i.e. genes with either discontinuous
3 expression or intradomain variation in expression — in the olfactory bulb (Figure S7, Supplementary Table).
wo  These genes distinguish different cell types and states in the olfactory bulb and reveal potential molecular
w1 mechanisms for biological phenomena. We highlight three examples here. CCK, which is reported to be a
w2 marker for a specific subtype of tufted cells [163, 131, 59], has mitral/tufted-attributable intradomain varia-
w3 tion in the glomerular layer (GL) and EPL (Figure 5E). As noted above, the mitral/tufted cells in the GL and
w4 EPL are likely tufted cells, indicating that the continuous variation in CCK expression is likely tufted cell-
ws attributable and not mitral cell-attributable. GAD2, a marker gene for neurons in the GABAergic systems
ws — the main inhibitory neurotransmitter system in the brain [8, 14, 10] - has granule-attributable intrado-
w7 main variation in the GCL (Figure 5F). Granule cells are known to be GABAergic [94], suggesting that
ws the granule-attributable variation identified by GASTON may play a role in the GABAergic system. DCX
w  (doublecortin) has large intradomain variation in the RMS (Figure 5G), consistent with reports [39, 45]
a0 that DCX is a marker gene for immature neurons in the RMS (Figure 5D). The continuous variation in
an  DCX expression is not attributable to cell type, and instead is likely due to the increasing proportion of im-
a2 mature neurons in the RMS as a function of isodepth (Figure 5D). While the intradomain variation in DCX
a3 expression is challenging to observe from the sparse Stereo-seq UMI counts (Figure 5H), GASTON learns a
au DCX expression function that pools expression across isodepth and uncovers the continuous intradomain
a5 variation in DCX (Figure 5I).

s 3 Discussion

a7 Accurate models of spatial gene expression variation within tissues are critical for determining the spatial
a5 organization of cell types and for defining processes of differentiation and intercellular communication
a9 that modulate cell states within spatial niches. Spatial variation in gene expression includes both discon-
w0 tinuous changes in gene expression across the different spatial domains of a tissue, as well as continuous
a2 variation within and across spatial domains due to variation in cell state or other causes. While numer-
w22 ous computational methods have been developed to identify spatial domains by modeling discontinuous
w23 changes in gene expression, few methods are able to identify spatial domains and simultaneously model
w24 continuous variation within the domains. Moreover, to our knowledge no existing methods perform this
«5 simultaneous identification in an unsupervised and biologically interpretable manner.

a26 In this work, we introduce the isodepth, a coordinate that models both the arrangement of spatial do-
w7 mains within a tissue and the relative position of spatial locations with each domain. The isodepth gives
a2 a topographic map of a tissue slice, analogous to elevation in a map of the Earth’s surface. The gradient
a9 of the isodepth describes spatial gradients, or the spatial directions of maximum change in gene expres-
w0 sion in a tissue. We derive an unsupervised and interpretable deep learning algorithm, GASTON, that
a1 learns the isodepth, spatial gradients, and piecewise linear gene expression functions of the isodepth. We
a2 demonstrate that the isodepth and spatial gradients learned by GASTON improve detection of spatial do-
.3 mains and spatially varying marker genes, and enable the identification of spatial gene expression patterns
s34 linked to important biological processes including differentiation and communication in the brain as well
a5 as hypoxia in the tumor microenvironment.

436 A key advantage of the isodepth computed by GASTON is that it provides a global model of spatial gene
w7 expression. Just as one can climb to the same elevation on two different mountains, so too can the isodepth
as  take on the same value at two spatially separated locations in the same spatial domain, e.g. the Purkinje-
s Bergmann layer in the mouse cerebellum (Figure 2B). This global model presents a stark departure from

15


https://doi.org/10.1101/2023.10.10.561757
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.10.561757; this version posted October 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

wo nearly all existing SRT methods which model only local spatial correlations. Using the isodepth, GASTON
s is able to model “long-range” spatial correlations, i.e. correlations between distant spatial locations, and
w2 pool information across spatially distant locations on the same isodepth contour. As we demonstrate,
w3 incorporating these long-range dependencies leads to improved inference of spatial domains and marker
444 gENES.

a5 On a smaller scale, the isodepth learned by GASTON provides a coordinate for quantifying variation
wes In gene expression in the tumor microenvironment (TME). Just as single-cell transcriptomics of tumor
w7 samples led to the identification of numerous clinical and molecular biomarkers [158], we anticipate that
ws  spatial variation in gene expression in the TME will also have high clinical relevance. For example, we
ws  showed that GASTON extracts gradients in gene expression that correlate with metabolism, the epithelial-
0 mesenchymal transition (EMT) and other hallmarks of the TME which may translate to novel biomark-
i1 ers for prognostics, treatment outcome prediction, and personalized medicine [28, 57, 44]. Additionally,
2 GASTON introduces a new axis of tumor classification, in which tumors may be further characterized by
ss3 the variation of distinct tumor processes across spatial gradients; for example, some tumors may have an
4 increasing gradient of aerobic metabolism towards the tumor center (e.g. Figure 4) while other tumors
s may have a decreasing gradient. Another potential clinical implication is that the spatial gradients learned
sss by GASTON could reveal spatial trajectories of metastatic migration, similar to how the spatial gradients
w7 learned by GASTON in the olfactory bulb show spatial trajectories of neural migration (Figure 5B). For
sss  example, the variation of EMT genes along the spatial gradients near the tumor boundary may reveal the
19 molecular underpinnings of the margination process in which tumor cells migrate towards a vascular wall
w0 before metastasis [142, 165].

461 The inference of continuous variation in transcriptomic space, i.e. trajectory inference or pseudotime
w2 approaches, is widely applied in scRNA-seq analysis [49, 137, 107, 129]. Recently, there have been some
w3 attempts to adapt these approaches to SRT data [113, 51, 97, 85]. However, continuous variation in tran-
w4 scriptomic space is not equivalent to continuous variation in physical space that is modeled by isodepth.
s Indeed we find that existing approaches based on diffusion pseudotime [49] learn a coordinate that is
ws nearly constant in each spatial domain, and thus obscures spatial variation in gene expression and cell type
w7 proportions within spatial domains (Figure S6). This limitation of existing scRNA-seq-based approaches
ws underscores the need for methods like GASTON that model continuous spatial variation.

