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Abstract10

Spatially resolved transcriptomics technologies provide high-throughput measurements of gene ex-11

pression in a tissue slice, but the sparsity of this data complicates the analysis of spatial gene expression12

patterns such as gene expression gradients. We address these issues by deriving a topographic map of a13

tissue slice—analogous to a map of elevation in a landscape—using a novel quantity called the isodepth.14

Contours of constant isodepth enclose spatial domains with distinct cell type composition, while gra-15

dients of the isodepth indicate spatial directions of maximum change in gene expression. We develop16

GASTON, an unsupervised and interpretable deep learning algorithm that simultaneously learns the17

isodepth, spatial gene expression gradients, and piecewise linear functions of the isodepth that model18

both continuous gradients and discontinuous spatial variation in the expression of individual genes.19

We validate GASTON by showing that it accurately identifies spatial domains and marker genes across20

several biological systems. In SRT data from the brain, GASTON reveals gradients of neuronal differen-21

tiation and firing, and in SRT data from a tumor sample, GASTON infers gradients of metabolic activity22

and epithelial-mesenchymal transition (EMT)-related gene expression in the tumor microenvironment.23
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1 Introduction24

Gene expression varies substantially across a tissue, due to both the spatial organization of cell types25

within a tissue and localized changes in cell state through processes such as development, differentiation,26

and intercellular communication [160]. Many genes display sharp, discontinuous changes in expression27

in certain areas of a tissue, often near the boundaries of distinct spatial domains containing different com-28

binations of cell types. For example, different cortical and neocortical layers of the brain are distinguished29

by the presence and absence of expression of certain marker genes [124, 96]. Gene expression may also30

vary continuously in a tissue, forming gene expression “gradients” that distinguish different cell types or31

states and drive fundamental biological processes including development [6, 55, 48, 117] and cellular com-32

munication [148, 138]. For instance, gene expression gradients underlie the functional heterogeneity of33

neurons in the hippocampus [160, 21] and hepatocytes in individual liver lobules [9, 25]. In tumors, gene34

expression may vary continuously with the distance to the surrounding stroma due to oxygen gradients35

or cellular interactions [125, 12].36

Spatially resolved transcriptomics (SRT) technologies produce high-throughput measurements of spa-37

tial gene expression, quantifying the number of RNA transcripts at thousands in a tissue slice [93, 88,38

101, 111, 134, 139]. These SRT technologies enable the inference of spatial domains in tissues as well as39

the identification of genes and cell types with continuous and discontinuous spatial patterns of expres-40

sion within and across spatial domains. However, SRT technologies typically yield sparse measurements41

of the transcriptome: current whole-transcriptome sequencing-based technologies [1, 116, 127, 22, 78]42

have limited coverage (≈ 500-5,000 unique molecular identifiers (UMIs) per location) while imaging-based43

technologies measure a much smaller and targeted panel of transcripts (typically 100-1,000 transcripts)44

[61, 143, 162, 91, 52]. This sparsity markedly complicates the analysis of spatial gene expression.45

Numerous computational approaches have been developed to identify spatial domains and/or genes46

with spatially varying expression from SRT data. These methods typically leverage correlations between47

expression measurements at nearby spatial locations to overcome the sparse measurements at individual48

locations. Many methods focus on the identification of distinct spatial domains by partitioning tissues into49

subregions having large, discontinuous changes in gene expression, e.g. [168, 58, 32, 104, 81, 153, 76, 167,50

53], but do not model continuous gene expression gradients within these regions. Several other meth-51

ods instead test whether the expression of an individual gene varies spatially by fitting a function to the52

observed transcript counts at spatial locations [132, 130, 171, 18, 145]. However, these methods cannot dis-53

tinguish continuous gradients within spatial domains from discontinuous changes in expression between54

domains. More generally, neither approach models the geometry of a tissue slice using a coordinate system55

that describes both the boundaries of spatial domains and the relative position of spatial locations within56

these domains, thus greatly limiting their ability to identify continuous gradients of gene expression.57

We introduce gene expression topography, a fundamentally different approach to modeling spatial vari-58

ation in gene expression. We derive a “topographic map” of a tissue slice using the isodepth, a 1-dimensional59

coordinate over the tissue slice which describes both the arrangement of spatial domains and the relative60

position of each spatial location within its corresponding spatial domain. Thus, just as the topographic61

map of a landscape demarcates mountains and valleys by their elevation, our topographic map of gene62

expression delineates spatial domains by their isodepth. Moreover, like the elevation of a landscape, the63

isodepth varies continuously over a tissue slice, providing a coordinate to model continuous variation in64

the expression of individual genes. In particular, our topographic map describes gene expression gradients,65

similar to how a topographic map of elevation shows whether a direction is a steep ascent or a flat plateau.66

We develop Gradient Analysis of Spatial Transcriptomics Organization with Neural networks (GASTON),67

an unsupervised and interpretable deep neural network algorithm that learns the isodepth of a tissue slice,68

the vector field of spatial gradients of gene expression, and spatial expression functions for individual genes69

directly from SRT data. In particular, GASTON models gene expression as a piecewise linear function of70
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the isodepth, thus describing both continuous gradients and sharp discontinuities in gene expression. We71

demonstrate that the isodepth and spatial gradients learned by GASTON reveal the geometry and continu-72

ous gene expression gradients of multiple tissues across multiple SRT technologies including 10x Genomics73

Visium [1], Slide-SeqV2 [116, 127], and Stereo-Seq [22]. On SRT data from the mouse and human brain,74

we show that GASTON more accurately identifies spatial domains and marker genes compared to exist-75

ing methods, derives maps of spatial variation in cell type organization, and uncovers spatial gradients76

of neuronal firing and differentiation. Using SRT data from a colorectal tumor sample, we demonstrate77

that GASTON identifies gradients of metabolic activity in the tumor interior, and gradients of epithelial-78

mesenchymal transition (EMT)-related gene expression at the tumor-stroma boundary.79

2 Results80

2.1 GASTON learns the topography of a tissue slice using interpretable deep learning81

We introduce the isodepth𝑑 , a scalar quantity that models the “topography” of a tissue slice and is analogous82

to the elevation in a topographic map of a land surface. A small number of contours of equal isodepth 𝑑83

partition the tissue slice into spatial domains, while the intermediate isodepth contours define the relative84

position of a location within a domain. Moreover, the gradient ∇𝑑 of the isodepth 𝑑 at each location85

describes the spatial gradient, or the direction of maximum change in gene expression within each spatial86

domain. The collection of spatial gradients defines a spatial transcriptomic vector field v(𝑥,𝑦) across the87

tissue slice 𝑇 (Figure 1A). Thus, the isodepth describes the geometry of a tissue slice, i.e. the arrangement88

of distinct spatial domains in the tissue, as well as directions of continuous variation within each spatial89

domain (Methods).90

To learn the isodepth 𝑑 from spatially resolved transcriptomics (SRT) data, we develop Gradient Anal-91

ysis of Spatial Transcriptomics Organization with Neural networks (GASTON). GASTON models the ex-92

pression 𝑓𝑔 (𝑥,𝑦) of each gene 𝑔 at spatial location (𝑥,𝑦) as a piecewise linear function of the isodepth93

𝑑 (𝑥,𝑦):94

𝑓𝑔 (𝑥,𝑦) =
𝑃∑︁

𝑝=1
(𝛼𝑝,𝑔 + 𝛽𝑝,𝑔 · 𝑑 (𝑥,𝑦)) · 1{ (𝑥,𝑦) ∈𝑅𝑝 }, (1)

where the pieces𝑅1, . . . , 𝑅𝑃 are spatial domains, and 𝛼𝑝,𝑔 and 𝛽𝑝,𝑔 are the𝑦-intercept and slope, respectively,95

in the 𝑝th spatial domain 𝑅𝑝 . We use piecewise linear functions as they are a simple class of models96

that incorporates both continuous variation in gene expression within each domain, i.e. “gradients” of97

expression, while allowing for discontinuities in expression at the boundaries of the spatial domains. The98

boundaries of each spatial domain 𝑅𝑝 are given by contours of equal isodepth 𝑑 (𝑥,𝑦) (Methods). We99

emphasize that our model does not restrict the spatial domains 𝑅𝑝 to be contiguous regions; thus, GASTON100

is able to model long-range spatial correlations in gene expression [101], in contrast to many existing101

approaches that only model local spatial correlations (Methods).102

GASTON jointly learns the isodepth 𝑑 and piecewise linear gene expression functions 𝑓𝑔 in a com-103

pletely unsupervised manner using an interpretable deep learning model. Specifically, GASTON trains104

a neural network to learn a composite function 𝑓 ◦ 𝑑 (𝑥,𝑦) from spatial coordinates to gene expression105

features, where the isodepth 𝑑 (𝑥,𝑦) corresponds to an interpretable hidden layer of the network (Figure106

1B). GASTON then uses segmented regression [83, 3, 7] to learn the spatial domains 𝑅𝑝 , as well as the107

parameters 𝛼, 𝛽 of the piecewise linear expression functions 𝑓𝑔 for each gene 𝑔. We demonstrate below108

that GASTON’s interpretable approach uncovers meaningful spatial domains (Figure 1C), and continuous109

gradients and discontinuities in gene expression (Figure 1D) and cell type composition (Figure 1E) across110

a wide range of SRT technologies and biological systems including the brain and the tumor microenviron-111

ment (Figure 1F).112
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Figure 1: GASTON, an interpretable deep neural network, learns the topography of a tissue. (A)
GASTON takes in spatially resolved transcriptomics (SRT) data from a tissue slice and outputs the isodepth,
a coordinate describing a topographic map of the tissue slice, with contours of constant isodepth in gray
and spatial gradients shown as streamlines. (B) GASTON trains a deep neural network to predict gene
expression from spatial coordinates, where the isodepth is the value of an interpretable hidden layer of the
trained neural network. The isodepth learned by GASTON enables many downstream tasks including: (C)
identification of spatial domains, or tissue regions characterized by different cell type composition and gene
expression patterns; (D) identification of genes with continuous gradients and/or discontinuous variation
in expression as a function of isodepth; (E) modeling of variation in cell type composition as a function of
isodepth; and (F) analysis of continuous gene expression gradients in the tumor microenvironment.
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2.2 GASTON recapitulates spatial organization in mouse and human brain slices113

We first used GASTON to learn the isodepth 𝑑 and the spatial gradients ∇𝑑 in a tissue slice from the mouse114

cerebellum where the expression of 23,096 transcripts at 9,985 spatial locations was measured using the115

Slide-SeqV2 platform [116, 127]. The learned isodepth 𝑑 provides a “topographical map” of the layered116

geometry of the cerebellum, including the boundaries of distinct layers of the cerebellum, with the depth117

within each layer scaled to approximate 𝜇m (Figure 2A, Methods). The spatial expression gradients ∇𝑑 are118

perpendicular to the cerebellar layers (contours of constant isodepth) and indicate the spatial direction of119

maximum change in gene expression.120

GASTON divides the tissue into four contiguous spatial domains, which are visually consistent with121

the four distinct layers of the cerebellum – the oligodendrocyte layer, the granular layer, the Purkinje-122

Bergmann layer, and the molecular layer – that were identified in prior imaging studies [116, 26] and SRT123

analyses [116, 19, 18] (Figure 2B). We compared the spatial domains learned by GASTON to those identified124

by Non-negative Spatial Factorization (NSF) [135], SpaGCN [58], and SpiceMix [24] (Figure 2C-E), three125

recent methods that showcase the major approaches currently used to model local spatial correlations in126

spatial transcriptomics data: Gaussian processes (GPs), graph convolutional networks (GCNs), and hidden127

Markov random fields (HMRFs), respectively. We observed that GASTON’s spatial domains have much128

larger spatial coherence [159] compared to the other methods (Figure 2F), showing that the domains iden-129

tified by GASTON better align with the structured geometry of the cerebellum [140]. Next, we compared130

the spatial domains to the cell types reported in the original publication of the data (Figure 2G). These cell131

types were obtained from RCTD [19], a method which performs cell type deconvolution using a reference132

scRNA-seq dataset and does not take spatial information into account. The GASTON, SpaGCN, and NSF133

spatial domains have similar agreement with the cell types inferred by RCTD and with each other, while134

the SpiceMix spatial domains have low agreement with the RCTD cell types and the other methods (Figure135

2H). These results demonstrate that the global model of spatial variation used in GASTON identifies more136

spatially coherent spatial domains than existing methods while still preserving cell type information.137

A key distinguishing feature of GASTON is that it learns the isodepth 𝑑 , which provides a coordinate138

to analyze the continuous variation in cell types within and across the layers of the cerebellum. Such139

continuous variation is not modeled by the three methods above nor by the numerous other methods that140

divide a tissue slice into spatial domains, e.g. [168, 32]. We find that the proportion of cell types varies141

considerably as a function of the isodepth (Figure 2I). First, we observe that oligodendrocytes and granule142

cells have large and nearly constant proportion throughout the range of isodepth 𝑑 that corresponds to143

the named layers. Moreover, there is a sharp transition in proportion at the isodepth value that GASTON144

marks as the boundary between these layers, indicating that the learned isodepth 𝑑 and spatial domains145

are accurately separating the oligodendrocyte and granule layers.146

In contrast, the proportion of Purkinje cells and Bergmann glia exhibit spatial variation with the147

