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 12 
Abstract 13 

The demographic history of a population drives the pattern of genetic variation and is encoded 14 
in the gene-genealogical trees of the sampled alleles. However, existing methods to infer 15 
demographic history from genetic data tend to use relatively low-dimensional summaries of the 16 

genealogy, such as allele frequency spectra. As a step toward capturing more of the information 17 
encoded in the genome-wide sequence of genealogical trees, here we propose a novel 18 
framework called the genealogical likelihood (gLike), which derives the full likelihood of a 19 
genealogical tree under any hypothesized demographic history. Employing a graph-based 20 

structure, gLike summarizes across independent trees the relationships among all lineages in a 21 
tree with all possible trajectories of population memberships through time and efficiently 22 
computes the exact marginal probability under a parameterized demographic model. Through 23 

extensive simulations and empirical applications on populations that have experienced multiple 24 
admixtures, we showed that gLike can accurately estimate dozens of demographic parameters 25 

when the true genealogy is known, including ancestral population sizes, admixture timing, and 26 

admixture proportions. Moreover, when using genealogical trees inferred from genetic data, we 27 

showed that gLike outperformed conventional demographic inference methods that leverage 28 

only the allele-frequency spectrum and yielded parameter estimates that align with established 29 

historical knowledge of the past demographic histories for populations like Latino Americans 30 
and Native Hawaiians. Furthermore, our framework can trace ancestral histories by analyzing a 31 

sample from the admixed population without proxies for its source populations, removing the 32 

need to sample ancestral populations that may no longer exist. Taken together, our proposed 33 
gLike framework harnesses underutilized genealogical information to offer exceptional 34 
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sensitivity and accuracy in inferring complex demographies for humans and other species, 35 

particularly as estimation of genome-wide genealogies improves. 36 
 37 

 38 
Introduction 39 

Accurately inferring the population history of humans has archaeological and historical 40 

significance, and it also helps to properly account for population structure in association studies 41 
and improve robustness in inferences about natural selection1. Because of the complicated 42 

interplay of random processes related to the underlying demography and observed genotypes – 43 

including migration, coalescence, recombination, mutation, and genotyping error – demographic 44 
inference is a challenging problem, often requiring simplifying assumptions or relatively coarse 45 

data summaries. One popular way of estimating the size changes of a single population utilizes 46 
a hidden Markov model (HMM) to describe the variation of haplotypes along the genome, where 47 

the hidden states correspond to the underlying genealogical trees2–6. As the number of potential 48 
trees grows exponentially with sample size, these methods are computationally scalable by 49 
tracking only a reduced representation of the underlying genealogy  (e.g., SMC++5 and ASMC6 50 

only track the coalescent times between a specific pair of haplotypes, while the remaining 51 
samples assume auxiliary functions). These methods are typically constrained by small sample 52 
sizes (usually <100) and the assumption of a single, homogeneous population, although they 53 
are flexible with respect to the population size trajectories over time. To accommodate for larger 54 

sample sizes that are more informative of the recent human history as well as more complex 55 
demographic events such as splits, migrations, and admixture, alternative approaches to 56 
demographic inference rely on a further reduced representation of the genealogy, the allele 57 

frequency spectrum (AFS)7–11. Although convenient to compute, the AFS may not contain 58 
enough information to recover the history precisely12–14.  59 

 60 

HMM- and AFS-based methods are based on observed genotypes or haplotypes. However, 61 

since neutral variation is related to demographic history entirely via the genealogical processes, 62 

the (unknown) genealogy arguably has a more direct relationship with the underlying 63 

demography than the downstream genotypes15–17. Moreover, the complete genealogy of a 64 
collection of samples, as represented by an ancestral recombination graph (ARG)18,19, has 65 

richer information than the AFS since it includes additional data not reflected in the allele 66 

frequencies, such as the correlated coalescent histories between segments of a chromosome. 67 
Therefore, a genealogy-based demographic inference method has the potential to leverage the 68 
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flexible topological structure of the ARG in distinguishing complex demographic histories, 69 