469 We note that the current derivation of isodepth by GASTON relies on two simplifying assumptions that
a0 may require adjustment for specific applications. First, we assume that all (spatially varying) genes share
an  the same vector field of spatial gradients. Thus, GASTON will not automatically find multiple directions of
a2 spatial variation, where each direction corresponds to a subset of genes. For these situations, it might be
a3 appropriate to learn the isodepth using a restricted set of genes or a smaller region of a tissue slice; e.g. one
w4 may apply GASTON to spatial domains or gene sets obtained from a standard SRT or single-cell clustering
a5 algorithm. Second, we assume that the shared spatial gradient vector field is conservative, meaning that
w6 it does not “rotate” in space (i.e. curl(v) = 0). GASTON may not be applicable to tissue slices where this
a7 assumption is violated, although we are not aware of any such biological examples. An important next step
w5 would be to develop a framework for learning spatial gradients under relaxed mathematical assumptions,
a9 potentially using neural fields or transformers which have been used to learn vector fields in other areas
w0 of biology and machine learning [110, 152, 23].

481 We envision that the simplicity and generality of both the mathematical framework of the isodepth and
ss2 the GASTON algorithm can be readily extended in several directions. First, the piecewise linear model of
3 gene expression can be replaced by more complicated functions. While more complicated functions may
w4 be prone to overfitting with sparse SRT data, they may be appropriate for targeted SRT technologies —
w5 e.g. MERFISH [91], 10X Genomics Xenium [61], STARMap [143, 162], or NanoString CosMx [52] — that
s have higher detection efficiency. Second, it would be desirable to extend GASTON to identify 3-D spatial
w7 gradients, e.g. by utilizing spatial alignment tools [159, 77, 67, 64], as well as spatiotemporal gradients
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as  [114]. A third direction is to extend GASTON to other molecular modalities such as chromatin accessibil-
s ity [164, 119] or protein/metabolite abundance [141, 82], e.g. using recent data on spatial measurements of
w0 ribosome-bound transcripts [161]. Fourth, there has been much work on quantifying transcriptomic vector
w1 fields by computing RNA velocity from ratios of spliced/unspliced RNA in single-cell RNA-seq data (e.g.
w2 [108, 70, 46, 11]) and it would be interesting to understand how RNA velocity varies along the spatial gra-
w3 dients learned by GASTON. Similarly, it would also be useful to understand how local microenvironments
w4 or cellular interactions, e.g. as learned by [150, 112, 30], vary along the GASTON spatial gradients. Finally,
w5 several recent papers have studied how genetic variants affect single-cell gene expression measurements,
ws 1.e. single-cell eQTLs (expression quantitative trait loci) [27, 95] and it would be useful to understand how
w7 genetic variants contribute to the continuous and discontinuous spatial gene expression patterns found by
w3 GASTON.

199 In summary, the topographic maps and gene expression functions computed by GASTON provide a
soo novel and general framework for analyzing continuous and discontinuous spatial variation in gene expres-
s sion from spatial sequencing data across many biological systems.
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s 4 MethOdS

s 4.1 Modeling gene expression and spatial gradients

soe We derive a model for spatial domains and gradients of gene expression in spatially resolved transcrip-
ss  tomics (SRT) data. SRT technologies measure the expression of G genes in a tissue slice T C R?, which
s we model with a gene expression function f : T — RC. The vector f(x,y) = (fi(x,v), ..., fo(x,y))T gives
s the (normalized) expression of each gene at spatial location (x, y) in the tissue slice T, with the g-th com-
s ponent function f; : R* — R describing the expression of a single gene g. For example, a gene g whose
s00  expression is constant across the tissue slice T has a constant expression function f;(x,y) = ¢, while a
s gene that is differentially expressed in a region R C T might have the expression function f;(x,y) =
s ¢ Lmy)ery + ¢ Toyer)-

512 We model each expression function f; as a piecewise continuous function. Piecewise continuous func-
s13 tions model continuous spatial variation in gene expression while also allowing for discontinuities in
s expression due to sharp changes in cell type composition or other factors. We assume the expression
s functions f; have the same pieces for all genes, and thus each expression function f; has the form:

P
folx.y) = Z Jor(6:9) - T{(xy)ery)- 2)
p=1
s where f, : R® — R are continuous functions and Ry, ..., Rp C R? are a partition of the tissue slice T into

si7 P disjoint regions which we call spatial domains. Note that the spatial domains R, need not be contiguous,
sis - and thus this model allows for physically separate locations within the tissue slice to contain a similar
siv - composition of cell types.

520 A spatial gradient describes how gene expression varies across the 2D tissue slice T. For a single gene
21 g, the spatial gradient is given by the gradient V f; of the expression function f;. More generally, the rows
s of the Jacobian matrix J(f) = [V fi -V f(;] T € RY*? of the gene expression function f give the individual
s spatial gradient of each gene at each spatial location (x, y) € T. Note that the rank of the Jacobian matrix
s4  J(f) is at most two.

525 Estimating the spatial gradients V f; for every gene g from SRT data from a single tissue slice is difficult
s2s  due to the limited spatial resolution and limited sequence coverage (e.g. sparsity) of the data. To avoid
s overfitting, we make some assumptions on the structure of the spatial gradients. Specifically, we assume
s that the Jacobian matrix J(f) has rank one at every spatial location (x,y) € T, i.e. the rows Vf;(x, y) of the
s» Jacobian matrix J(f)(x,y) are linearly dependent for every spatial location (x,y) € T. This assumption is
s motivated by the observation that spatial expression gradients tend to be correlated; for example, many
s genes have been observed to have expression gradients along the same axes in the brain and liver [21, 9].
s Under this assumption, for each spatial location (x, y) € T there exists a vector v(x, y) € R? such that the
s gradient vector Vf;(x, y) of each gene g is a scalar multiple of the vector v(x, y):

Vfé(x’ y) = ,Bg(x’ y) : V(x’ y) (3)

su  where fy(x,y) : R* — R are scalar functions and v(x, y) is a vector field which we call the spatial gradient
s vector field. Since the expression function f is piecewise continuous, the gradient Vf; of each expression
s3  function f; is also piecewise continuous, and so we may re-write (3) as

P
Vi) = ) B(xy) V(5 Y) - Ly)er, ) (4)
p=1
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sv 4.2 Conservative vector fields and piecewise linear functions

s Equation (4) provides a general model for spatial gradients V f; under a rank-one assumption on the Jaco-
s» bian matrix J(f). However, in practice, it is still difficult to estimate the parameters of (4) from SRT data,
s as we do not observe expression gradients Vf; but only the expression values f;. To derive a model for
sa the expression functions f; while minimizing overfitting, we make three simplifying assumptions on the
s spatial gradient vector field v, spatial domains R,, and scalar functions f,(x, y).