Purkinje-Bergmann layer. Purkinje cells are concentrated at the start of the layer (small isodepth), while148

the Bergmann glia peak in proportion inside the layer and are present over a wider range of isodepths149

(Figure 2J). These results agree with prior imaging and microscopy-based studies which show that Purk-150

inje cells form a “monolayer” in the cerebellum, i.e. a layer with single-cell depth [170, 126, 13] while the151

Bergmann glia do not form a monolayer but are more diffusely spread out across the Purkinje-Bergmann152

layer [5, 72]. Interestingly, previous studies have found that the Bergmann glia form a monolayer during153

the development of the cerebellum [68, 54], and thus the observed arrangement of Bergmann glia here154

could indicate that the spatial arrangement of Bergmann glia changes after development. We also observe155

that the Bergmann glia are closer to the molecular layer of the cerebellum compared to Purkinje cells,156

which agrees with previous studies on cerebellar organization [115].157

We emphasize that GASTON learns the isodepth de novo and in an unsupervised manner. In contrast,158

existing approaches for learning depth or depth-like measurements either require prior anatomical knowl-159
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Figure 2: Spatial gradients learned by GASTON recapitulate the spatial organization of themouse
cerebellum. (A) The isodepth 𝑑 (𝑥,𝑦) and spatial expression gradients ∇𝑑 , shown as streamlines, learned
by GASTON on Slide-SeqV2 data from the mouse cerebellum [18]. Gray curves denote contours of equal
isodepth. (B-E) Spatial domains (layers) 𝑅1, . . . , 𝑅4 identified using (B) GASTON, (C) Non-negative Spatial
Factorization (NSF), (D) SpaGCN, and (E) SpiceMix. The spatial domains are colored according to the most
prevalent RCTD cell types in the domain. (F) Spatial coherence score of spatial domains identified by each
method. (G) Layer-specific cell types identified by RCTD. (H) F-measure between spatial domains identi-
fied by GASTON, NSF, SpaGCN, SpiceMix, and layer-specific cell types identified by RCTD. (I) Proportions
of layer-specific cell types as a function of the isodepth 𝑑 . Dashed lines indicate boundaries of GASTON
spatial domains. (J) Layout of granule (green), Purkinje (red), and Bergmann (purple) cells as a function
of isodepth near the Purkinje-Bergmann layer of the cerebellum.
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edge [83, 84], which is difficult to obtain for a complex tissue like the cerebellum, or use scRNA-seq-based160

trajectory inference approaches which do not learn a spatially continuous measurement (see comparison161

to SpaceFlow [113] in Supplement C, Figure S1).162

As additional validation, we evaluated GASTON using SRT data of the human dorsolateral prefrontal163

cortex (DLPFC) [89]. GASTON more accurately identified the manually annotated layers of the DLPFC164

compared to two graph neural network approaches: SpaGCN [58] and STAGATE [32] (Figure S3). More-165

over, GASTON has comparable performance to Belayer [83], which previously achieved state-of-the-art166

performance in DLPFC layer identification using prior annotation on the layer boundaries. In contrast,167

GASTON, an unsupervised algorithm, achieves similar performance without any no prior knowledge. See168

Supplement D for details.169

These analyses demonstrate that the isodepth 𝑑 learned by GASTON provides a powerful computa-170

tional approach for modeling the spatial organization of cells and cell types in complex biological tissues.171

2.3 Continuous and discontinuous spatial variation in gene expression172

We next investigated whether GASTON identifies biologically meaningful spatial patterns of gene expres-173

sion in sparse SRT data, particularly in low coverage Slide-SeqV2 data (median ≈ 500 UMIs per spatial174

location [127]) where such patterns may not be apparent. For each gene 𝑔, GASTON learns a piecewise175

linear function ℎ𝑔 (𝑑) of the isodepth 𝑑 that models both continuous variation in expression within or176

across spatial domains and sharp discontinuities in gene expression between adjacent spatial domains.177

These learned gene expression functions (Supplementary Table) indicate genes that have spatially varying178

expression patterns. For example, SBK1 – reported to be a marker gene of Purkinje cells [71] – has partic-179

ularly sparse expression in the Slide-SeqV2 cerebellum tissue, with only 15% of all spatial locations having180

non-zero UMI count, and only 2% of spatial locations in the GASTON-estimated Purkinje-Bergmann layer181

having UMI count > 1. (Figure 3A). By aggregating expression across contours of constant isodepth (Fig-182

ure 2A), GASTON learns a piecewise linear gene expression function for SBK1 that peaks in the Purkinje-183

Bergmann layer and exhibits continuous variation in the granule layer as a function of isodepth (Figure184

3B). The corresponding 2D expression function clearly demarcates the Purkinje-Bergmann layer (Figure185

3C) compared to the sparse expression values (Figure 3A).186

The gene expression functions learned by GASTON yield a substantially better predictor of known187

marker genes in the cerebellum than existing methods for identifying spatially variable genes (SVGs) or188

differentially expressed genes (DEGs). Specifically, by ranking genes according to a measure of the variance189

of the GASTON expression function across spatial domains (Methods), GASTON achieved notably higher190

performance (AUPRC ≈ 0.31) in the identification of marker genes compared to HotSpot [31]; trendsceek191

[35]; SpatialDE [132]; SPARK-X [130, 171]; C-SIDE [18]; and SpaGCN [58] which have AUPRC ranging192

from 0.07 to 0.25 (Figure 3D). A major reason for GASTON’s improved performance is because many193

of the other methods test only whether the expression of each gene varies in 2D space, and are unable194

to distinguish between different types of continuous and discontinuous variation in spatial expression.195

In contrast, GASTON’s piecewise linear gene expression function explicitly models both continuous and196

discontinuous variation in expression. We highlight two genes ranked highly by GASTON but not by197

other methods: SBK1, described previously, and FRMPD4. FRMPD4 is not a known marker gene but has198

high expression in the molecular layer (Figure 3E). Recent studies report that the FRMPD4 protein regulates199

neurons in the molecular layer, with mutations of FRMPD4 causing intellectual disabilities [105].200

As another demonstration of the utility of the isodepth 𝑑 learned by GASTON, we used the isodepth201

as a covariate for C-SIDE [18], which identifies cell type-specific differentially expressed (DE) genes from202

SRT data. This variation of C-SIDE, which we call C-SIDE-iso, identifies a substantially different set of203

DE genes compared to the original C-SIDE, with only a 10% overlap between the DE genes identified204

by both approaches. C-SIDE-iso achieved better performance than the original C-SIDE in marker gene205
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Figure 3: GASTON reveals continuous and discontinuous spatial variation in gene expression
in the mouse cerebellum. (A) SBK1 expression, shown in log counts per million (CPM). (B) Isodepth
versus expression for SBK1. Lines denote piecewise linear function ℎ𝑔 (𝑑) learned by GASTON. (C) SBK1
expression function 𝑓 (𝑥,𝑦) learned by GASTON. Curves denote contours of constant isodepth𝑑 . (D)Com-
parison of GASTON and several existing methods in marker gene identification, quantified using the area
under precision-recall curve (AUPRC) and a list of known cerebellum marker genes [40, 71, 118, 69]. trend-
sceek* uses the Seurat [50] implementation and C-SIDE-iso runs C-SIDE using the isodepth 𝑑 learned by
GASTON as a covariate. (E) Isodepth versus expression for FRMPD4 which was ranked highly by GASTON
as a marker gene in (D). (F) (Left) Isodepth versus expression for CALB1, which has (Right) granule-
attributable intradomain variation since the expression function restricted to granule cells has large slope.
(G) (Left) Isodepth versus expression for SECISBP2L which has (Right) oligodendrocyte-attributable in-
tradomain variation since the expression function restricted to oligodendrocyte cells has large slope. (H)
SECISBP2L expression shown in log CPM. (I) SECISBP2L expression function 𝑓 (𝑥,𝑦) learned by GASTON
in the GASTON-inferred oligodendrocyte layer. (J-K) Isodepth versus expression for (J) CAMK2B and (K)
CAMK1D which have (Left) intradomain variation in the Purkinje-Bergmann layer and molecular layer,
respectively, that is (Right) not attributable to cell type, as the expression functions for the most abundant
cell types in the respective layers have zero slope.
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identification (Figure 3C), demonstrating the advantages of the isodepth 𝑑 . Nevertheless, unlike GASTON,206

C-SIDE-iso cannot identify spatial domains and thus cannot test for changes in expression across different207

spatial domains, and consequently C-SIDE-iso has lower performance than GASTON in identification of208

marker genes (Figure 3C).209

In addition to marker gene identification, the piecewise linear expression functions learned by GASTON210

reveal distinct spatial patterns of gene expression including discontinuities in expression — i.e. large dif-211

ferences in expression between adjacent spatial domains — or continuous intradomain variation — i.e. a212

large slope 𝛽 of the piecewise linear expression function within a spatial domain (Methods). GASTON213

identifies 513 spatially varying genes with either discontinuities or intradomain variation (Figure S2A).214

Approximately half of these genes have discontinuities in expression, indicating that a gene is selectively215

expressed or not expressed within cells in a specific spatial domain. For example, GASTON finds that216

CPLX2 has discontinuities in expression at the boundaries of the granule layer, which matches prior stud-217

ies showing that large expression of CPLX2 in granule cells suppresses differentiation pathways [155]218

(Figure S2B). Furthermore, more than 60% of the spatially varying genes identified by GASTON have con-219

tinuous intradomain variation (Figure S2A), indicating that continuous variation is fairly common in the220

cerebellum. This observation may explain why SpaGCN, whose clustering algorithm assumes there is no221

continuous variation in gene expression, is less accurate in resolving the layers of cerebellum layers (Figure222

2D).223

Continuous intradomain variation in gene expression may be due to a continuum of cell states within224

a cell type, continuous variation in the proportion of cell types in a tissue, or other causes [160]. We225

evaluated whether the intradomain variation identified by GASTON was attributable to the annotated cell226

types in each domain, which distinguishes whether there is (1) a spatial component in the continuum of227

cell states within a cell type [160] or (2) spatial variation in either the proportion of cell types or other228

causes (Methods). Specifically, we say that intradomain variation is cell type-attributable if the slope 𝛽𝑐229

estimated only from cells annotated as cell type 𝑐 has magnitude |𝛽𝑐 | close to or larger than the magnitude230

|𝛽 | of the slope 𝛽 estimated from all cells (Methods). We find that 217 of the 338 genes that GASTON231

reports to have intradomain variation have cell type-attributable intradomain variation (Figure S2A).232

The cell type-attributable intradomain variation identified by GASTON reveals important cell type-233

specific processes including neuronal firing and differentiation. For example, CALB1, which is involved234

in calcium binding, has granule-attributable intradomain variation in the granule layer (Figure 3F). This235

granule-attributableCALB1 continuous variation identified by GASTON provides a potential molecular ex-236

planation for the reported spatial gradients in neuronal firing thresholds for granule cells in the granular237

layer [128]. A second example is SECISBP2L, which exhibits large oligodendrocyte-attributable intrado-238

main variation in the oligodendrocyte layer (Figure 3G). SECISBP2L was recently shown to be specifically239

expressed in differentiating oligodendrocytes, with SECISBP2L more highly expressed in less mature oligo-240

dendrocyte cells [29]. The observed decrease in SECISBP2L expression as a function of isodepth suggests241

that oligodendrocyte differentiation may occur along the isodepth axis, i.e. along the spatial gradients242

∇𝑑 , in the oligodendrocyte layer (Figure 2A). Notably, continuous variation in SECISBP2L expression in243

the oligodendrocyte layer is not apparent from individual expression values per spot (Figure 3H), but is244

revealed by the expression function learned by GASTON, which pools expression values along contours245

of constant isodepth (Figure 3I).246

Approximately 35% of the intradomain variation in gene expression identified by GASTON is not at-247

tributable to cell type (Figure S2A). For example, CAMK2B, which is overexpressed in granule cells, has248

large intradomain variation in the Purkinje-Bergmann layer (Figure 3J, left). However, this intradomain249

variation is not attributable to the Purkinje or Bergmann cell types, as the Purkinje- and Bergmann-specific250

expression functions for CAMK2B have zero slope (Figure 3J, right). Instead, the intradomain variation of251

CAMK2B is likely attributable to the large decrease in proportion of granule cells in the Purkinje-Bergmann252

layer as a function of isodepth (Figure 2I). CAMK1D, a calcium-dependent protein kinase whose aberrant253
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behavior has been linked to Alzheimer’s disease [47] and glioma [63], exhibits intradomain variation in254

the molecular layer (Figure 3I, left) that is not attributable to either MLI1 or MLI2 neurons (Figure 3I, right).255

This variation could be attributable to other causes such as cellular interactions or neuronal firing.256

These analyses demonstrate that GASTON’s combined model of continuous and discontinuous varia-257

tion of gene expression reveals biologically meaningful marker genes and continuous gradients of expres-258

sion not found by existing approaches.259

2.4 Spatial gradients in the tumor microenvironment260

We next used GASTON to investigate spatial gene expression patterns in the tumor microenvironment261