especially those with multiple admixtures.  70 
 71 

Here, we introduce a genealogical likelihood framework named gLike to compute the likelihood 72 
of an observed genealogical tree under a parameterized demographic history. The intuition 73 

behind gLike is that a genealogy in itself does not imply the assortment history of any of its 74 

lineages (i.e. which set of discrete population memberships a particular lineage has traversed 75 
over time), meaning that all possible cases have to be considered. Notably, this idea bears 76 

similarity to the recently proposed “local ancestry path” problem by Pearson and Durbin20, but 77 

instead of inferring the population membership distribution of each individual node, gLike aims 78 
to compute the total likelihood of all combinations. By defining a “state” as the population 79 

memberships of all lineages existing at a specific time, possible movements between states 80 
throughout the history can be summarized into a directed acyclic Graph of States (GOS). We 81 

develop a full methodology for the GOS around three key problems: 1) constructing a minimal 82 
GOS that contains all necessary states; 2) computing the conditional probabilities between 83 
connected states with considerations of migrations, coalescences, and non-coalescences; and 84 

3) propagating the marginal probabilities through the GOS to achieve the total likelihood of the 85 
tree, which can then be combined across multiple independent trees across the genome. As a 86 
general-purpose statistical framework and as a first step towards utilizing the information from 87 
the entire ARG, gLike is applicable to a variety of demographic events – migrations, splits, 88 

admixtures, and population size variations, providing tools for model selection and parameter 89 
estimation.  90 
 91 

We demonstrate the advantage of genealogy-based demography inference by applying gLike to 92 
simulated scenarios, with particular emphasis on complicated admixture histories such as three- 93 

or four-way admixtures. gLike consistently outperforms existing AFS-based methods by 94 

producing parameter estimates closer to the simulated truth. In analyses of genotyped samples 95 

from Latino Americans and Native Hawaiians, the complex demography inferred by gLike is 96 

consistent with the known history of both admixed populations and their ancestral populations – 97 

Africans, Europeans, East Asians, Indigenous Americans, and Polynesians. Most notably, our 98 
inference required no reference sample from the ancestral populations (such as samples from 99 

Polynesians), nor explicit inference of local ancestries – information that is often not available or 100 

is imprecisely estimated for understudied populations with complex history.  101 
 102 
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Results 103 

Method overview: genealogical likelihood under multi-population demography 104 
A genealogical tree, despite being a complete record of the coalescent events of the sample 105 

haplotypes within a chromosomal interval, does not specify the migration history of lineages. In 106 
a typical genetic study, the samples (leaf nodes) are collected from known populations, which 107 

serves as the initial condition. The internal lineages could migrate, subject to the restriction that 108 

coalescences must happen within a population. Therefore, the probability of a given 109 
genealogical tree corresponds to the cumulative total of all migration scenarios that are 110 

compatible with this tree. Our proposed method, gLike, computes the likelihood of any given 111 

genealogical tree under a hypothesized demographic history (Methods). Operationally, it is 112 
broken into two topological steps to search for possible population memberships of lineages, 113 

followed by three numerical steps to compute the conditional and marginal probabilities (Figure 114 
1).  115 
 116 