543 First, we assume the spatial gradient vector field v is the gradient of a continuously differentiable, scalar
s function d : R? — R, ie. v = Vd. We call d the isodepth of the tissue slice T. The isodepth d describes
sss  the “topography” of a tissue slice T, analogous to the elevation in a topographic maps of a geographic
s¢s region. In physics, vector fields v that are the gradient of a scalar function d are called conservative vector
se» fields, and the scalar function d is called the potential function as it measures potential energy at different
s locations in space, e.g. a gravitational potential function or an electric potential function [87]. In our
so  setting, the scalar function d measures a “gene expression potential” at different locations in a tissue slice
sso 1. The vector field v being conservative is equivalent to the curl of v being 0 everywhere, i.e. there are no
51 regions of the tissue where the vector field v “rotates”.

552 Second, we model each spatial domain R, as a union of level sets of the isodepth d. Specifically, we
53 assume that each spatial domain R, = {(x,y) : by,—1 < d(x,y) < by} is equal to the set of spatial locations
ssa (x,y) with isodepth d(x, y) in the interval (b,_1, b, ], for some real numbers —co = by < by < --- < bp_; <
555 bp = oco. This ensures that the spatial domains R, do not intersect, and leads to a particularly simple form
sss  for the expression function f; as we show below.

557 Third, we assume that the scalar functions f;(x, y) are constant inside each spatial domain R,; i.e., the
sss  scalar functions By (x,y) = 2521 Bypl{(x.y)er,} are piecewise constant.
559 Under these assumptions, the spatial gradients V f; in (4) are equal to
P
Vig(x,y) = Z Bop - VA, Y) - L(b, <d(x,y)<bp}- (5)
p=1

s Integrating both sides of (5) yields the following closed form for the gene expression function f;:

P
[0y =D (gp+ Bop - A6 Y)) - 1(b,.,<d(xy)<by)» ©)
p=1
s for some constants ay, and S, ,. Combining (6) for all genes g = 1,...,G yields the following expression
s for the gene expression vector f = (f1,..., f5):
P
£(e,y) = D (@ + By - d(x9)) - (b, \<d(xy)<by)» (7)
p=1

s for vectors a, = (agp)gec € RC and B, = (Byp)gec € RE.

564 Thus, under our model, the gene expression function f(x, y) at spatial location (x,y) € T is given by
sss the composition f(x,y) = h(d(x,y)) of the isodepth d and a piecewise linear function h = (hy,..., hg) :
sss R — RE with P pieces and breakpoints by, ..., bp_1:

P
h(w) = > (e + Bpw) - 11, <rwsby)- (8)
p=1
57 The vectors a, and B, are the y-intercepts and slopes, respectively, of the function h in the p-th piece across
ses  all G genes. We call the function h(w) a one-dimensional (1-D) expression function as it is a function of a
se»  single variable w, the isodepth, in contrast to the gene expression function f(x, y) which is a function of
s two spatial variables x and y.
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sn  Long-range spatial correlations and pooling. A major advantage of modeling gene expression as a
s2  function of isodepth is the ability to combine gene expression measurements from distinct spatial locations
s73 - and thus overcome the sparsity of current SRT technologies. Specifically, all spatial locations with equal
s isodepth d have identical gene expression value h(d), and so estimation of h(d) can use all locations on the
si5 contour of equal isodepth. This contour may traverse the entire tissue slice, and need not be a contiguous
s, curve (e.g. Figure 2A). Thus, the isodepth model incorporates “long-range” spatial correlations [101], in
s7 - contrast to many existing algorithms for analyzing SRT data which only incorporate local correlations
s between nearby spots, e.g. using hidden Markov random fields (HMRFs) [168, 34] or Gaussian processes
s (GPs) [135, 132, 130, 171]. Moreover, the isodepth model allows for “pooling” information across spatially
ss0  separated regions of a tissue slice.

581 The isodepth model substantially generalizes the model of layered tissues and “relative depth” in [83]
ss2 which restricted the spatial domains Ry, ..., Rp to be layers satisfying strict topological constraints. In
3 contrast, here there are fewer topological constraints on the spatial domains Ry, .. ., Rp, and we learn the

ssa  spatial domains and isodepth de novo from SRT data without any prior knowledge, as detailed below.

s 4.3 Maximum likelihood estimation

sss We compute the maximum likelihood estimators (MLEs) of the isodepth d and piecewise linear 1-D ex-
ss7 pression function h = (hy, ..., hg) from SRT data. The observed SRT data consists of a transcript count
s matrix A = [a;4] € RNV*G, where a; 4 is the UMI count of gene g in spot i, and a spatial location matrix
s S € RN*2 where each row s; = (x;,y;) € R? is the spatial location of the i-th spot. We define the Spatial
s0 Topography Problem (STP) as the following maximum likelihood estimation problem.

s Spatial Topography Problem (STP). Given SRT data (A,S) and a number P of spatial domains, find a
w2 continuously differentiable function d : R> — R and a piecewise linear function h(w) : R — R with P
93 pieces that maximize the log-likelihood of the data:

G N

argmax Z (Z log I]:"(a,-,g | hg(d(x;, yi)))), )
deC'(R%LR) g=1 \i=1

bi<by<---<bp_q

h:(”ll,...,hG)GL(bl,...,bP_l)

s where C1(R?, R) is the space of continuously differentiable functions from R? toR and L(by,...,bp_1) is the
o5 set of piecewise linear functions with breakpoints by, ..., bp_1.

596 The STP substantially generalizes the L-Layered Problem from our previous work [83], which assumed
7 the isodepth d was given by a piecewise conformal map where the pieces are either bounded by lines or
s0s determined by prior knowledge on the shape of the spatial domains R,.

599 The STP is a challenging non-convex optimization problem over spaces of continuously differentiable
0 and piecewise continuous functions. We solve this optimization problem using deep learning. By the uni-
o versal approximation theorem [56], one can approximate a continuous function d with a neural network.
s2 Moreover, even a piecewise continuous function can be well-approximated by neural networks [79], al-
o3 though it may be computationally intractable to identify the individual pieces of the function [123]. Thus,
s We solve the STP in a two-step approach, where we first learn the isodepth d and then learn the piecewise
s linear expression function h.