(TME). The TME is strongly correlated with tumor development and prognosis [43], but is challenging262

to quantify accurately without spatial information [157]. However, existing analyses of tumor SRT data,263

e.g. [12, 36, 62], examine only differentially expressed (DE) genes or pathways between the tumor and264

surrounding stromal regions. We hypothesized that GASTON’s ability to quantify continuous variation265

might reveal more subtle variation in gene expression relative to the boundary of the tumor.266

We applied GASTON to SRT data from a colorectal (CRC) tumor tissue slice (Figure 4A) where the267

expression of 36,601 transcripts in 3,900 spots was measured using the 10x Genomics Visium platform268

[149]. GASTON identifies five spatial domains (Figure 4B) that are visually distinct in the H&E-stained269

image (Figure 4A), including the tumor (domain 1), the tumor-adjacent stromal region (domain 2), and270

other stromal regions not directly adjacent to the tumor (domains 3-5). In contrast, the the published271

analysis of this data performed unsupervised clustering of spots based on gene expression alone [121] and272

was unable to distinguish between the different stromal regions of the the tissue slice (Figure S4).273

We analyzed spatial variation in the TME by examining the expression of each gene as a function of274

the isodepth 𝑑 , which varies smoothly from the tumor boundary to the interior (Figure 4C, Supplementary275

Table). GASTON identifies 1,572 spatially varying genes in the tumor and adjacent stromal domains which276

exhibit one of seven different spatial expression patterns: intratumoral variation, a discontinuity at the277

tumor-stroma boundary, intrastromal variation, or any combination of these (Figure 4D). For six of the278

seven spatial gene expression patterns, the genes exhibiting the spatial pattern are enriched (𝑝 < 0.01,279

GSEA [74]) for cancer hallmark gene sets (Figure 4E). We further group the genes in the six enriched280

spatial gene expression patterns found by GASTON into three different types: (1) Type I genes, which281

have intratumoral variation and no discontinuity in expression; (2) Type II genes, which have intrastromal282

variation and a discontinuity at the tumor-stroma boundary; and (3) Type III genes, which have either283

intrastromal variation or discontinuity at the tumor-stroma boundary but no intratumoral variation.284

The three types of spatially varying genes identified by GASTON reflect distinct biological processes285

occurring in the TME. The 742 Type I genes (intratumoral variation) are enriched for oxidative phospho-286

rylation and cholesterol homeostasis gene sets; moreover, 39 of the 42 Type I genes involved in oxidative287

phosphorylation or cholesterol homeostasis have positive slopes within the tumor domain, indicating an288

increase in expression from the margin to the interior of the tumor. Thus, Type I genes likely indicate289

an increasing gradient of metabolic activity from the tumor boundary to the interior [74]. For example,290

COX7B (Figure 4F) is a Type I gene in the oxidative phosphorylation pathway and a component of the291

cytochrome c oxidase protein complex which transfers electrons to oxygen in the electron transport chain292

and leads to ATP synthesis [144]. Several other genes in this complex are also Type I genes, including293

COX17, COX7A2, COX6C, and COX8A. Another Type I gene is Stearyl-CoA desaturase (SCD, Figure 4G),294

a fatty enzyme that is key component of lipid metabolism [122], with SCD deficiency being linked to re-295

duced lipid synthesis and other poor health outcomes [38]. Interestingly, the expression of both SCD and296

COX7B are directly affected by oxygen availability [151], with lower expression in hypoxic conditions. The297

higher expression of these genes in the interior of the tumor suggests that the interior of this CRC tumor298

slice is more oxygenated than the boundary. This observation is consistent with a previous clinical study299
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Figure 4: GASTON identifies spatial gene expression patterns in the tumor micro-environment.
(A) H&E stain of a 10x Genomics Visium colorectal tumor sample. (B) Spatial domains learned by
GASTON. Domains 1 and 2 are labeled as tumor and tumor-adjacent stroma, respectively, based on the
histology image in (A). (C) Isodepth 𝑑 and spatial gradients learned by GASTON restricted to tumor and
tumor-adjacent stromal domains. (D) GASTON identifies 986 spatially varying genes which are classi-
fied into three spatial expression patterns: genes with intrastromal variation in expression; genes with a
discontinuity in expression at the tumor-stroma boundary; and genes with intratumoral variation in ex-
pression. (E) Enrichment for hallmark cancer gene sets reported by gene set enrichment analysis (GSEA)
for six of the seven spatial expression patterns in (D). The spatial expression patterns are grouped into
three types according to expression pattern and enriched cancer pathways. (F-I) Isodepth 𝑑 versus expres-
sion for Type I genes (F) COX4l1 and (G) SCD, and Type II genes (H) ACTA2 and (I) TAGLN. (J) COL1A2
expression shown in log CPM. (K) Expression versus isodepth for Type II gene COL1A2. (L) GASTON
COL1A2 expression function shows a gradient of expression at the tumor-stroma boundary.
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which found that that stage IV CRC tumors may have lower hypoxia response — and thus higher oxygen300

availability — in the tumor interior compared to the boundary [2].301

The 106 Type II genes (intrastromal variation and discontinuity) primarily describe the upregulation302

of epithelial-mesenchymal transition (EMT) genes immediately outside the tumor boundary. Several stud-303

ies have shown that upregulation of EMT genes within tumor-associated stromal cells is associated with304

aggressive, poor prognosis CRC subtypes [20, 60, 73]. Of the 15 type II genes in the EMT pathway, 14305

had positive slopes with isodepth in the tumor-adjacent stroma domain, i.e. expression increased closer306

to the tumor boundary, suggesting that this stage IV colorectal tumor was likely an aggressive subtype.307

For example, ACTA2 and TAGLN, two genes that were reported to be markers of a subtype of colorec-308

tal cancer-associated fibroblasts with upregulated EMT-related genes [73], have positive slopes and large309

discontinuities at the tumor boundary (Figure 4H, I). GASTON also finds that ACTA2 and TAGLN have310

constant, low expression in the tumor region, consistent with previous studies that find no evidence for311

upregulation of EMT-related genes in CRC tumor cells [20, 60]. The upregulation of EMT genes – such as312

ACTA2 and TAGLN – in tumor-associated stromal cells could be an important mechanism underlying the313

aggressiveness of this CRC tumor, where these stromal cells may facilitate local invasion and metastasis314

[65]. Notably, the overexpression of several Type II genes is concentrated on the right side of the tumor315

boundary (Figure S5A,B), suggesting that the local invasion and metastasis may be localized to a specific316

part of the tumor boundary. We also highlight the Type II gene LGR5, which has large expression at the317

tumor boundary and has been reported to be a potential marker for CRC stem cells [92] (Figure S5C,D).318

The co-expression of LGR5 and ACTA2 / TAGLN suggests a potential interaction between tumor-adjacent319

stromal cells and CRC stem cells.320

We emphasize that the upregulation of EMT genes near the tumor boundary is not readily apparent321

from the sparse UMI counts. For example, COL1A2 is a Type II gene involved in EMT [146], but the spatial322

distribution of COL1A2 expression is difficult to discern directly (Figure 4J), with nearly half of all spots323

having no measured COL1A2 transcripts while only a small fraction of spots (5%) have more than 10 tran-324

scripts. GASTON aggregates the sparse COL1A2 expression measurements across the contours of constant325

isodepth and learns a piecewise linear COL1A2 expression function of isodepth (Figure 4K), revealing con-326

tinuous variation in COL1A2 expression. In particular, GASTON finds that COL1A2 expression peaks at327

the tumor boundary and decays in the interior of tumor and in the tumor-adjacent stroma (Figure 4L). This328

expression pattern is consistent with a recent report demonstrating that COL1A2 expression is lower in329

primary CRC tumors compared to adjacent stromal tissue [156].330

The 657 Type III genes (no intratumoral variation) identified by GASTON primarily describe immune331

response in the stroma as well as cell signaling and proliferation in the tumor. For example, THBS1 has332

a large discontinuity in expression at the tumor-stroma boundary and has high expression in the tumor-333

adjacent stroma (Figure S5E), consistent with reports that THBS1 expression promotes immune cell re-334

sponse in other cancer types [106, 166]. Another Type III gene, FUCA1, is involved in fucosylation of pro-335

teins and a member of the p53 signaling pathway [37]. GASTON finds that FUCA1 has large, negative slope336

in the stroma region; no discontinuity in expression at the tumor boundary; and constant, low expression337

in the tumor region (Figure S5F). This spatial expression pattern suggests that FUCA1 is downregulated338

in the tumor region, agreeing with several recent studies which found that FUCA1 is downregulated in339

highly aggressive and metastatic CRC and breast tumors [16, 99].340

Overall, the spatial gene expression patterns identified by GASTON suggest that the interior of this341

CRC tumor sample is growing slowly – since aerobic metabolism through oxidative phosphorylation in-342

dicates slow cellular growth and proliferation [169] – while the boundary is undergoing EMT to stem-like343

states [86]. These features of the tumor interior and boundary indicate a late-stage, vascularized primary344

tumor with a fully metastatic margin, a characterization which aligns with the tumor’s clinical information345

[149]. Thus, this analysis demonstrates how the gene expression topography learned by GASTON enables346

the characterization of the spatial and molecular organization of the TME.347
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Figure 5: GASTON reveals variation in cell types and gene expression in themouse olfactory bulb.
(A) DAPI stain of mouse olfactory bulb [42] produced by [22]. (B) Isodepth 𝑑 and (negative) spatial gra-
dients −∇𝑑 (shown as streamlines) learned by GASTON. Curves denote contours of constant isodepth 𝑑 .
(C) Spatial domains learned by GASTON and labeled based on annotations in (A). (D) Cell type proportion
as a function of isodepth 𝑑 . Dashed lines indicate boundaries of spatial domains identified by GASTON.
Most abundant cell types in each spatial domain are highlighted. (E) (Left) Isodepth versus expression for
CCK which (Right) has mitral/tufted-attributable intradomain variation in the glomerular layer (GL) and
external plexiform layer (EPL). (F) (Left) Isodepth versus expression for GAD2 which (Right) has granule-
attributable intradomain variation in the granule cell layer (GCL). (G) (Left) Isodepth versus expression
for DCX which has continuous variation in the rostral migratory stream (RMS) which is (Right) not at-
tributable to cell type, as the expression function for the most abundant cell types have zero slope. (H)
DCX expression shown in log CPM. (I) DCX expression function learned by GASTON.
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2.5 Spatial gradients of cell type and gene expression in the mouse olfactory bulb348

Finally, we used GASTON to analyze Stereo-seq [22] data from the mouse olfactory bulb which measures349

the expression of 27,106 transcripts at 9,825 spatial locations. Stereo-seq achieves single cell spatial res-350

olution using DNA nanoball patterned array chips, but the data is highly sparse, with a median UMI of351

less than 350 per location. At the same time, the olfactory bulb has a radial geometry consisting of several352

concentric layers (Figure 5A), and this geometry provides spatial constraints that may help overcome the353

severe data sparsity.354

GASTON learns the radial geometry of the olfactory bulb nearly perfectly, with the isodepth 𝑑 pro-355

viding a topographic map that reflects the geometry of the olfactory bulb (Figure 5B). Using the learned356

isodepth, GASTON divides the tissue into seven contiguous spatial domains (Figure 5C) that visually cor-357

respond to the seven distinct layers of the olfactory bulb (Figure 5A). In comparison, the spatial domains358

found by SpaGCN, a method based on a graph convolutional neural network, are less spatially coherent359

than the GASTON domains and do not reflect the layered geometry of the olfactory bulb. Notably, SpaGCN360

poorly resolves the innermost rostral migratory stream (RMS) layer (Figure S6A,B).361

The olfactory bulb is one of two regions in the brain where adult neurogenesis occurs, with immature362

neurons migrating outward from the RMS (large isodepth) towards the outermost olfactory nerve layer363

(ONL, small isodepth) [90, 80]. Thus, in this tissue, the isodepth 𝑑 learned by GASTON provides a measure364

of potency in the olfactory bulb, and the negative gradients −∇𝑑 show the spatial trajectories of neural365

maturation and migration (Figure 5B).366

GASTON reveals substantial variation in cell type composition as a function of isodepth 𝑑 in the ol-367

factory bulb (Figure 5D). While the cell type composition of the different layers of the olfactory bulb is368

well-studied, GASTON uncovers the spatial arrangement of cell types within each layer which has not369

been fully characterized in the literature [94]. For example, while previous studies have found that both370

mesenchymal cells and olfactory ensheathing cells (OECs) are in the outermost olfactory nerve layer (ONL)371

[75], GASTON identifies that these two cell types have different spatial arrangements in the ONL: mes-372

enchymal cells are concentrated on the outer edge of the layer (isodepth𝑑 < 50) while OECs peak at a larger373

isodepth (𝑑 ≈ 85) and are spread more diffusely throughout the ONL. This arrangement of mesenchymal374

cells aligns with studies showing that ONL neuron axons grow towards mesenchymal cells during de-375

velopment [33, 109], as axons in the olfactory bulb point outwards [75], i.e. towards small isodepth. In376

the interior of the olfactory bulb, GASTON finds that immature neurons are most prevalent in the rostral377

migratory stream (RMS), with the proportion of immature neurons increasing sharply with isodepth, in378

agreement with studies showing that neurogenesis occurs starting from the RMS interior [90, 80].379