 117 
Fig 1. A schematic of the major steps of the gLike algorithm with examples. Starting from a parameterized 118 
demography and an observed genealogical tree with known sample populations, the fundamental data structure in 119 
gLike is the graph of states that summarizes all possible scenarios for all lineages to move through the populations 120 
across history. We denote the unique state at time zero that contains the observable population memberships of 121 
samples as the “origin state” (state “ABBCC” in this example), and the states about the root of the genealogical tree 122 
as the “root states” (states “F” and “E” in this example). The graph of states is constructed in Step 2, guaranteed by a 123 
preparatory Step 1 such that no redundant states will be generated, minimizing computational burden. Each column 124 
represents the population membership (in Step 2; e.g. “AD” means that lineage 8 is in population A and lineage 7 is 125 
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in population D, 𝑡! generations ago) or the set of possible memberships (in Step 1; e.g. at 𝑡!, lineage 8 may be in A 126 
or E, and lineage 7 may be in D or E,) of a certain lineage. In Step 3, the conditional probabilities are computed for 127 
all states in the GOS except the origin states, including the coalescence and non-coalescence probabilities implied in 128 
each state and the migration probabilities between connected states. Conditional probabilities are exemplified within 129 
the fourth epoch (between 𝑡" and 𝑡!) around the state “EE”. Specifically, “EE” implies a unique hidden state “EEE” 130 
near the 𝑡" end of the epoch because lineages 1 and 6 should both be in population E in order to coalesce into 131 
lineage 8, which is in E given the state “EE.” The connection between “EE” and “EEE” is represented by the 132 
“genealogical probability,” which consists of the probability that lineages 1, 6 and 7 did not coalesce before 𝜏" (with 133 
probability exp(−3(𝜏" − 𝑡")𝑛#)), that lineages 1 and 6 coalesced at 𝜏" (with probability 𝑛#), and that lineages 7 and 134 
8 did not coalesce before 𝑡! (with probability exp(−(𝑡! − 𝜏)𝑛#)). The state “EE” has two child states, “AAE” and 135 
“AEE,” according to Step 2, connected via the intermediate state “EEE”. The transition from “AAE” to “EEE” 136 
requires two lineage migrations from “A” to “E,” which occurs with “migration probability” 𝑚$#

% . Similarly, 137 
transition from “AEE” to “EEE” occurs with probability 𝑚$#. In Step 4, the “marginal probability” of a state is 138 
defined as the probability conditional on the origin state and is computed recursively. For state “EE”, 𝑝(state	EE) =139 
𝑛# exp(−3(𝜏 − 𝑡")𝑛# − (𝑡! − 𝜏)𝑛#) 3(𝑚$#)%𝑝(state	AAE) +𝑚$#𝑝(state	AEE)6. The marginal probabilities are 140 
propagated backward in time until the root states, and the log likelihood of the genealogical tree (conditional on the 141 
hypothesized demography) is, in step 5, the sum of all root states: 𝑝(tree) = 𝑝(state	F) + 𝑝(state	E). 142 
 143 
We define a “state” as a specification of the population memberships of all lineages existing at a 144 

specific time. All possible states before each historical event (occurring at 𝑡!, 𝑡", … , 𝑡# in this 145 

example) form a directed acyclic graph (step 2, Figure 1), which we call the “graph of states 146 

(GOS)”, a complete representation of all possible migration scenarios. When a state specifies a 147 
lineage in an impossible population, it becomes a dead-end state that does not connect to the 148 

origin. For example, in step 2, if we imagine a state “AA” at 𝑡$ as a child of “F”, it will not connect 149 

to the origin state “ABBCC”, because the fourth and fifth samples cannot migrate from C to A 150 
per the hypothesized demographic model (Figure 1; see also Figure S1). To reduce 151 

computation time, we avoid generating any dead-end state by a preliminary step (step 1, Figure 152 

1) that summarizes possible population memberships for each lineage. For example, in step 1 153 

at 𝑡$, lineage 8 may be in “A” or “E”, and lineage 7 may be in “D” or “E”, thus “AA” is not a legal 154 

state in step 2 (Figure 1). The graph of states is then constructed from the root states (“F” or “E” 155 
in this example) forward in time, by searching for child states according to both the specified 156 

migration events in the demography and the results in step 1. See Figure S1 for intermediate 157 

results and further operational details during these two steps. 158 
 159 
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After building the GOS, the relevant conditional probabilities are computed. Because lineages 160 

are restricted to their respective population until a historical event, a state immediately before a 161 

historical event 𝑡% is sufficient to specify the population memberships of all lineages between 162 