«s Step 1. We estimate the isodepth d by solving a modified version of the maximum likelihood problem in
w7 (9) where we parametrize the functions d : R> - Rand h = (hy,...,hg) : R — R with neural networks
s with weights 0 and 6, respectively.
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G N
argmax Z (Z log I]:"(a,-,g | hy (do(xi, yi))g)) . (10)

0.0 g=1 \'i=1

609 The modified problem in (10) is also a non-convex optimization problem for most neural network
s architectures. Nevertheless, by parametrizing the arguments with neural networks, we leverage the fact
sn  that such problems can be approximately and efficiently solved by modern deep learning frameworks such
sz as PyTorch [102].

613 Solving (10) is equivalent to learning the parameters of a single neural network hy o dg, where one of
14 the hidden layers has only one hidden neuron whose value is the estimated isodepth dy (Figure 1). As a
o5 result, the isodepth corresponds to an interpretable hidden layer of a neural network.

616 Using the solution 0 from (10) yields an estimate d = dg of the isodepth d. We expect the estimated

¢ isodepth d to be a good approximation of the solution to the STP (9), as both continuous functions d
s and piecewise continuous functions h can be well-approximated by neural networks [79]. However, it is
oo difficult to identify the breakpoints by, ...,bp_; — and thus the spatial domains R, of the tissue slice —
s20 from the neural network hg . Therefore, we solve a second optimization problem to estimate the piecewise
sz linear function h.

2 Step 2. We use the estimated isodepth d from Step 1 to estimate the piecewise linear function h with
23 breakpoints by, ..., b, by solving the following optimization problem:

G (N
argmax Z (Z log P(ai,g | hg((j(xi, yi)))) . (11)

bi<by<---<bp-_; g=1 \'i=1
h=(hy,...hg)€ L(b1,....bp-1)

624 When there is only one gene, i.e. G = 1, then the maximum likelihood problem in (11) is an instance
s of segmented regression, a classical problem from statistics that is solved by dynamic programming (DP)
626 [3,7]. For G > 1 genes, we solve (11) using a variant of the segmented regression DP derived in [83].

o 4.4 Training and implementation

2 The algorithm described above can be implemented with different probability distributions P(a; 4 | fy(xi, i) =
o P(aig | hy(d(xi, y;))) for the gene expression values a; 4. Following prior work [136, 120, 83, 100], we model

0 the UMI counts a; 4 with a Poisson distribution of the form a; 4 i Pois (U,- -exp ( fo(xi, y,-))), where U, is the

1 total UMI count at spot i. Another alternative is a Gaussian measurement model a; 4 Hd N (f3(xi, i), 0%)
&2 where o2 is a shared variance parameter.

633 In practice, although one could use all or selected gene expression values instead, for efficiency we do
e3¢ not directly solve the STP (9) using the observed gene expression values but instead use the top general-
o35 ized linear model principal components (GLM-PCs) [136]. This simplification is justified by our previous
s work [83] where we showed that for SRT data (A, S) generated from the Poisson expression model with
7 a piecewise linear expression function h, then the top-2P GLM-PCs of the transcript count matrix A are
s also piecewise linear with Gaussian noise.

639 Specifically, we compute the top-2P GLM-PCs and solve (10) with these GLM-PCs under a Gaussian
0 error model. For the colorectal tumor (Section 2.4), in order to capture spatial variation from the histolog-
sa1 ical image, we use the top-(2P — 3) GLM-PCs together with the mean R, G, and B values taken from the
o2 H&E stained image, resulting in (2P — 3) + 3 = 2P total features in the STP. We solve the optimization
3 problem in (10) with neural networks dgp and hy that have two hidden layers of size 20 and are trained
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s for 10000 epochs using the Adam optimizer [66]. Because of the non-convexity of (10), we use 30 random
o5 initializations and select the solution with the largest likelihood.

646 After solving (10) with the top-2P GLM-PCs and estimating the isodepth d, we then solve (11) with the
s7  top GLM-PCs to estimate the breakpoints El, cees gp_l. For most of the applications in this paper, we choose
s the number P of spatial domains using prior knowledge on the geometry of the tissue slice, e.g. for the
o0 cerebellum (Figure 2), we use P = 4 as prior work [19] showed that the cerebellum has four distinct layers.
sso However, if the number P of domains is not known, then one may follow the model selection criteria used
1 by [83], i.e. identifying an elbow in the log-likelihood plot, which we use for the DLPFC application (Figure
62 S3).

653 Finally, we estimate the piecewise linear gene expression function h by solving

G N
argmax Z (Zlog [F"(al-,g | hg(c/l\(x,-,y,-)))) (12)

h=(hy,....hG) € L(br,bpor)  g=1 \i=1

654 under the Poisson expression model for the UMI counts a; 4. We solve the optimization problem in (12)
o5 using Poisson regression with sklearn [103] for each individual gene g and spatial domain R,. To prevent
s overfitting, we subsequently perform a hypothesis test of whether each slope f;, of gene g in domain R,
7 1S Zero or non-zero, i.e. we test the hypotheses

H() Iﬁg’p = 0 (13)
658 For each gene g and domain R,, we compute a log-likelihood ratio (LLR) for the null and alternative

s> hypotheses under the Poisson expression model, and we estimate a p-value assuming that 2 - LLR follows
s a y*-distribution, which holds asymptotically by Wilks’ theorem [147]. We set the slope S, to zero if the
ss1 p-value is less than 0.1.

662 Moreover, we estimate a 1-D expression function hy only for genes g with at least K total UMI counts
63 where K = 500 for the cerebellum and olfactory bulb (Sections 2.3, 2.5) and K = 1000 for the colorectal
s« tumor (Section 2.4). These choices of K result in ~ 2000 — 5000 genes for which we estimate an expression
s function. Moreover, for Slide-SeqV2 and Stereo-Seq applications with sparse UMI counts, we only estimate
s a slope f;, in domain R, if there are at least T non-zero expression values in the domain. We use T = 75
ss7  for the cerebellum and T = 20 for the olfactory bulb, which are approximately 10% of the number of spatial
ss locations in the smallest domain.