The isodepth 𝑑 also distinguishes different cell types or cell states with similar gene expression profiles.380

For example, mitral cells and tufted cells are grouped together in the single-cell reference dataset [133] used381

for cell type annotation, and also by SpaGCN (Figure S6A), due to the similar gene expression profiles382

of these cell types. However, GASTON reveals that the proportion of mitral/tufted cells peaks at two383

different isodepth values, 𝑑 ≈ 350 and 𝑑 ≈ 600, with a larger proportion of mitral/tufted cells at the second384

peak versus the first peak (Figure 5D). This suggests that the mitral/tufted cells at isodepth 𝑑 ≈ 350 are385

tufted cells, which previous studies have shown are spread diffusely in the external plexiform layer (EPL)386

[94], while the mitral/tufted cells at isodepth 𝑑 ≈ 600 are mitral cells, which have been shown to form a387

monolayer in the mitral cell layer (MCL) [41]. GASTON also distinguishes between different granule cell388

states. While there is a single category of granule cells in the single-cell reference dataset [133], previous389

studies have shown that there are morphologically distinct granule cell subtypes in different layers of the390

olfactory bulb [94]. GASTON shows that while granule cells are most prevalent in the granule cell layer391

(GCL), there is a small population of granule cells in the EPL and in the MCL with roughly constant cell392

type proportion (Figure 5D). The spatial segregration of these two granule cell populations suggests that393

the granule cells in the EPL and MCL may have a different cell state compared to granule cells in the GCL.394
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Notably, neither the distinction between mitral and tufted cells nor the prevalence of immature neurons395

in the interior of the bulb are apparent using an alternative 1-D coordinate computed by SpaceFlow [113]396

that is based on diffusion pseudotime [49] (Supplementary Section C and Figure S6).397

GASTON identifies 704 genes with spatially varying expression – i.e. genes with either discontinuous398

expression or intradomain variation in expression – in the olfactory bulb (Figure S7, Supplementary Table).399

These genes distinguish different cell types and states in the olfactory bulb and reveal potential molecular400

mechanisms for biological phenomena. We highlight three examples here. CCK, which is reported to be a401

marker for a specific subtype of tufted cells [163, 131, 59], has mitral/tufted-attributable intradomain varia-402

tion in the glomerular layer (GL) and EPL (Figure 5E). As noted above, the mitral/tufted cells in the GL and403

EPL are likely tufted cells, indicating that the continuous variation in CCK expression is likely tufted cell-404

attributable and not mitral cell-attributable. GAD2, a marker gene for neurons in the GABAergic systems405

– the main inhibitory neurotransmitter system in the brain [8, 14, 10] – has granule-attributable intrado-406

main variation in the GCL (Figure 5F). Granule cells are known to be GABAergic [94], suggesting that407

the granule-attributable variation identified by GASTON may play a role in the GABAergic system. DCX408

(doublecortin) has large intradomain variation in the RMS (Figure 5G), consistent with reports [39, 45]409

that DCX is a marker gene for immature neurons in the RMS (Figure 5D). The continuous variation in410

DCX expression is not attributable to cell type, and instead is likely due to the increasing proportion of im-411

mature neurons in the RMS as a function of isodepth (Figure 5D). While the intradomain variation in DCX412

expression is challenging to observe from the sparse Stereo-seq UMI counts (Figure 5H), GASTON learns a413

DCX expression function that pools expression across isodepth and uncovers the continuous intradomain414

variation in DCX (Figure 5I).415

3 Discussion416

Accurate models of spatial gene expression variation within tissues are critical for determining the spatial417

organization of cell types and for defining processes of differentiation and intercellular communication418

that modulate cell states within spatial niches. Spatial variation in gene expression includes both discon-419

tinuous changes in gene expression across the different spatial domains of a tissue, as well as continuous420

variation within and across spatial domains due to variation in cell state or other causes. While numer-421

ous computational methods have been developed to identify spatial domains by modeling discontinuous422

changes in gene expression, few methods are able to identify spatial domains and simultaneously model423

continuous variation within the domains. Moreover, to our knowledge no existing methods perform this424

simultaneous identification in an unsupervised and biologically interpretable manner.425

In this work, we introduce the isodepth, a coordinate that models both the arrangement of spatial do-426

mains within a tissue and the relative position of spatial locations with each domain. The isodepth gives427

a topographic map of a tissue slice, analogous to elevation in a map of the Earth’s surface. The gradient428

of the isodepth describes spatial gradients, or the spatial directions of maximum change in gene expres-429

sion in a tissue. We derive an unsupervised and interpretable deep learning algorithm, GASTON, that430

learns the isodepth, spatial gradients, and piecewise linear gene expression functions of the isodepth. We431

demonstrate that the isodepth and spatial gradients learned by GASTON improve detection of spatial do-432

mains and spatially varying marker genes, and enable the identification of spatial gene expression patterns433

linked to important biological processes including differentiation and communication in the brain as well434

as hypoxia in the tumor microenvironment.435

A key advantage of the isodepth computed by GASTON is that it provides a global model of spatial gene436

expression. Just as one can climb to the same elevation on two different mountains, so too can the isodepth437

take on the same value at two spatially separated locations in the same spatial domain, e.g. the Purkinje-438

Bergmann layer in the mouse cerebellum (Figure 2B). This global model presents a stark departure from439
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nearly all existing SRT methods which model only local spatial correlations. Using the isodepth, GASTON440

is able to model “long-range” spatial correlations, i.e. correlations between distant spatial locations, and441

pool information across spatially distant locations on the same isodepth contour. As we demonstrate,442

incorporating these long-range dependencies leads to improved inference of spatial domains and marker443

genes.444

On a smaller scale, the isodepth learned by GASTON provides a coordinate for quantifying variation445

in gene expression in the tumor microenvironment (TME). Just as single-cell transcriptomics of tumor446

samples led to the identification of numerous clinical and molecular biomarkers [158], we anticipate that447

spatial variation in gene expression in the TME will also have high clinical relevance. For example, we448

showed that GASTON extracts gradients in gene expression that correlate with metabolism, the epithelial-449

mesenchymal transition (EMT) and other hallmarks of the TME which may translate to novel biomark-450

ers for prognostics, treatment outcome prediction, and personalized medicine [28, 57, 44]. Additionally,451

GASTON introduces a new axis of tumor classification, in which tumors may be further characterized by452

the variation of distinct tumor processes across spatial gradients; for example, some tumors may have an453

increasing gradient of aerobic metabolism towards the tumor center (e.g. Figure 4) while other tumors454

may have a decreasing gradient. Another potential clinical implication is that the spatial gradients learned455

by GASTON could reveal spatial trajectories of metastatic migration, similar to how the spatial gradients456

learned by GASTON in the olfactory bulb show spatial trajectories of neural migration (Figure 5B). For457

example, the variation of EMT genes along the spatial gradients near the tumor boundary may reveal the458

molecular underpinnings of the margination process in which tumor cells migrate towards a vascular wall459

before metastasis [142, 165].460

The inference of continuous variation in transcriptomic space, i.e. trajectory inference or pseudotime461

approaches, is widely applied in scRNA-seq analysis [49, 137, 107, 129]. Recently, there have been some462

attempts to adapt these approaches to SRT data [113, 51, 97, 85]. However, continuous variation in tran-463

scriptomic space is not equivalent to continuous variation in physical space that is modeled by isodepth.464

Indeed we find that existing approaches based on diffusion pseudotime [49] learn a coordinate that is465

nearly constant in each spatial domain, and thus obscures spatial variation in gene expression and cell type466

proportions within spatial domains (Figure S6). This limitation of existing scRNA-seq-based approaches467

underscores the need for methods like GASTON that model continuous spatial variation.468

We note that the current derivation of isodepth by GASTON relies on two simplifying assumptions that469

may require adjustment for specific applications. First, we assume that all (spatially varying) genes share470

the same vector field of spatial gradients. Thus, GASTON will not automatically find multiple directions of471

spatial variation, where each direction corresponds to a subset of genes. For these situations, it might be472

appropriate to learn the isodepth using a restricted set of genes or a smaller region of a tissue slice; e.g. one473

may apply GASTON to spatial domains or gene sets obtained from a standard SRT or single-cell clustering474

algorithm. Second, we assume that the shared spatial gradient vector field is conservative, meaning that475

it does not “rotate” in space (i.e. curl(v) = 0). GASTON may not be applicable to tissue slices where this476

assumption is violated, although we are not aware of any such biological examples. An important next step477

would be to develop a framework for learning spatial gradients under relaxed mathematical assumptions,478

potentially using neural fields or transformers which have been used to learn vector fields in other areas479

of biology and machine learning [110, 152, 23].480

We envision that the simplicity and generality of both the mathematical framework of the isodepth and481

the GASTON algorithm can be readily extended in several directions. First, the piecewise linear model of482

gene expression can be replaced by more complicated functions. While more complicated functions may483

be prone to overfitting with sparse SRT data, they may be appropriate for targeted SRT technologies —484

e.g. MERFISH [91], 10X Genomics Xenium [61], STARMap [143, 162], or NanoString CosMx [52] — that485

have higher detection efficiency. Second, it would be desirable to extend GASTON to identify 3-D spatial486

gradients, e.g. by utilizing spatial alignment tools [159, 77, 67, 64], as well as spatiotemporal gradients487
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[114]. A third direction is to extend GASTON to other molecular modalities such as chromatin accessibil-488

ity [164, 119] or protein/metabolite abundance [141, 82], e.g. using recent data on spatial measurements of489

ribosome-bound transcripts [161]. Fourth, there has been much work on quantifying transcriptomic vector490

fields by computing RNA velocity from ratios of spliced/unspliced RNA in single-cell RNA-seq data (e.g.491

[108, 70, 46, 11]) and it would be interesting to understand how RNA velocity varies along the spatial gra-492

dients learned by GASTON. Similarly, it would also be useful to understand how local microenvironments493

or cellular interactions, e.g. as learned by [150, 112, 30], vary along the GASTON spatial gradients. Finally,494

several recent papers have studied how genetic variants affect single-cell gene expression measurements,495

i.e. single-cell eQTLs (expression quantitative trait loci) [27, 95] and it would be useful to understand how496

genetic variants contribute to the continuous and discontinuous spatial gene expression patterns found by497

GASTON.498

In summary, the topographic maps and gene expression functions computed by GASTON provide a499

novel and general framework for analyzing continuous and discontinuous spatial variation in gene expres-500

sion from spatial sequencing data across many biological systems.501
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4 Methods502

4.1 Modeling gene expression and spatial gradients503

We derive a model for spatial domains and gradients of gene expression in spatially resolved transcrip-504

tomics (SRT) data. SRT technologies measure the expression of 𝐺 genes in a tissue slice 𝑇 ⊆ ℝ2, which505

we model with a gene expression function f : 𝑇 → ℝ𝐺 . The vector f (𝑥,𝑦) = (𝑓1(𝑥,𝑦), . . . , 𝑓𝐺 (𝑥,𝑦))⊺ gives506

the (normalized) expression of each gene at spatial location (𝑥,𝑦) in the tissue slice 𝑇 , with the 𝑔-th com-507

ponent function 𝑓𝑔 : ℝ2 → ℝ describing the expression of a single gene 𝑔. For example, a gene 𝑔 whose508

expression is constant across the tissue slice 𝑇 has a constant expression function 𝑓𝑔 (𝑥,𝑦) = 𝑐 , while a509

gene that is differentially expressed in a region 𝑅 ⊆ 𝑇 might have the expression function 𝑓𝑔 (𝑥,𝑦) =510

𝑐 · 1{ (𝑥,𝑦) ∈𝑅} + 𝑐′ · 1{ (𝑥,𝑦)∉𝑅} .511

We model each expression function 𝑓𝑔 as a piecewise continuous function. Piecewise continuous func-512

tions model continuous spatial variation in gene expression while also allowing for discontinuities in513

expression due to sharp changes in cell type composition or other factors. We assume the expression514

functions 𝑓𝑔 have the same pieces for all genes, and thus each expression function 𝑓𝑔 has the form:515

𝑓𝑔 (𝑥,𝑦) =
𝑃∑︁

𝑝=1
𝑓𝑔,𝑝 (𝑥,𝑦) · 1{ (𝑥,𝑦) ∈𝑅𝑝 } . (2)

where 𝑓𝑔,𝑝 : ℝ2 → ℝ are continuous functions and 𝑅1, . . . , 𝑅𝑃 ⊆ ℝ2 are a partition of the tissue slice𝑇 into516

𝑃 disjoint regions which we call spatial domains. Note that the spatial domains 𝑅𝑝 need not be contiguous,517

and thus this model allows for physically separate locations within the tissue slice to contain a similar518

composition of cell types.519

A spatial gradient describes how gene expression varies across the 2D tissue slice 𝑇 . For a single gene520