𝑡%&! and 𝑡%. For example, the state “EE” implies that not only the two lineages, but also the 163 

subtrees under both lineages are all in population E between 𝑡' and 𝑡$. Given memberships of 164 

all lineages within the context of a state, we can compute the “genealogical probability” of the 165 

state based on standard coalescent theory to describe the coalescence (or lack thereof) events 166 
during the relevant interval on the tree. We also compute the “migration probability” between a 167 

state and its child, which is the product of the migration probability of each lineage, according to 168 
the migration matrix of the historical event (step 3, Figure 1). The “marginal probability” of a 169 

state is then the probability conditional on the origin state and can be computed recursively 170 
(step 4, Figure 1).  Finally, we compute the likelihood of the genealogical tree as the sum of the 171 

marginal probabilities of the root states (step 5, Figure 1). See Figure 1 legend for more 172 
explanation of genealogical, migration, marginal, and total probabilities related to the state “EE” 173 
in steps 3-5. 174 

 175 

In practice, we apply gLike to a subsample of trees that are presumed independent, ideally from 176 
evolutionarily neutral sites distantly spaced across the genome (usually 10-100, depending on 177 

the computational resources), and the total likelihood is computed as the product over each 178 
individual tree. The total likelihood as a function of the demographic parameters is then 179 
optimized by simulated annealing. The final estimation of parameters is averaged over a 180 

number of subsamples with replacement. The variance across subsamples serves as an 181 
indicator of the uncertainty of the estimate. 182 
 183 

gLike accurately estimates all parameters in a three-way admixture demography 184 

Admixed populations, especially those with three ancestral components or more, pose 185 
challenges to existing demographic inference methods. To showcase the performance of gLike 186 

to analyze complex admixture, we simulated 1000 haplotypes on a 30Mb chromosome from a 187 

population formed by two consecutive recent admixture events from three ancestral populations. 188 
Such a demography is parameterized by 3 event times, 2 admixture proportions, and 7 189 

population sizes, totaling up to 11 parameters (Figure 2A). When true genealogical trees were 190 

available, the maximum likelihood estimates from gLike, averaged over 50 independent 191 
simulations, for all 11 parameters achieved an overall 3.8% relative error (Figure 2B), while 192 

gLike on the tsdate-reconstructed trees achieved an overall 23.3% relative error (Figure 2C). 193 
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We found that t1 and NO are the most overestimated parameters (by 35.6% and 97.3%, 194 

respectively) when using tsdate-reconstructed trees, likely due to tsdate’s tendency to 195 
overestimate times of recent coalescences, prolonging the recent branches (Figure S2). Apart 196 

from t1 and NO, the other 9 parameters are estimated with 13.7% relative error. 197 
 198 

 199 
Fig 2. gLike accurately reconstructs three-way admixture without ancestral population samples. (A) The true 200 
demography under which the genealogical trees and genotypes were simulated, with 6 populations involved: 201 
population O is admixed from A and B; B is the intermediate population admixed from C and D, where C is defined 202 
to be the major ancestor (proportion ≥ 0.5) without loss of generalizability; E is the ancestor of A, C and D. All 203 
population sizes are to scale. There are 11 parameters involved, including 6 population sizes and: t1, time of 204 
admixture of population O; t2, time of admixture of population B; t3, time of split from population E; r1, admixture 205 
proportion of A in O; r2, admixture proportion of C in B. The true value of each parameter is provided on the right. 206 
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(B-D) The reconstructed demography using parameter estimates averaged over 50 independent simulations (left) and 207 
boxplots of relative errors ((estimated-true)/true) in each simulation (right). Boxplots are capped at 300% relative 208 
error for ease of visualization. Trees and genotypes of 1000 haplotypes drawn from population O were simulated on 209 
a 30 Mb chromosome. The demographic parameters were estimated by gLike on the true trees (B), by gLike on the 210 
tsinfer+tsdate reconstructed trees from the true genotypes (C), and by Fastsimcoal2 on the allele frequency spectra 211 
derived from true genotypes (D). For Fastsimcoal2 results, the parameter estimates for the single run with the 212 
highest likelihood out of 50 independent runs, a practice commonly adopted by Fastsimcoal2, are labeled in red. A 213 
reference for the width of the population sizes equivalent to 50,000 is given in each panel. 214 