« 4.5 Quantifying spatial variation in gene expression

0 The piecewise linear expression functions hy(w) = 25:1 (ap+Pp) -1 p1<w<bp) reveal both discontinuities
e in expression and continuous variation within a domain, or intradomain variation, as we describe below.

o2 Discontinuous expression. Let §,, be the discontinuity of the function h, at breakpoint b,, i.e. d,) =
a3 (Qgpr1+Pgpr1-bp) — (agp+Pyp-bp). Alarge (absolute) discontinuity |5, | indicates a large discontinuous
e change in the expression of gene g at the boundary between spatial domains R, and R.;.

675 We say a gene g has a discontinuity in expression between spatial domains R, and Ry, if the esti-

e mated discontinuity magnitude |gg,p| is greater than a threshold #,. We set the threshold ¢, to be the tenth

7 percentile of all estimated discontinuity magnitudes (|§gp|) o between spatial domains R, and R,;.

9=1...,

22


https://doi.org/10.1101/2023.10.10.561757
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.10.561757; this version posted October 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

o Intradomain variation. The slope f;, of the expression function hy describes variation within a spa-
o9 tial domain R,. We say a gene g has intradomain variation in spatial domain R,, if the estimated magnitude

60 | EM,| of the slope is greater than a threshold s,,. That is, intradomain variation corresponds to a large effect
@1 size of the parameter f;,. (Note that this effect size thresholding is distinct from the p-value threshold-
@2 ing in Section 4.4.) We set the threshold s, to be the tenth percentile of all estimated slope magnitudes

683 (| ,Eg,p|) in domain R,.
g=1,....G

s 4.6 Attributing continuous variation in expression to cell types

s Intradomain variation in expression - i.e. a large magnitude of the slope f,, for a domain R, in the
s piecewise linear fit — may be due to variation in expression within a cell type, variation in the proportions
a7 of cell types, or other biological causes. To illustrate, consider the 1-D expression function h(w) = hy(w)
s for a single gene g. Given cell types ¢ = 1,.. ., C, the function h(w) is given by

C

h(w) = D (he(w) - uc(w)) +e(w) (15)

c=1

s> where h. : R — R is the cell type c-specific expression, 0 < u.(w) < 1 is the proportion of cell type ¢ at
o0 isodepth w, and e(w) represents variation due to other factors.

691 Suppose that the expression function is h(w) = e - u.(w) + e(w); i.e. expression is constant for cell
2 type c and zero for other cell types. If the cell type proportion u.(w) or other variation function e(w) are
o3 not constant functions of the isodepth w, then the function h(w) will not be constant. Thus, when we
04 fit the expression function h(w) with a piecewise linear function, we may estimate a non-zero slope f§ —
s reflecting variation in expression — even when there is no variation for any given cell type. This motivates
o the problem of learning cell type-specific expression functions h.4 : R — R for each gene g and cell type
7 ¢ which reveal whether variation is attributable to cell type or to other factors.

698 Here we derive a simple approach for estimating cell type-specific expression functions h 4 from single-
s cell resolution SRT data with cell type annotations. Specifically, suppose we are given single-cell resolution
w0 SRT data (A, S) with cell type annotations z;. € {0,1}, where z;. = 1 if spot i contains cell type ¢, and
m  zi. = 0 otherwise. We assume the isodepth d and breakpoints by, . .., bp_; have already been computed as
12 described in Section 4.4. We model the expression a; 4 at spatial location (x;, y;) with the Poisson expression

03 model a;; ~ Pois (Ui - exp (chzl Zicheg(d(x;, yi)))) where U; is the total UMI count at spatial location

704 (x;,y;). Similar to Section 4.2, we model the cell type-specific expression functions h, = (h¢1,..., hcg) :
ns R — RC as piecewise linear functions of the form

P
he(w) = Y (e + BepW) (b, 1<rsby)- (16)
p=1
ne  where @cp = (@cpglg=1,...6 and Bep = (Bepg)g=1....c are the cell type c-specific y-intercepts and slopes,
07 respectively, of the cell type c-specific expression function h. = (h 1, ..., hcc) in spatial domain R,,.
708 The MLE of the piecewise linear, cell type c-specific expression functions h, = (h¢4)g4ec is given by

C G N C
max Z Z (Z log P(ai’g | heg, zi,c)) = Z

hy,...hc€ L(by,...bp-1) c=1 g=1 \i=1 =1

max_ i( D 1og[p(a,-,g | hg)ﬂ

thL(gl,...,bP_l) gzl l':Zi‘Czl
(17)

709 The inner optimization problem is an instance of the optimization problem in (12) restricted to spots i
70 with cell type ¢, i.e. z;. = 1, and is solved using the same Poisson regression approach. Solving (17) yields
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m  estimated piecewise linear functions Ec,g with y-intercept . , 4 and slope ,Ec,p,g for each gene g in domain
72 Ry and cell type c.

713 To assess whether intradomain variation is attributable to cell type, we compare the cell type c-specific
7a  slope B4 to the cell type-agnostic slope f3,,, which is derived from the cell type-agnostic expression func-
75 tion h(w) (Equation (8)). Specifically, we refer to the parameters @, = (ag,)gec and B, = (Byp)gec as
76 the cell type-agnostic y-intercepts and slopes, respectively. If the cell type c-specific slope f. 4, is close or
77 larger in magnitude to the cell type-agnostic slope B, ,, then the continuous variation in expression — i.e.
ns  the large value of 8, — is attributed to cell type c. Conversely, if the cell type-specific slope S, is much
7o smaller in magnitude than the cell type-agnostic slope f ,, then the continuous variation in expression is
70 not attributable to cell type c.

721 We quantify this intuition by dividing the genes with continuous variation identified in Section 4.5 into
72 two groups based on the estimated cell type-specific slopes ,Bc gp- I ,Bc J. pl > (1-y)| ,Bg »| for some cell type
73 ¢ and a fixed constant y, i.e. the magnitude of the cell type-specific slope ﬁc,g,p is close to or larger than the
74 magnitude of the slope @,p, then we say that the expression variation within domain R, is attributable to

75 cell type c. On the other hand, if | Ec,g,pl <(1-y)] ﬁg,p| for all cell types c, then we say that there is other
76 variation in the expression of gene g within domain R,. We use y = 0.5 in our analyses.

77 4.7 Visualization
s 4.7.1 Scaling isodepth to physical distance

7 The neural network in GASTON learns an isodepth d(x,y) that smoothly varies across a tissue slice T;
70 however, the scaling of the learned isodepth d(x, y) is arbitrary. To improve the interpretability of the
7 isodepth d(x,y) learned by the neural network, we scale the isodepth in each spatial domain to reflect
72 approximate physical distances inside the domain. Briefly, we derive an estimate y,, of the “average width”
73 of each spatial domain R, in ym, and we linearly transform the isodepth d(x,y) in each spatial domain
74 such that the range of isodepth values in domain Rp is y,,.