𝑔, the spatial gradient is given by the gradient ∇𝑓𝑔 of the expression function 𝑓𝑔. More generally, the rows521

of the Jacobian matrix J(f) =
[
∇𝑓1 · · · ∇𝑓𝐺

]⊺ ∈ ℝ𝐺×2 of the gene expression function f give the individual522

spatial gradient of each gene at each spatial location (𝑥,𝑦) ∈ 𝑇 . Note that the rank of the Jacobian matrix523

J(f) is at most two.524

Estimating the spatial gradients ∇𝑓𝑔 for every gene 𝑔 from SRT data from a single tissue slice is difficult525

due to the limited spatial resolution and limited sequence coverage (e.g. sparsity) of the data. To avoid526

overfitting, we make some assumptions on the structure of the spatial gradients. Specifically, we assume527

that the Jacobian matrix J(f) has rank one at every spatial location (𝑥,𝑦) ∈ 𝑇 , i.e. the rows ∇𝑓𝑔 (𝑥,𝑦) of the528

Jacobian matrix J(f) (𝑥,𝑦) are linearly dependent for every spatial location (𝑥,𝑦) ∈ 𝑇 . This assumption is529

motivated by the observation that spatial expression gradients tend to be correlated; for example, many530

genes have been observed to have expression gradients along the same axes in the brain and liver [21, 9].531

Under this assumption, for each spatial location (𝑥,𝑦) ∈ 𝑇 there exists a vector v(𝑥,𝑦) ∈ ℝ2 such that the532

gradient vector ∇𝑓𝑔 (𝑥,𝑦) of each gene 𝑔 is a scalar multiple of the vector v(𝑥,𝑦):533

∇𝑓𝑔 (𝑥,𝑦) = 𝛽𝑔 (𝑥,𝑦) · v(𝑥,𝑦) (3)

where 𝛽𝑔 (𝑥,𝑦) : ℝ2 → ℝ are scalar functions and v(𝑥,𝑦) is a vector field which we call the spatial gradient534

vector field. Since the expression function f is piecewise continuous, the gradient ∇𝑓𝑔 of each expression535

function 𝑓𝑔 is also piecewise continuous, and so we may re-write (3) as536

∇𝑓𝑔 (𝑥,𝑦) =
𝑃∑︁

𝑝=1
𝛽𝑔 (𝑥,𝑦) · v(𝑥,𝑦) · 1{ (𝑥,𝑦) ∈𝑅𝑝 } . (4)
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4.2 Conservative vector fields and piecewise linear functions537

Equation (4) provides a general model for spatial gradients ∇𝑓𝑔 under a rank-one assumption on the Jaco-538

bian matrix J(f). However, in practice, it is still difficult to estimate the parameters of (4) from SRT data,539

as we do not observe expression gradients ∇𝑓𝑔 but only the expression values 𝑓𝑔. To derive a model for540

the expression functions 𝑓𝑔 while minimizing overfitting, we make three simplifying assumptions on the541

spatial gradient vector field v, spatial domains 𝑅𝑝 , and scalar functions 𝛽𝑔 (𝑥,𝑦).542

First, we assume the spatial gradient vector field v is the gradient of a continuously differentiable, scalar543

function 𝑑 : ℝ2 → ℝ, i.e. v = ∇𝑑 . We call 𝑑 the isodepth of the tissue slice 𝑇 . The isodepth 𝑑 describes544

the “topography” of a tissue slice 𝑇 , analogous to the elevation in a topographic maps of a geographic545

region. In physics, vector fields v that are the gradient of a scalar function 𝑑 are called conservative vector546

fields, and the scalar function 𝑑 is called the potential function as it measures potential energy at different547

locations in space, e.g. a gravitational potential function or an electric potential function [87]. In our548

setting, the scalar function 𝑑 measures a “gene expression potential” at different locations in a tissue slice549

𝑇 . The vector field v being conservative is equivalent to the curl of v being 0 everywhere, i.e. there are no550

regions of the tissue where the vector field v “rotates”.551

Second, we model each spatial domain 𝑅𝑝 as a union of level sets of the isodepth 𝑑 . Specifically, we552

assume that each spatial domain 𝑅𝑝 = {(𝑥,𝑦) : 𝑏𝑝−1 < 𝑑 (𝑥,𝑦) ≤ 𝑏𝑝 } is equal to the set of spatial locations553

(𝑥,𝑦) with isodepth 𝑑 (𝑥,𝑦) in the interval (𝑏𝑝−1, 𝑏𝑝], for some real numbers −∞ = 𝑏0 < 𝑏1 < · · · < 𝑏𝑃−1 <554

𝑏𝑃 = ∞. This ensures that the spatial domains 𝑅𝑝 do not intersect, and leads to a particularly simple form555

for the expression function 𝑓𝑔 as we show below.556

Third, we assume that the scalar functions 𝛽𝑔 (𝑥,𝑦) are constant inside each spatial domain 𝑅𝑝 ; i.e., the557

scalar functions 𝛽𝑔 (𝑥,𝑦) =
∑𝑃

𝑝=1 𝛽𝑔,𝑝1{ (𝑥,𝑦) ∈𝑅𝑝 } are piecewise constant.558

Under these assumptions, the spatial gradients ∇𝑓𝑔 in (4) are equal to559

∇𝑓𝑔 (𝑥,𝑦) =
𝑃∑︁

𝑝=1
𝛽𝑔,𝑝 · ∇𝑑 (𝑥,𝑦) · 1{𝑏𝑝−1<𝑑 (𝑥,𝑦)≤𝑏𝑝 } . (5)

Integrating both sides of (5) yields the following closed form for the gene expression function 𝑓𝑔:560

𝑓𝑔 (𝑥,𝑦) =
𝑃∑︁

𝑝=1
(𝛼𝑔,𝑝 + 𝛽𝑔,𝑝 · 𝑑 (𝑥,𝑦)) · 1{𝑏𝑝−1<𝑑 (𝑥,𝑦)≤𝑏𝑝 }, (6)

for some constants 𝛼𝑔,𝑝 and 𝛽𝑔,𝑝 . Combining (6) for all genes 𝑔 = 1, . . . ,𝐺 yields the following expression561

for the gene expression vector f = (𝑓1, . . . , 𝑓𝐺 ):562

f (𝑥,𝑦) =
𝑃∑︁

𝑝=1
(𝜶𝑝 + 𝜷𝑝 · 𝑑 (𝑥,𝑦)) · 1{𝑏𝑝−1<𝑑 (𝑥,𝑦)≤𝑏𝑝 }, (7)

for vectors 𝛼𝑝 = (𝛼𝑔,𝑝)𝑔∈𝐺 ∈ ℝ𝐺 and 𝛽𝑝 = (𝛽𝑔,𝑝)𝑔∈𝐺 ∈ ℝ𝐺 .563

Thus, under our model, the gene expression function f (𝑥,𝑦) at spatial location (𝑥,𝑦) ∈ 𝑇 is given by564

the composition f (𝑥,𝑦) = h(𝑑 (𝑥,𝑦)) of the isodepth 𝑑 and a piecewise linear function h = (ℎ1, . . . , ℎ𝐺 ) :565

ℝ → ℝ𝐺 with 𝑃 pieces and breakpoints 𝑏1, . . . , 𝑏𝑃−1:566

h(𝑤) =
𝑃∑︁

𝑝=1
(𝜶𝑝 + 𝜷𝑝𝑤) · 1{𝑏𝑝−1<𝑤≤𝑏𝑝 } . (8)

The vectors𝜶𝑝 and 𝜷𝑝 are the𝑦-intercepts and slopes, respectively, of the function h in the 𝑝-th piece across567

all 𝐺 genes. We call the function h(𝑤) a one-dimensional (1-D) expression function as it is a function of a568

single variable 𝑤 , the isodepth, in contrast to the gene expression function f (𝑥,𝑦) which is a function of569

two spatial variables 𝑥 and 𝑦.570
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Long-range spatial correlations and pooling. A major advantage of modeling gene expression as a571

function of isodepth is the ability to combine gene expression measurements from distinct spatial locations572

and thus overcome the sparsity of current SRT technologies. Specifically, all spatial locations with equal573

isodepth 𝑑 have identical gene expression value h(𝑑), and so estimation of h(𝑑) can use all locations on the574

contour of equal isodepth. This contour may traverse the entire tissue slice, and need not be a contiguous575

curve (e.g. Figure 2A). Thus, the isodepth model incorporates “long-range” spatial correlations [101], in576

contrast to many existing algorithms for analyzing SRT data which only incorporate local correlations577

between nearby spots, e.g. using hidden Markov random fields (HMRFs) [168, 34] or Gaussian processes578

(GPs) [135, 132, 130, 171]. Moreover, the isodepth model allows for “pooling” information across spatially579

separated regions of a tissue slice.580

The isodepth model substantially generalizes the model of layered tissues and “relative depth” in [83]581

which restricted the spatial domains 𝑅1, . . . , 𝑅𝑃 to be layers satisfying strict topological constraints. In582

contrast, here there are fewer topological constraints on the spatial domains 𝑅1, . . . , 𝑅𝑃 , and we learn the583

spatial domains and isodepth de novo from SRT data without any prior knowledge, as detailed below.584

4.3 Maximum likelihood estimation585

We compute the maximum likelihood estimators (MLEs) of the isodepth 𝑑 and piecewise linear 1-D ex-586

pression function h = (ℎ1, . . . , ℎ𝐺 ) from SRT data. The observed SRT data consists of a transcript count587

matrix A = [𝑎𝑖,𝑔] ∈ ℝ𝑁×𝐺 , where 𝑎𝑖,𝑔 is the UMI count of gene 𝑔 in spot 𝑖 , and a spatial location matrix588

S ∈ ℝ𝑁×2, where each row s𝑖 = (𝑥𝑖 , 𝑦𝑖) ∈ ℝ2 is the spatial location of the 𝑖-th spot. We define the Spatial589

Topography Problem (STP) as the following maximum likelihood estimation problem.590

Spatial Topography Problem (STP). Given SRT data (A, S) and a number 𝑃 of spatial domains, find a591

continuously differentiable function 𝑑 : ℝ2 → ℝ and a piecewise linear function h(𝑤) : ℝ → ℝ𝐺 with 𝑃592

pieces that maximize the log-likelihood of the data:593

argmax
𝑑∈𝐶1 (ℝ2,ℝ)

𝑏1<𝑏2<· · ·<𝑏𝑃−1
h=(ℎ1,...,ℎ𝐺 ) ∈L(𝑏1,...,𝑏𝑃−1 )

𝐺∑︁
𝑔=1

(
𝑁∑︁
𝑖=1

logℙ
(
𝑎𝑖,𝑔 | ℎ𝑔

(
𝑑 (𝑥𝑖 , 𝑦𝑖)

) ))
, (9)

where𝐶1(ℝ2,ℝ) is the space of continuously differentiable functions from ℝ2 to ℝ and L(𝑏1, . . . , 𝑏𝑃−1) is the594

set of piecewise linear functions with breakpoints 𝑏1, . . . , 𝑏𝑃−1.595

The STP substantially generalizes the 𝐿-Layered Problem from our previous work [83], which assumed596

the isodepth 𝑑 was given by a piecewise conformal map where the pieces are either bounded by lines or597

determined by prior knowledge on the shape of the spatial domains 𝑅𝑝 .598

The STP is a challenging non-convex optimization problem over spaces of continuously differentiable599

and piecewise continuous functions. We solve this optimization problem using deep learning. By the uni-600

versal approximation theorem [56], one can approximate a continuous function 𝑑 with a neural network.601

Moreover, even a piecewise continuous function can be well-approximated by neural networks [79], al-602

though it may be computationally intractable to identify the individual pieces of the function [123]. Thus,603

we solve the STP in a two-step approach, where we first learn the isodepth 𝑑 and then learn the piecewise604

linear expression function h.605

Step 1. We estimate the isodepth 𝑑 by solving a modified version of the maximum likelihood problem in606

(9) where we parametrize the functions 𝑑 : ℝ2 → ℝ and h = (ℎ1, . . . , ℎ𝐺 ) : ℝ → ℝ𝐺 with neural networks607

with weights 𝜃 and 𝜃 ′, respectively.608
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argmax
𝜃,𝜃 ′

𝐺∑︁
𝑔=1

(
𝑁∑︁
𝑖=1

logℙ
(
𝑎𝑖,𝑔 | h𝜃 ′

(
𝑑𝜃 (𝑥𝑖 , 𝑦𝑖)

)
𝑔

))
. (10)

The modified problem in (10) is also a non-convex optimization problem for most neural network609

architectures. Nevertheless, by parametrizing the arguments with neural networks, we leverage the fact610

that such problems can be approximately and efficiently solved by modern deep learning frameworks such611

as PyTorch [102].612

Solving (10) is equivalent to learning the parameters of a single neural network h𝜃 ′ ◦ 𝑑𝜃 , where one of613

the hidden layers has only one hidden neuron whose value is the estimated isodepth 𝑑𝜃 (Figure 1). As a614

result, the isodepth corresponds to an interpretable hidden layer of a neural network.615

Using the solution 𝜃 from (10) yields an estimate 𝑑 = 𝑑
𝜃

of the isodepth 𝑑 . We expect the estimated616

isodepth 𝑑 to be a good approximation of the solution to the STP (9), as both continuous functions 𝑑617

and piecewise continuous functions h can be well-approximated by neural networks [79]. However, it is618

difficult to identify the breakpoints 𝑏1, . . . , 𝑏𝑃−1 — and thus the spatial domains 𝑅𝑝 of the tissue slice —619

from the neural network h𝜃 ′ . Therefore, we solve a second optimization problem to estimate the piecewise620

linear function h.621

Step 2. We use the estimated isodepth 𝑑 from Step 1 to estimate the piecewise linear function ĥ with622

breakpoints 𝑏1, . . . , 𝑏𝑝 by solving the following optimization problem:623

argmax
𝑏1<𝑏2<· · ·<𝑏𝑃−1

h=(ℎ1,...,ℎ𝐺 ) ∈L(𝑏1,...,𝑏𝑃−1 )

𝐺∑︁
𝑔=1

(
𝑁∑︁
𝑖=1

logℙ
(
𝑎𝑖,𝑔 | ℎ𝑔

(
𝑑 (𝑥𝑖 , 𝑦𝑖)

) ))
. (11)

When there is only one gene, i.e. 𝐺 = 1, then the maximum likelihood problem in (11) is an instance624

of segmented regression, a classical problem from statistics that is solved by dynamic programming (DP)625

[3, 7]. For 𝐺 > 1 genes, we solve (11) using a variant of the segmented regression DP derived in [83].626

4.4 Training and implementation627

The algorithm described above can be implemented with different probability distributionsℙ(𝑎𝑖,𝑔 | 𝑓𝑔 (𝑥𝑖 , 𝑦𝑖)) =628

ℙ(𝑎𝑖,𝑔 | ℎ𝑔 (𝑑 (𝑥𝑖 , 𝑦𝑖))) for the gene expression values 𝑎𝑖,𝑔. Following prior work [136, 120, 83, 100], we model629

the UMI counts 𝑎𝑖,𝑔 with a Poisson distribution of the form 𝑎𝑖,𝑔
i.i.d.∼ Pois

(
𝑈𝑖 ·exp

(
𝑓𝑔 (𝑥𝑖 , 𝑦𝑖)

) )
, where𝑈𝑖 is the630

total UMI count at spot 𝑖 . Another alternative is a Gaussian measurement model 𝑎𝑖,𝑔
i.i.d.∼ 𝑁 (𝑓𝑔 (𝑥𝑖 , 𝑦𝑖), 𝜎2)631

where 𝜎2 is a shared variance parameter.632

In practice, although one could use all or selected gene expression values instead, for efficiency we do633

not directly solve the STP (9) using the observed gene expression values but instead use the top general-634

ized linear model principal components (GLM-PCs) [136]. This simplification is justified by our previous635

work [83] where we showed that for SRT data (A, S) generated from the Poisson expression model with636

a piecewise linear expression function h, then the top-2𝑃 GLM-PCs of the transcript count matrix A are637

also piecewise linear with Gaussian noise.638

Specifically, we compute the top-2𝑃 GLM-PCs and solve (10) with these GLM-PCs under a Gaussian639

error model. For the colorectal tumor (Section 2.4), in order to capture spatial variation from the histolog-640

ical image, we use the top-(2𝑃 − 3) GLM-PCs together with the mean R, G, and B values taken from the641

H&E stained image, resulting in (2𝑃 − 3) + 3 = 2𝑃 total features in the STP. We solve the optimization642

problem in (10) with neural networks 𝑑𝜃 and h𝜃 ′ that have two hidden layers of size 20 and are trained643
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for 10000 epochs using the Adam optimizer [66]. Because of the non-convexity of (10), we use 30 random644

initializations and select the solution with the largest likelihood.645

After solving (10) with the top-2𝑃 GLM-PCs and estimating the isodepth 𝑑 , we then solve (11) with the646

top GLM-PCs to estimate the breakpoints𝑏1, . . . , 𝑏𝑃−1. For most of the applications in this paper, we choose647

the number 𝑃 of spatial domains using prior knowledge on the geometry of the tissue slice, e.g. for the648

cerebellum (Figure 2), we use 𝑃 = 4 as prior work [19] showed that the cerebellum has four distinct layers.649

However, if the number 𝑃 of domains is not known, then one may follow the model selection criteria used650

by [83], i.e. identifying an elbow in the log-likelihood plot, which we use for the DLPFC application (Figure651

S3).652

Finally, we estimate the piecewise linear gene expression function ĥ by solving653

argmax
h=(ℎ1,...,ℎ𝐺 ) ∈L(𝑏1,...,𝑏𝑃−1 )

𝐺∑︁
𝑔=1

(
𝑁∑︁
𝑖=1

logℙ
(
𝑎𝑖,𝑔 | ℎ𝑔

(
𝑑 (𝑥𝑖 , 𝑦𝑖)

) ))
(12)

under the Poisson expression model for the UMI counts 𝑎𝑖,𝑔. We solve the optimization problem in (12)654

using Poisson regression with sklearn [103] for each individual gene 𝑔 and spatial domain 𝑅𝑝 . To prevent655

overfitting, we subsequently perform a hypothesis test of whether each slope 𝛽𝑔,𝑝 of gene 𝑔 in domain 𝑅𝑝656

is zero or non-zero, i.e. we test the hypotheses657

𝐻0 : 𝛽𝑔,𝑝 = 0 (13)
𝐻1 : 𝛽𝑔,𝑝 ≠ 0. (14)

For each gene 𝑔 and domain 𝑅𝑝 , we compute a log-likelihood ratio (LLR) for the null and alternative658

hypotheses under the Poisson expression model, and we estimate a 𝑝-value assuming that 2 · LLR follows659

a 𝜒2-distribution, which holds asymptotically by Wilks’ theorem [147]. We set the slope 𝛽𝑔,𝑝 to zero if the660

𝑝-value is less than 0.1.661

Moreover, we estimate a 1-D expression function ℎ𝑔 only for genes 𝑔 with at least 𝐾 total UMI counts662

where 𝐾 = 500 for the cerebellum and olfactory bulb (Sections 2.3, 2.5) and 𝐾 = 1000 for the colorectal663

tumor (Section 2.4). These choices of 𝐾 result in ≈ 2000− 5000 genes for which we estimate an expression664

function. Moreover, for Slide-SeqV2 and Stereo-Seq applications with sparse UMI counts, we only estimate665

a slope 𝛽𝑔,𝑝 in domain 𝑅𝑝 if there are at least 𝑇 non-zero expression values in the domain. We use 𝑇 = 75666

for the cerebellum and𝑇 = 20 for the olfactory bulb, which are approximately 10% of the number of spatial667

locations in the smallest domain.668

4.5 Quantifying spatial variation in gene expression669

The piecewise linear expression functions ℎ𝑔 (𝑤) = ∑𝑃
𝑝=1(𝛼𝑝 +𝛽𝑝) ·1{𝑏𝑝−1<𝑤≤𝑏𝑝 } reveal both discontinuities670

in expression and continuous variation within a domain, or intradomain variation, as we describe below.671

Discontinuous expression. Let 𝛿𝑔,𝑝 be the discontinuity of the function ℎ𝑔 at breakpoint 𝑏𝑝 , i.e. 𝛿𝑔,𝑝 =672

(𝛼𝑔,𝑝+1 + 𝛽𝑔,𝑝+1 ·𝑏𝑝) − (𝛼𝑔,𝑝 + 𝛽𝑔,𝑝 ·𝑏𝑝). A large (absolute) discontinuity |𝛿𝑔,𝑝 | indicates a large discontinuous673

change in the expression of gene 𝑔 at the boundary between spatial domains 𝑅𝑝 and 𝑅𝑝+1.674

We say a gene 𝑔 has a discontinuity in expression between spatial domains 𝑅𝑝 and 𝑅𝑝+1 if the esti-675

mated discontinuity magnitude |𝛿𝑔,𝑝 | is greater than a threshold 𝑡𝑝 . We set the threshold 𝑡𝑝 to be the tenth676

percentile of all estimated discontinuity magnitudes
(
|𝛿𝑔,𝑝 |

)
𝑔=1,...,𝐺

between spatial domains 𝑅𝑝 and 𝑅𝑝+1.677
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Intradomain variation. The slope 𝛽𝑔,𝑝 of the expression function ℎ𝑔 describes variation within a spa-678

tial domain 𝑅𝑝 . We say a gene 𝑔 has intradomain variation in spatial domain 𝑅𝑝 if the estimated magnitude679

|𝛽𝑔,𝑝 | of the slope is greater than a threshold 𝑠𝑝 . That is, intradomain variation corresponds to a large effect680

size of the parameter 𝛽𝑔,𝑝 . (Note that this effect size thresholding is distinct from the 𝑝-value threshold-681

ing in Section 4.4.) We set the threshold 𝑠𝑝 to be the tenth percentile of all estimated slope magnitudes682 (
|𝛽𝑔,𝑝 |

)
𝑔=1,...,𝐺

in domain 𝑅𝑝 .683

4.6 Attributing continuous variation in expression to cell types684

Intradomain variation in expression – i.e. a large magnitude of the slope 𝛽𝑔,𝑝 for a domain 𝑅𝑝 in the685

piecewise linear fit – may be due to variation in expression within a cell type, variation in the proportions686

of cell types, or other biological causes. To illustrate, consider the 1-D expression function ℎ(𝑤) = ℎ𝑔 (𝑤)687

for a single gene 𝑔. Given cell types 𝑐 = 1, . . . ,𝐶 , the function ℎ(𝑤) is given by688

ℎ(𝑤) =
𝐶∑︁
𝑐=1

(
ℎ𝑐 (𝑤) · 𝑢𝑐 (𝑤)

)
+ 𝜖 (𝑤) (15)

where ℎ𝑐 : ℝ → ℝ is the cell type 𝑐-specific expression, 0 ≤ 𝑢𝑐 (𝑤) ≤ 1 is the proportion of cell type 𝑐 at689

isodepth𝑤 , and 𝜖 (𝑤) represents variation due to other factors.690

Suppose that the expression function is ℎ(𝑤) = 𝑒 · 𝑢𝑐 (𝑤) + 𝜖 (𝑤); i.e. expression is constant for cell691

type 𝑐 and zero for other cell types. If the cell type proportion 𝑢𝑐 (𝑤) or other variation function 𝜖 (𝑤) are692

not constant functions of the isodepth 𝑤 , then the function ℎ(𝑤) will not be constant. Thus, when we693

fit the expression function ℎ(𝑤) with a piecewise linear function, we may estimate a non-zero slope 𝛽 —694

reflecting variation in expression — even when there is no variation for any given cell type. This motivates695

the problem of learning cell type-specific expression functions ℎ𝑐,𝑔 : ℝ → ℝ for each gene 𝑔 and cell type696

𝑐 which reveal whether variation is attributable to cell type or to other factors.697

Here we derive a simple approach for estimating cell type-specific expression functionsℎ𝑐,𝑔 from single-698

cell resolution SRT data with cell type annotations. Specifically, suppose we are given single-cell resolution699

SRT data (A, S) with cell type annotations 𝑧𝑖,𝑐 ∈ {0, 1}, where 𝑧𝑖,𝑐 = 1 if spot 𝑖 contains cell type 𝑐 , and700

𝑧𝑖,𝑐 = 0 otherwise. We assume the isodepth 𝑑 and breakpoints 𝑏1, . . . , 𝑏𝑃−1 have already been computed as701

described in Section 4.4. We model the expression𝑎𝑖,𝑔 at spatial location (𝑥𝑖 , 𝑦𝑖) with the Poisson expression702

model 𝑎𝑖,𝑔 ∼ Pois
(
𝑈𝑖 · exp

(∑𝐶
𝑐=1 𝑧𝑖,𝑐ℎ𝑐,𝑔 (𝑑 (𝑥𝑖 , 𝑦𝑖))

))
where 𝑈𝑖 is the total UMI count at spatial location703

(𝑥𝑖 , 𝑦𝑖). Similar to Section 4.2, we model the cell type-specific expression functions h𝑐 = (ℎ𝑐,1, . . . , ℎ𝑐,𝐺 ) :704

ℝ → ℝ𝐺 as piecewise linear functions of the form705

h𝑐 (𝑤) =
𝑃∑︁

𝑝=1
(𝜶𝑐,𝑝 + 𝜷𝑐,𝑝𝑤) · 1{𝑏𝑝−1<𝑤≤𝑏𝑝 } . (16)

where 𝜶𝑐,𝑝 = (𝛼𝑐,𝑝,𝑔)𝑔=1,...,𝐺 and 𝜷𝑐,𝑝 = (𝛽𝑐,𝑝,𝑔)𝑔=1,...,𝐺 are the cell type 𝑐-specific 𝑦-intercepts and slopes,706

respectively, of the cell type 𝑐-specific expression function h𝑐 = (ℎ𝑐,1, . . . , ℎ𝑐,𝐺 ) in spatial domain 𝑅𝑝 .707

The MLE of the piecewise linear, cell type 𝑐-specific expression functions h𝑐 = (ℎ𝑐,𝑔)𝑔∈𝐺 is given by708

max
h1,...,h𝐶 ∈L(𝑏1,...,𝑏𝑃−1 )

𝐶∑︁
𝑐=1

𝐺∑︁
𝑔=1

(
𝑁∑︁
𝑖=1

logℙ
(
𝑎𝑖,𝑔 | ℎ𝑐,𝑔, 𝑧𝑖,𝑐

))
=

𝐶∑︁
𝑐=1

[
max

h𝑐 ∈L(𝑏1,...,𝑏𝑃−1 )

𝐺∑︁
𝑔=1

( ∑︁
𝑖:𝑧𝑖,𝑐=1

logℙ
(
𝑎𝑖,𝑔 | ℎ𝑐,𝑔

))]
.