735 We scale the isodepth in each spatial domain as follows. Given the isodepth d(x, y), spatial domains
16 Ry, ...,Rp, and breakpoints by, ..., bp_; estimated from (10) and (11), we assume without loss of generality
7 that the isodepth is linearly transformed such that miny, ,)cr d(x,y) = 0 and max(y,,)er d(x,y) = 1, ie.
7 the breakpoints satisfy by =0 < b; < --- < bp_; < 1 = bp, where we set by = 0 and bp = 1 for convenience.
79 For each spatial domain Ry, let y, be the average width of the domain, whose computation we describe

10 below. We compute the “scaled” isodepth d(x, y) as

d(x,y) = ) (ep+fo-d(x.y))  Lp, ,<d(r.y)<b,}: (18)

gl

p:

71 where ey, f,, are chosen such that c?(x, y) is continuous, and J(x;y) = Z§=1 Yqifd(x,y) =b,forp=1,...,P.
72 With this choice of e,, f,, the range of scaled isodepth values d(x, y) in a spatial domain R, is given by

max d(x,y)— min d(x,y) = max Jx, - min d(x,y) = (19)
(x,y)€R, ( ) x,Y)€R, ( y) = bp_1<d(x,y)<bp (*.y) bp_1<d(x,y) <bp ( y) = ;yq qu Yp-

13 That is, the range of isodepth values d (x,y) in each spatial domain is the average width y, of the domain
744 Rp.

745 We estimate the average width y, of each spatial domain R, by computing the median physical distance
ns  between the two boundaries of the domain R,. Specifically, let Tigwer = {(x;,yi) € Ry : bp—1 < d(x3,1;) <
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n1 bp_1+e€} and let Typper = { (X3, y;) € R, : by —€” < d(x;,y;) < by} be the set of spatial locations on the lower
ns and upper boundary curves of the spatial domain R, respectively. We set y, to be the median distance
n9  between each spot (x,y) € Tjower and the closest spot in Iypper We choose €, €” such that Tower and Fypper
750 visually correspond to the spatial domain boundaries.

751 For 10x Genomics Visium data, we multiply each average width y, by 100, since the physical distance
752 between the centers of adjacent spots in the 10x Visium slide is 100um. For Slide-seqV2 data, we multiply
73 each average width y, by 64/100, since two beads that are 100 pixels apart in the Slide-SeqV2 microscopy
754 image have a physical distance of roughly 64pm [116].

75 4.7.2  Visualizing 1-D expression functions

56 To simplify the visualization of the 1-D expression functions h, we aggregate the counts a;, for spots
57 (x4, y;) with approximately equal isodepth values d(x;, y;), as in [83]. Specifically, we partition the range
7 of isodepth values into a union B; U - - - U By of intervals Bj, and we compute the total expression value
0 Qg = Did(xiyi)e B; dig for gene g in each interval B;. We call ajg the pooled expression value of gene
70 g at pooled spot j. Pooling does not affect inference of the 1-D expression function h in the STP, as the
7s function h obtained by maximizing the log-likelihood (9) with pooled data is equal to the function obtained
72 by maximizing (9) with the original data, as shown in [83].

763 We plot expression as log pooled counts per million (CPM) log(a; 4/ D ;- 10° + 1), where D ; is the sum
74 of the total UMI counts across all spots in the jth pooled spot. The log pooled CPM has approximately the
s same scale as the expression function hy(w) +log(10°) for each gene g.

s 4.8 Marker gene analysis

77 For the marker gene comparison in Section 2.3, we derived a ranking of domain specific marker genes from
78 the GASTON inferred 1-D expression functions h, by ranking genes by the standard deviation of the mean

%0 of each expression function. Specifically, for each gene g, we compute the mean mg,, of the 1-D expression
bp_1+bp
2

70 function hy(w) in spatial domain Ry, i.e. my, = a, + fp - ) and we rank genes by the standard
m  deviation of the values (my,p)p=1,...p. Intuitively, a marker gene should have high expression in one spatial
72 domain and low expression in other domains, leading to a large standard deviation, while a non-marker

773 gene will have similar expression in all domains, leading to a small standard deviation.

m 4.9 Spatial coherence score

775 We quantify the spatial coherence of domain labels using a score based on O’Neill’s spatial entropy measure
76 [98, 4] which has previously been used to quantify spatial coherence in SRT data [159]. The spatial entropy
77 measures the fraction of neighboring spots having the same label compared to random assignments of
7s labels. A large spatial entropy indicates that the distribution of labels of neighboring spots is close to the
79 uniform distribution, i.e the labels are spatially coherent, whereas a small spatial entropy indicates that
70 nearby spots frequently have the same label, i.e. the labels are spatially coherent.

781 We use a modified version of the spatial coherence score used by [159] that is scaled to lie in [0, 1].

72 Specifically, following the notation in [159], we define the spatial coherence score as Cg(L) = 1—%.

s 4.10 Data collection and method details

14 For the cerebellum analysis in Sections 2.2 and 2.3, we used replicate 1 from the RCTD/C-SIDE data repos-
75 itory [18]. Figure 2J was created with BioRender . com. For the marker gene comparison in Figure 3A, we
16 derived a gene ranking for each method and evaluated the AUPRC compared to known marker genes of the
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77 oligodendrocyte, granule, Purkinje, Bergmann, and molecular cell types in the cerebellum. These marker
735 genes were the combination of cell type marker genes from PanglaoDB [40], the Allen Mouse Brain Atlas
70 [71], Harmonizome [118], and the supplement of [69].

790 We obtained the olfactory bulb SRT dataset from [42]. We obtained cell type annotations for each spot
1 in the tissue (Figure 5D) by using scANVI [154] to integrate the SRT data with a separate mouse olfactory
72 bulb scRNA-seq dataset [133]; for the scRNA-seq data, we followed the pre-processing steps in [76].

73 SpiceMix. We followed the Visium Jupyter notebook tutorial on Github with parameters K = 6 (for the
74 K-NN graph) and n_neighbors=200.