(17)
The inner optimization problem is an instance of the optimization problem in (12) restricted to spots 𝑖709

with cell type 𝑐 , i.e. 𝑧𝑖,𝑐 = 1, and is solved using the same Poisson regression approach. Solving (17) yields710

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.10.561757doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.10.561757
http://creativecommons.org/licenses/by-nc-nd/4.0/


estimated piecewise linear functions ℎ̂𝑐,𝑔 with 𝑦-intercept 𝛼𝑐,𝑝,𝑔 and slope 𝛽𝑐,𝑝,𝑔 for each gene 𝑔 in domain711

𝑅𝑝 and cell type 𝑐 .712

To assess whether intradomain variation is attributable to cell type, we compare the cell type 𝑐-specific713

slope 𝛽𝑐,𝑔,𝑝 to the cell type-agnostic slope 𝛽𝑔,𝑝 , which is derived from the cell type-agnostic expression func-714

tion h(𝑤) (Equation (8)). Specifically, we refer to the parameters 𝜶𝑝 = (𝛼𝑔,𝑝)𝑔∈𝐺 and 𝜷𝑝 = (𝛽𝑔,𝑝)𝑔∈𝐺 as715

the cell type-agnostic 𝑦-intercepts and slopes, respectively. If the cell type 𝑐-specific slope 𝛽𝑐,𝑔,𝑝 is close or716

larger in magnitude to the cell type-agnostic slope 𝛽𝑔,𝑝 , then the continuous variation in expression — i.e.717

the large value of 𝛽𝑔,𝑝 — is attributed to cell type 𝑐 . Conversely, if the cell type-specific slope 𝛽𝑐,𝑔,𝑝 is much718

smaller in magnitude than the cell type-agnostic slope 𝛽𝑔,𝑝 , then the continuous variation in expression is719

not attributable to cell type 𝑐 .720

We quantify this intuition by dividing the genes with continuous variation identified in Section 4.5 into721

two groups based on the estimated cell type-specific slopes 𝛽𝑐,𝑔,𝑝 . If |𝛽𝑐,𝑔,𝑝 | > (1−𝛾) |𝛽𝑔,𝑝 | for some cell type722

𝑐 and a fixed constant 𝛾 , i.e. the magnitude of the cell type-specific slope 𝛽𝑐,𝑔,𝑝 is close to or larger than the723

magnitude of the slope 𝛽𝑔,𝑝 , then we say that the expression variation within domain 𝑅𝑝 is attributable to724

cell type 𝑐 . On the other hand, if |𝛽𝑐,𝑔,𝑝 | ≤ (1 − 𝛾) |𝛽𝑔,𝑝 | for all cell types 𝑐 , then we say that there is other725

variation in the expression of gene 𝑔 within domain 𝑅𝑝 . We use 𝛾 = 0.5 in our analyses.726

4.7 Visualization727

4.7.1 Scaling isodepth to physical distance728

The neural network in GASTON learns an isodepth 𝑑 (𝑥,𝑦) that smoothly varies across a tissue slice 𝑇 ;729

however, the scaling of the learned isodepth 𝑑 (𝑥,𝑦) is arbitrary. To improve the interpretability of the730

isodepth 𝑑 (𝑥,𝑦) learned by the neural network, we scale the isodepth in each spatial domain to reflect731

approximate physical distances inside the domain. Briefly, we derive an estimate 𝛾𝑝 of the “average width”732

of each spatial domain 𝑅𝑝 in 𝜇m, and we linearly transform the isodepth 𝑑 (𝑥,𝑦) in each spatial domain733

such that the range of isodepth values in domain 𝑅𝑃 is 𝛾𝑝 .734

We scale the isodepth in each spatial domain as follows. Given the isodepth 𝑑 (𝑥,𝑦), spatial domains735

𝑅1, . . . , 𝑅𝑃 , and breakpoints 𝑏1, . . . , 𝑏𝑃−1 estimated from (10) and (11), we assume without loss of generality736

that the isodepth is linearly transformed such that min(𝑥,𝑦) ∈𝑇 𝑑 (𝑥,𝑦) = 0 and max(𝑥,𝑦) ∈𝑇 𝑑 (𝑥,𝑦) = 1, i.e.737

the breakpoints satisfy𝑏0 = 0 < 𝑏1 < · · · < 𝑏𝑃−1 < 1 = 𝑏𝑃 , where we set𝑏0 = 0 and𝑏𝑃 = 1 for convenience.738

For each spatial domain 𝑅𝑝 , let 𝛾𝑝 be the average width of the domain, whose computation we describe739

below. We compute the “scaled” isodepth 𝑑 (𝑥,𝑦) as740

𝑑 (𝑥,𝑦) =
𝑃∑︁

𝑝=1

(
𝑒𝑝 + 𝑓𝑝 · 𝑑 (𝑥,𝑦)

)
· 1{𝑏𝑝−1<𝑑 (𝑥,𝑦)≤𝑏𝑝 }, (18)

where 𝑒𝑝 , 𝑓𝑝 are chosen such that𝑑 (𝑥,𝑦) is continuous, and𝑑 (𝑥,𝑦) = ∑𝑝

𝑞=1 𝛾𝑞 if𝑑 (𝑥,𝑦) = 𝑏𝑝 for 𝑝 = 1, . . . , 𝑃 .741

With this choice of 𝑒𝑝 , 𝑓𝑝 , the range of scaled isodepth values 𝑑 (𝑥,𝑦) in a spatial domain 𝑅𝑝 is given by742

max
(𝑥,𝑦) ∈𝑅𝑝

𝑑 (𝑥,𝑦) − min
(𝑥,𝑦) ∈𝑅𝑝

𝑑 (𝑥,𝑦) = max
𝑏𝑝−1<𝑑 (𝑥,𝑦)≤𝑏𝑝

𝑑 (𝑥,𝑦) − min
𝑏𝑝−1<𝑑 (𝑥,𝑦)≤𝑏𝑝

𝑑 (𝑥,𝑦) =
𝑝∑︁

𝑞=1
𝛾𝑞−

𝑝−1∑︁
𝑞=1

𝛾𝑞 = 𝛾𝑝 . (19)

That is, the range of isodepth values 𝑑 (𝑥,𝑦) in each spatial domain is the average width 𝛾𝑝 of the domain743

𝑅𝑝 .744

We estimate the average width𝛾𝑝 of each spatial domain𝑅𝑝 by computing the median physical distance745

between the two boundaries of the domain 𝑅𝑝 . Specifically, let Γlower = {(𝑥𝑖 , 𝑦𝑖) ∈ 𝑅𝑝 : 𝑏𝑝−1 < 𝑑 (𝑥𝑖 , 𝑦𝑖) <746
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𝑏𝑝−1+𝜖} and let Γupper = {(𝑥𝑖 , 𝑦𝑖) ∈ 𝑅𝑝 : 𝑏𝑝 −𝜖′ < 𝑑 (𝑥𝑖 , 𝑦𝑖) < 𝑏𝑝 } be the set of spatial locations on the lower747

and upper boundary curves of the spatial domain 𝑅𝑝 , respectively. We set 𝛾𝑝 to be the median distance748

between each spot (𝑥,𝑦) ∈ Γlower and the closest spot in Γupper We choose 𝜖, 𝜖′ such that Γlower and Γupper749

visually correspond to the spatial domain boundaries.750

For 10x Genomics Visium data, we multiply each average width 𝛾𝑝 by 100, since the physical distance751

between the centers of adjacent spots in the 10x Visium slide is 100𝜇m. For Slide-seqV2 data, we multiply752

each average width 𝛾𝑝 by 64/100, since two beads that are 100 pixels apart in the Slide-SeqV2 microscopy753

image have a physical distance of roughly 64𝜇m [116].754

4.7.2 Visualizing 1-D expression functions755

To simplify the visualization of the 1-D expression functions h, we aggregate the counts 𝑎𝑖,𝑔 for spots756

(𝑥𝑖 , 𝑦𝑖) with approximately equal isodepth values 𝑑 (𝑥𝑖 , 𝑦𝑖), as in [83]. Specifically, we partition the range757

of isodepth values into a union 𝐵1 ∪ · · · ∪ 𝐵𝑀 of intervals 𝐵 𝑗 , and we compute the total expression value758

𝑎 𝑗,𝑔 =
∑

𝑖:𝑑 (𝑥𝑖 ,𝑦𝑖 ) ∈𝐵 𝑗
𝑎𝑖,𝑔 for gene 𝑔 in each interval 𝐵 𝑗 . We call 𝑎 𝑗,𝑔 the pooled expression value of gene759

𝑔 at pooled spot 𝑗 . Pooling does not affect inference of the 1-D expression function h in the STP, as the760

function h obtained by maximizing the log-likelihood (9) with pooled data is equal to the function obtained761

by maximizing (9) with the original data, as shown in [83].762

We plot expression as log pooled counts per million (CPM) log(𝑎 𝑗,𝑔/𝐷 𝑗 · 106 + 1), where 𝐷 𝑗 is the sum763

of the total UMI counts across all spots in the 𝑗th pooled spot. The log pooled CPM has approximately the764

same scale as the expression function ℎ𝑔 (𝑤) + log(106) for each gene 𝑔.765

4.8 Marker gene analysis766

For the marker gene comparison in Section 2.3, we derived a ranking of domain specific marker genes from767

the GASTON inferred 1-D expression functions ℎ𝑔 by ranking genes by the standard deviation of the mean768

of each expression function. Specifically, for each gene 𝑔, we compute the mean𝑚𝑔,𝑝 of the 1-D expression769

function ℎ𝑔 (𝑤) in spatial domain 𝑅𝑝 , i.e. 𝑚𝑔,𝑝 = 𝛼𝑝 + 𝛽𝑝 ·
(
𝑏𝑝−1+𝑏𝑝

2

)
, and we rank genes by the standard770

deviation of the values (𝑚𝑔,𝑝)𝑝=1,...,𝑃 . Intuitively, a marker gene should have high expression in one spatial771

domain and low expression in other domains, leading to a large standard deviation, while a non-marker772

gene will have similar expression in all domains, leading to a small standard deviation.773

4.9 Spatial coherence score774

We quantify the spatial coherence of domain labels using a score based on O’Neill’s spatial entropy measure775

[98, 4] which has previously been used to quantify spatial coherence in SRT data [159]. The spatial entropy776

measures the fraction of neighboring spots having the same label compared to random assignments of777

labels. A large spatial entropy indicates that the distribution of labels of neighboring spots is close to the778

uniform distribution, i.e the labels are spatially coherent, whereas a small spatial entropy indicates that779

nearby spots frequently have the same label, i.e. the labels are spatially coherent.780

We use a modified version of the spatial coherence score used by [159] that is scaled to lie in [0, 1].781

Specifically, following the notation in [159], we define the spatial coherence score as𝐶𝐺 (𝐿) = 1− 𝐻 (𝐺,𝐿)
log(𝑘 (𝑘+1)/2) .782

4.10 Data collection and method details783

For the cerebellum analysis in Sections 2.2 and 2.3, we used replicate 1 from the RCTD/C-SIDE data repos-784

itory [18]. Figure 2J was created with BioRender.com. For the marker gene comparison in Figure 3A, we785

derived a gene ranking for each method and evaluated the AUPRC compared to known marker genes of the786

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.10.561757doi: bioRxiv preprint 

BioRender.com
https://doi.org/10.1101/2023.10.10.561757
http://creativecommons.org/licenses/by-nc-nd/4.0/


oligodendrocyte, granule, Purkinje, Bergmann, and molecular cell types in the cerebellum. These marker787

genes were the combination of cell type marker genes from PanglaoDB [40], the Allen Mouse Brain Atlas788

[71], Harmonizome [118], and the supplement of [69].789

We obtained the olfactory bulb SRT dataset from [42]. We obtained cell type annotations for each spot790

in the tissue (Figure 5D) by using scANVI [154] to integrate the SRT data with a separate mouse olfactory791

bulb scRNA-seq dataset [133]; for the scRNA-seq data, we followed the pre-processing steps in [76].792

SpiceMix. We followed the Visium Jupyter notebook tutorial on Github with parameters 𝐾 = 6 (for the793

𝐾-NN graph) and n neighbors=200.794

Non-negative spatial factorization (NSF). We followed the Github tutorial and trained for 150 iter-795

ations to obtain 10 factors. Since NSF identifies factors rather than spatial domains, we identified NSF796

spatial domains by using the NSF factors as input for the Louvain clustering module from SpiceMix [24].797

RCTD/C-SIDE. For the cerebellum analysis, we used the cell type labels provided in the RCTD data798

repository. We followed the C-SIDE tutorial to identify cell type-specific differentially expressed genes.799

We ran two versions of C-SIDE: (1) without any covariates, and (2) with the isodepth 𝑑 (𝑥,𝑦) as a covariate800

for each spatial location (𝑥,𝑦). For the analysis in Section 2.3, we ranked genes by their minimum C-SIDE801

𝑝-value across all cell types.802

SpaGCN. We ran SpaGCN following the Github tutorial. For the analysis in Section 2.3, we used a803

ranking where the SpaGCN spatially varying genes are tied for first and all other genes are tied for second.804

HotSpot. We ran HotSpot following the tutorial here. For the analysis in Section 2.3, we ranked genes805

according to their 𝑝-value.806

trendsceek*. We used the Seurat implementation of trendsceek as described here. For the analysis in807

Section 2.3, we ranked genes according to their 𝑝-value.808

SpatialDE. We ran SpatialDE following the Github example. For the analysis in Section 2.3 we ranked809

genes according to their 𝑝-value.810

SPARK-X. We ran Spark-X following the tutorial here. For the analysis in Section 2.3 we ranked genes811

according to their 𝑝-value.812

SpaceFold. We ran SpaceFold following the Github example code.813
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Data and code availability821

This paper analyzes existing, publicly available data. The cerebellum SRT dataset was obtained from [18];822

the olfactory bulb SRT data set was obtained from [42]; the colorectal tumor SRT dataset was obtained from823

[149]; and the DLPFC SRT dataset was obtained from [89]. The code for GASTON is publicly available at824

https://github.com/raphael-group/GASTON.825
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Supplemental Information1249

A Expression models and pooling1250

We assume the UMI counts 𝑎𝑖,𝑔 follow the Poisson expression model, i.e. the UMI counts 𝑎𝑖,𝑔 are indepen-1251

dent and follow a Poisson distribution of the form 𝑎𝑖,𝑔
i.i.d.∼ Pois

(
𝑈𝑖 · exp

(
𝑓𝑔 (𝑥𝑖 , 𝑦𝑖)

) )
where 𝑈𝑖 is the total1252

UMI count at spot 𝑖 .1253

Suppose the isodepth 𝑑 is known, and let 𝛾1, . . . , 𝛾𝑁 ′ be the unique isodepth values 𝑑 (𝑥𝑖 , 𝑦𝑖) across1254

all spots s𝑖 = (𝑥𝑖 , 𝑦𝑖). Let 𝐵 𝑗 = {𝑖 : 𝑑 (𝑥𝑖 , 𝑦𝑖) = 𝛾 𝑗 } be the set of spots with isodepth equal to 𝛾 𝑗 . Let1255

𝑎 𝑗,𝑔 =
∑

𝑖∈𝐵 𝑗
𝑎𝑖,𝑔 be the total expression for gene 𝑔 over all spots 𝑖 ∈ 𝐵 𝑗 , i.e. 𝑎 𝑗,𝑔 is the total expression for1256

all spots with isodepth 𝛾 𝑗 . We say 𝐵 𝑗 is a pooled spot and we call 𝑎 𝑗,𝑔 the pooled expression of gene 𝑔 at the1257

𝑗-th pooled spot.1258

The solution to the MLE problem in (9) with isodepth 𝑑 is equal to the solution of the following opti-1259

mization problem1260

argmax
𝑏1<𝑏2<· · ·<𝑏𝑃−1

h=(ℎ1,...,ℎ𝐺 ) ∈L(𝑏1,...,𝑏𝑃−1 )

𝐺∑︁
𝑔=1

(
𝑁 ′∑︁
𝑗=1

logℙ
(
𝑎 𝑗,𝑔 | ℎ𝑔

(
𝑑 (𝑥 𝑗 , 𝑦 𝑗 )

) ))
(20)

where the inference is performed with pooled expression values𝑎 𝑗,𝑔. Thus, one obtains the same expression1261

function h whether one computes the MLE (9) over all data points, or first sums spots with the same1262

isodepth, i.e. pooling spots by their isodepth, and then computes the MLE. See [83] for more details.1263

B Dimensionality reduction using GLM-PCA1264

Given SRT data (A, S), we first run GLM-PCA (generalized linear model principal components analysis)1265

[136] and obtain the top-2𝑃 GLM-PCs u𝑗 = [𝑢𝑖, 𝑗 ] ∈ ℝ𝑁 for 𝑗 = 1, . . . , 2𝑃 . Next, we compute the MLE in (9)1266

using these PCs and a Gaussian error model, i.e. we solve1267

argmax
𝑑∈𝐶 (ℝ2,ℝ)

𝑏1<𝑏2<· · ·<𝑏𝑃−1
h′=(ℎ′

1,...,ℎ
′
2𝑃 ) ∈L(𝑏1,...,𝑏𝑃−1 )

2𝑃∑︁
𝑗=1

(
𝑁∑︁
𝑖=1

logℙ
(
𝑢𝑖, 𝑗 | ℎ′𝑗

(
𝑑 (𝑥𝑖 , 𝑦𝑖)

) ))
(21)

with 𝑢𝑖, 𝑗
i.i.d.∼ 𝑁

(
ℎ′𝑔

(
𝑑 (𝑥𝑖 , 𝑦𝑖)

)
, 𝜎2

)
for some shared variance parameter 𝜎2. (Note that the value of the1268

variance 𝜎2 does not affect the solution to (21).) Solving (21) an estimated isodepth 𝑑 and breakpoints1269

𝑏1, · · · , 𝑏𝑃−1.1270

Finally, we solve the MLE problem in (9) fixing the estimated isodepth 𝑑 and breakpoints 𝑏1, . . . , 𝑏𝑃−1,1271

i.e.1272

argmax
h=(ℎ1,...,ℎ𝐺 ) ∈L(𝑏1,...,𝑏𝑃−1 )

𝐺∑︁
𝑔=1

(
𝑁∑︁
𝑖=1

logℙ
(
𝑎𝑖,𝑔 | ℎ𝑔

(
𝑑 (𝑥𝑖 , 𝑦𝑖)

) ))
, (22)

where we assume the UMI counts 𝑎𝑖,𝑔 follow the Poisson expression model described above. Solving1273

(22) is equivalent to solving 𝐺 · 𝑃 Poisson regression problems, one problem for each combination of the1274

𝐺 genes and 𝑃 spatial clusters.1275
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C Comparison to SpaceFlow1276

SpaceFlow [113] learns a 1-D coordinate, which they call a pseudo-Spatialtemporal Map (pSM), at each1277

spatial location in a tissue by running diffusion pseudotime [49] on embeddings obtained from a graph1278

neural network. We compared the SpaceFlow pSM to the GASTON isodepth on the mouse cerebellum1279

SRT data from Section 2.2 (Figure S1A,B) and the mouse olfactory bulb SRT data from Section 2.5 (Figure1280

S6C,D). Visually, the isodepth learned by GASTON varies continuously in the tissue while the SpaceFlow1281

pSM does not. For example, in the cerebellum, the pSM is constant — and thus does not continuously vary1282

— within each spatial domain, e.g. in the granule layer, the contours of the isodepth (Figure S1C) smoothly1283

vary while the contours of the pSM (Figure S1D) are irregular. In the olfactory bulb, the pSM is constant1284

in the interior of the tissue (Figure S6C).1285

We quantify the continuous variation within each layer using the quartile coefficient of dispersion1286

(QCOD) [15], a robust statistic measuring the variation of a dataset, with a large QCOD indicating a larger1287

degree of variation in the data. We first scale the isodepth and the pSM to be in [0, 1] so that they have the1288

same measurement scale; moreover, before computing the QCOD within each layer, we shift the measure-1289

ments to have the same mean in order to guarantee that the QCOD values are comparable. We observe that1290

in the cerebellum, GASTON has larger QCOD than SpaceFlow in three out of four spatial domains (Figure1291

S1E), indicating that there is substantially more spatial variation in the GASTON isodepth compared to1292

the SpaceFlow pSM. Similarly, in the olfactory bulb, GASTON has larger QCOD than SpaceFlow in six out1293

of seven domains (Figure S6B).1294

D DLPFC comparison1295

We evaluated GASTON on SRT data from the human dorsolateral prefrontal cortex (DLPFC) measured1296

with 10x Visium [89]. We analyzed eight DLPFC tissue slices from two donors. These slices were manually1297

annotated with the six layers of the DLPFC and white matter (WM) and have a curved, layered geometry,1298

providing spatial structure that may help GASTON accurately learn the geometry of these tissue slices.1299

We compared the spatial domains identified by GASTON to two graph deep learning approaches, SpaGCN1300

[58] and STAGATE, and our previous method Belayer [83], which requires supervision in the form of1301

approximate layer boundaries. We evaluated each method by computing the adjusted Rand index (ARI)1302

between the estimated spatial domains and the manually annotated layers.1303

GASTON achieves a higher average AUPRC than the graph deep learning methods SpaGCN and STA-1304

GATE (Figure S3A). Moreover, despite being completely unsupervised, GASTON has comparable AUPRC1305

to Belayer, which requires supervision (Figure S3A,B). Importantly, the isodepth𝑑 (𝑥,𝑦) learned by GASTON1306

(Figure S3C) is highly correlated with the “relative depth” 𝑑 (𝑥,𝑦) that Belayer estimates by solving the1307

heat equation with known layer boundaries (Figure S3D), demonstrating that the neural network used by1308

GASTON indeed learns the cortical depth of each layer. On the other hand, the isodepth 𝑑 has lower cor-1309

relation (Figure S3D) with both the top principal component (PC1) and the top generalized linear model1310

principal component (GLM-PC1), which are derived solely from gene expression and do not use the spa-1311

tial coordinates. These comparisons indicate the importance of spatial information in deriving an accurate1312

measurement of layer depth.1313

Overall, the improved performance of GASTON demonstrates the value of using simple and inter-1314

pretable neural network architectures.1315
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Figure S1: (A) The isodepth 𝑑 (𝑥,𝑦) learned by GASTON scaled to [0, 1]. (B) The pseudo-Spatiotemporal
Map (pSM) learned by SpaceFlow [113] scaled to [0, 1]. (C) The isodepth 𝑑 (𝑥,𝑦) in the granule layer (as
identified by GASTON), shown with three equally spaced contours of equal isodepth. (D) The pSM in
the granule layer shown with three equally spaced contours of equal pSM. (E) The quartile coefficient of
dispersion of the GASTON isodepth and the SpaceFlow pSM in each layer of the cerebellum.
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Figure S2: (A) Venn diagram of spatially varying genes identified by GASTON in the mouse cerebellum.
Numbers indicate genes with specified spatial expression pattern(s). (B) Isodepth versus expression for
CPLX2, which has discontinuities in expression at the granule layer boundaries.
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Figure S3: (A) Adjusted rand index (ARI) for GASTON, Belayer [83], SpaGCN [58], and STAGATE [32] in
identifying the spatial domains of the dorsolateral prefrontal cortex (DLPFC). (B) The manually annotated
domains and the domains identified by GASTON and Belayer for DLPFC sample 151673. (C) Isodepth
𝑑 and spatial gradients ∇𝑑 learned by GASTON for DLPFC sample 151673. (D) Correlation between the
GASTON isodepth 𝑑 and (1) the relative depth 𝑑 estimated by Belayer using prior knowledge of the layer
boundaries (Belayer relative depth); (2) the first generalized linear model principal component (GLM-PC1);
and (3) the first principal component (PC1).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.10.561757doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.10.561757
http://creativecommons.org/licenses/by-nc-nd/4.0/


43

CellType
Fibroblast

Tumor

Lamina Propria

Louvrain Clustering Assignments

CellType
Fibroblast

Tumor

Lamina Propria

Louvrain Clustering Assignments

Figure S4: Cell type labels for each spot in 10x Genomics Visium data from a colorectal tumor slice derived
in the original study [149] using Seurat [17].
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Figure S5: (A-C) Expression shown in log CPM for Type II genes (A) TAGLN, (B) ACTA2, and (C) LGR5.
(D-F) Expression versus isodepth for Type II gene (D) LGR5 and Type III genes (E) THBS1 and (F) FUCA1.
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Figure S6: (A) Spatial domains learned by SpaGCN [58]. (B) Spatial coherence of spatial domains identified
by GASTON (Figure 5C) and SpaGCN. (C) Pseudospatial-temporal map (pSM) learned by SpaceFlow [113],
which utilizes the scRNA-seq based method diffusion pseudotime [49]. Curves denote contour lines of
equal pSM. (D) Quartile coefficient of dispersion of the GASTON isodepth and the SpaceFlow pSM in each
spatial domain identified by GASTON. (E) Cell type proportion as a function of SpaceFlow pSM.
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Figure S7: Venn diagram of spatially varying genes identified by GASTON in the olfactory bulb.
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