75 Non-negative spatial factorization (NSF). We followed the Github tutorial and trained for 150 iter-
76 ations to obtain 10 factors. Since NSF identifies factors rather than spatial domains, we identified NSF
797 spatial domains by using the NSF factors as input for the Louvain clustering module from SpiceMix [24].

7 RCTD/C-SIDE. For the cerebellum analysis, we used the cell type labels provided in the RCTD data
79 repository. We followed the C-SIDE tutorial to identify cell type-specific differentially expressed genes.
s0 We ran two versions of C-SIDE: (1) without any covariates, and (2) with the isodepth d(x, y) as a covariate
son  for each spatial location (x, y). For the analysis in Section 2.3, we ranked genes by their minimum C-SIDE
sz p-value across all cell types.

53 SpaGCN. We ran SpaGCN following the Github tutorial. For the analysis in Section 2.3, we used a
s« ranking where the SpaGCN spatially varying genes are tied for first and all other genes are tied for second.

sos HotSpot. We ran HotSpot following the tutorial here. For the analysis in Section 2.3, we ranked genes
ss according to their p-value.

s7  trendsceek”. We used the Seurat implementation of trendsceek as described here. For the analysis in
s Section 2.3, we ranked genes according to their p-value.

soo  SpatialDE. We ran SpatialDE following the Github example. For the analysis in Section 2.3 we ranked
s genes according to their p-value.

sn - SPARK-X. We ran Spark-X following the tutorial here. For the analysis in Section 2.3 we ranked genes
sz according to their p-value.

513 SpaceFold. We ran SpaceFold following the Github example code.
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= Data and code availability

sz This paper analyzes existing, publicly available data. The cerebellum SRT dataset was obtained from [18];
s the olfactory bulb SRT data set was obtained from [42]; the colorectal tumor SRT dataset was obtained from
s [149]; and the DLPFC SRT dataset was obtained from [89]. The code for GASTON is publicly available at
s https://github.com/raphael-group/GASTON.
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1229 Supplemental Information

w A Expression models and pooling

1251 We assume the UMI counts a; 4 follow the Poisson expression model, i.e. the UMI counts a; 4 are indepen-

1252 dent and follow a Poisson distribution of the form a;, iid Pois(U,- - exp ( fo(xi, yi))) where U; is the total
1253 UMI count at spot i.

1254 Suppose the isodepth d is known, and let yy,...,yn’ be the unique isodepth values d(x;, ;) across
s all spots's; = (x;,y;). Let Bj = {i : d(x;,y;) = y;} be the set of spots with isodepth equal to y;. Let
s djg = 2cB, dig De the total expression for gene g over all spots i € B;, i.e. a;, is the total expression for
w57 all spots with isodepth y;. We say B; is a pooled spot and we call a; 4 the pooled expression of gene g at the
s j-th pooled spot.

1259 The solution to the MLE problem in (9) with isodepth d is equal to the solution of the following opti-
1260 mization problem

G N’
argmax > (Z log [P’(E[j,g | hy(d(x;, yj)))) (20)

bi<by<---<bp-; g=1 \j=1
h=(hi,...hg)€ L(b1,....bp-1)

e1 wWhere the inference is performed with pooled expression values a; ;. Thus, one obtains the same expression
12 function h whether one computes the MLE (9) over all data points, or first sums spots with the same
163 isodepth, i.e. pooling spots by their isodepth, and then computes the MLE. See [83] for more details.

s B Dimensionality reduction using GLM-PCA

1265 Given SRT data (A, S), we first run GLM-PCA (generalized linear model principal components analysis)
e [136] and obtain the top-2P GLM-PCs u; = [u; ;] € RN for j = 1,...,2P. Next, we compute the MLE in (9)
1s7  using these PCs and a Gaussian error model, i.e. we solve

2P [ N

argmax log P(u;; | h,'(d(xi, yi)) ) (21)
deC(R%LR) ; (; ( T )

by<by<---<bp_;

W =(H},...hp) € L (br,ennp-1)

1268 with u; Ay (h;(d(xi, i), 02) for some shared variance parameter 2. (Note that the value of the

e variance o2 does not affect the solution to (21).) Solving (21) an estimated isodepth d and breakpoints
1270 bl, LRI bp_l. . ~ —~
1271 Finally, we solve the MLE problem in (9) fixing the estimated isodepth d and breakpoints by, ..., bp_,

22 le.
G [N R
argmax Z (Z log I]:D(a,-,g | hg(d(x,-, yi)))), (22)
h=(hy,...hg) € L(b1,....bp-1) g=1 \i=1
1273 where we assume the UMI counts a;,; follow the Poisson expression model described above. Solving

s (22) is equivalent to solving G - P Poisson regression problems, one problem for each combination of the
15 G genes and P spatial clusters.
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= C  Comparison to SpaceFlow

1277 SpaceFlow [113] learns a 1-D coordinate, which they call a pseudo-Spatialtemporal Map (pSM), at each
178 spatial location in a tissue by running diffusion pseudotime [49] on embeddings obtained from a graph
1279 neural network. We compared the SpaceFlow pSM to the GASTON isodepth on the mouse cerebellum
nso  SRT data from Section 2.2 (Figure S1A,B) and the mouse olfactory bulb SRT data from Section 2.5 (Figure
g1 S6C,D). Visually, the isodepth learned by GASTON varies continuously in the tissue while the SpaceFlow
2 pSM does not. For example, in the cerebellum, the pSM is constant — and thus does not continuously vary
13— within each spatial domain, e.g. in the granule layer, the contours of the isodepth (Figure S1C) smoothly
nsa  vary while the contours of the pSM (Figure S1D) are irregular. In the olfactory bulb, the pSM is constant
g5 in the interior of the tissue (Figure S6C).

1286 We quantify the continuous variation within each layer using the quartile coefficient of dispersion
s (QCOD) [15], a robust statistic measuring the variation of a dataset, with a large QCOD indicating a larger
s degree of variation in the data. We first scale the isodepth and the pSM to be in [0, 1] so that they have the
g same measurement scale; moreover, before computing the QCOD within each layer, we shift the measure-
1290 ments to have the same mean in order to guarantee that the QCOD values are comparable. We observe that
191 in the cerebellum, GASTON has larger QCOD than SpaceFlow in three out of four spatial domains (Figure
12 S1E), indicating that there is substantially more spatial variation in the GASTON isodepth compared to
193 the SpaceFlow pSM. Similarly, in the olfactory bulb, GASTON has larger QCOD than SpaceFlow in six out
1294 of seven domains (Figure S6B).

ws D DLPFC comparison

196 We evaluated GASTON on SRT data from the human dorsolateral prefrontal cortex (DLPFC) measured
17 with 10x Visium [89]. We analyzed eight DLPFC tissue slices from two donors. These slices were manually
s annotated with the six layers of the DLPFC and white matter (WM) and have a curved, layered geometry,
19 providing spatial structure that may help GASTON accurately learn the geometry of these tissue slices.
10 We compared the spatial domains identified by GASTON to two graph deep learning approaches, SpaGCN
o1 [58] and STAGATE, and our previous method Belayer [83], which requires supervision in the form of
12 approximate layer boundaries. We evaluated each method by computing the adjusted Rand index (ARI)
3 between the estimated spatial domains and the manually annotated layers.

1304 GASTON achieves a higher average AUPRC than the graph deep learning methods SpaGCN and STA-
s GATE (Figure S3A). Moreover, despite being completely unsupervised, GASTON has comparable AUPRC
s to Belayer, which requires supervision (Figure S3A,B). Importantly, the isodepth d(x, y) learned by GASTON
o (Figure S3C) is highly correlated with the “relative depth” d(x,y) that Belayer estimates by solving the
s heat equation with known layer boundaries (Figure S3D), demonstrating that the neural network used by
13w GASTON indeed learns the cortical depth of each layer. On the other hand, the isodepth d has lower cor-
o relation (Figure S3D) with both the top principal component (PC1) and the top generalized linear model
s principal component (GLM-PC1), which are derived solely from gene expression and do not use the spa-
2 tial coordinates. These comparisons indicate the importance of spatial information in deriving an accurate
133 measurement of layer depth.

1314 Overall, the improved performance of GASTON demonstrates the value of using simple and inter-
s pretable neural network architectures.
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Figure S1: (A) The isodepth d(x,y) learned by GASTON scaled to [0, 1]. (B) The pseudo-Spatiotemporal
Map (pSM) learned by SpaceFlow [113] scaled to [0, 1]. (C) The isodepth d(x, y) in the granule layer (as
identified by GASTON), shown with three equally spaced contours of equal isodepth. (D) The pSM in
the granule layer shown with three equally spaced contours of equal pSM. (E) The quartile coefficient of
dispersion of the GASTON isodepth and the SpaceFlow pSM in each layer of the cerebellum.
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Figure S2: (A) Venn diagram of spatially varying genes identified by GASTON in the mouse cerebellum.
Numbers indicate genes with specified spatial expression pattern(s). (B) Isodepth versus expression for
CPLX2, which has discontinuities in expression at the granule layer boundaries.
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Figure S3: (A) Adjusted rand index (ARI) for GASTON, Belayer [83], SpaGCN [58], and STAGATE [32] in
identifying the spatial domains of the dorsolateral prefrontal cortex (DLPFC). (B) The manually annotated
domains and the domains identified by GASTON and Belayer for DLPFC sample 151673. (C) Isodepth
d and spatial gradients Vd learned by GASTON for DLPFC sample 151673. (D) Correlation between the
GASTON isodepth d and (1) the relative depth d estimated by Belayer using prior knowledge of the layer

boundaries (Belayer relative depth); (2) the first generalized linear model principal component (GLM-PC1);
and (3) the first principal component (PC1).
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Figure S4: Cell type labels for each spot in 10x Genomics Visium data from a colorectal tumor slice derived
in the original study [149] using Seurat [17].


https://doi.org/10.1101/2023.10.10.561757
http://creativecommons.org/licenses/by-nc-nd/4.0/

available under aCC-BY-NC-ND 4.0 International license.

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.10.561757; this version posted October 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

44

ACTA2 expression

TAGLN expression

1 u.n.mwmmmm.m“mumu

° uOlcn

.uu mmnmwmm. W

2 °
O
~
)
(]
(J
)
© 1+ M AN H O
uolssaldx3

_ i mmm

nn..
mm.
lc o
. un ml lon
: m
o
unn .

LGR5 expression

mmumm ...m oA

il o
m_m

mmm m“.m

mm. =

oom

250 500 750 1000125015001750

0

5 m .nmx .

Isodepth

FUCA1

4.751@
4.50 A

THBS1

4.25
4.00 -
3.75

uolssaldx3

3.501

3.257

e n
© n

<
i

uolssaldx3

n <o
< < m

<
m

1000 1500

500

1000 1500

500

Isodepth

Isodepth

Figure S5: (A-C) Expression shown in log CPM for Type II genes (A) TAGLN, (B) ACTA2, and (C) LGR5.
(D-F) Expression versus isodepth for Type II gene (D) LGR5 and Type III genes (E) THBS1 and (F) FUCAL.
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Figure S6: (A) Spatial domains learned by SpaGCN [58]. (B) Spatial coherence of spatial domains identified
by GASTON (Figure 5C) and SpaGCN. (C) Pseudospatial-temporal map (pSM) learned by SpaceFlow [113],
which utilizes the scRNA-seq based method diffusion pseudotime [49]. Curves denote contour lines of
equal pSM. (D) Quartile coefficient of dispersion of the GASTON isodepth and the SpaceFlow pSM in each
spatial domain identified by GASTON. (E) Cell type proportion as a function of SpaceFlow pSM.

Figure S7: Venn diagram of spatially varying genes identified by GASTON in the olfactory bulb.

196

187

Cell type-

attributable
intradomain

variation

Discontinuous

expression

196 53

72

Other intradomain

variation


https://doi.org/10.1101/2023.10.10.561757
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	GASTON learns the topography of a tissue slice using interpretable deep learning
	GASTON recapitulates spatial organization in mouse and human brain slices
	Continuous and discontinuous spatial variation in gene expression
	Spatial gradients in the tumor microenvironment
	Spatial gradients of cell type and gene expression in the mouse olfactory bulb

	Discussion
	Methods
	Modeling gene expression and spatial gradients
	Conservative vector fields and piecewise linear functions
	Maximum likelihood estimation
	Training and implementation
	Quantifying spatial variation in gene expression
	Attributing continuous variation in expression to cell types
	Visualization
	Scaling isodepth to physical distance
	Visualizing 1-D expression functions

	Marker gene analysis
	Spatial coherence score
	Data collection and method details

	Expression models and pooling
	Dimensionality reduction using GLM-PCA
	Comparison to SpaceFlow
	DLPFC comparison