 215 
We also tested Fastsimcoal2 (ref.11), which is capable of flexibly inferring complex demography 216 

using allele frequency spectra. Based on true genotypes and the same three-way admixture 217 

model, Fastsimcoal2 estimates had a relative error of 51.4%, which led to a visually distorted 218 
demography (Figure 2D). This is in sharp contrast to Fastsimcoal2 showing comparable 219 
accuracy to gLike on a three-population split demography (Figure S3). gLike also outperformed 220 
a Generative Adversarial Network (GAN)-based deep learning approach, pg-gan21, which was 221 
designed to overcome the limitations of relying on summary statistics such as the frequency 222 

spectrum. In our benchmarking, pg-gan performed well for a two-population split demography 223 
but was less accurate compared with Fastsimcoal2 and gLike on the three-population split and 224 
admixture demographies (Figure S4 and data not shown). We thus did not test pg-gan further in 225 

this study. Nevertheless, our experiments with pg-gan were conducted without specialized 226 
neural network hardware and do not dismiss GANs' potential as an emerging approach. Further 227 
training and improved procedures may enhance GAN-based demographic inference22. 228 

 229 
We find that in our application with gLike for the demographies we have studied, analyses using 230 
tsinfer+tsdate-estimated genealogical trees produced more accurate estimated demographies 231 

those using trees estimated by Relate. The difference in performance may trace to the fact that 232 

recent coalescence times are overestimated by Relate to a greater extent than by tsdate, 233 
causing a 20~50% depletion of coalescences within the recent dozens of generations (Figure 234 

S2A), thereby leading to mis-estimations in the gLike framework. As a result, gLike on Relate-235 
reconstructed trees was not tested further in this study. Notably, Relate is more accurate in 236 

estimating the ancient part of the ARG, including the tree-wise times to the most recent common 237 

ancestor (tMRCAs) than tsinfer+tsdate (Figure S2B), which explains why in other applications 238 
utilizing the genealogical trees, such as inferring the genome-wide expected relationship 239 

matrix17 (eGRM), Relate may outperform tsdate.  240 
 241 
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gLike detects components of admixture with high confidence 242 

We examined the ability of gLike to distinguish two-way from three-way admixtures. We expect 243 
that the estimated parameters should reduce a complex model into a simpler one if the simpler 244 

model is closer to the true underlying model. Conversely, the likelihood should increase 245 
substantially when switching from a simple model to a complex one if the complex model is 246 

closer to the true underlying model. We first applied gLike under a hypothesized three-way 247 

admixture model to simulated trees and observed the estimated admixture proportions, r1 and r2 248 
(Figure 3A, left and middle panels). Across 50 replicate simulations, when the true demography 249 

was a three-way admixture, the estimated admixture proportion for the third ancestry 250 

component, r2, centered around the true value (0.7) and was always far from the boundaries 251 
(0.5 and 1.0). When the true demography was a two-way admixture, the estimated r2 was 252 

almost always 1.0, with only one exception (Figure 3A). This indicates that gLike correctly 253 
reduced a three-way admixture model into a two-way model if the truth were indeed two-way 254 

admixed. In contrast, both r1 and r2 were estimated to be the boundary values around half of the 255 
time by Fastsimcoal2, regardless of the true demography (Figure 3A, right panel). 256 
 257 

We next evaluated the maximum likelihood achieved under a two-way admixture model and a 258 
three-way admixture model (Methods).  AIC model selection was applied on the log-likelihood 259 
differences between two models to select the more likely model between the two-way and three-260 
way admixtures. Across 100 independent simulations, the three-way admixture model was 261 

never preferred when the true admixture was two-way, and the three-way admixture model was 262 
preferred over two-way when it was the true model ~85% of the time with both true ARGs and 263 
tsdate-reconstructed ARGs, resulting in a ~92% accuracy of classification.  264 
 265 
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 266 
Fig 3. gLike distinguishes three-way admixture from two-way admixture. True (left) and tsifner+tsdate 267 
reconstructed (middle) trees were obtained from simulated three-way (orange, same model as Figure 2) and two-268 
way (grey, r2 was set to 1, removing contribution from population D) admixed populations. (A)  gLike was applied 269 
assuming a three-way admixture model. The estimated r1 and r2 values in each of 50 independent simulations are 270 
shown, dashed lines denote true values of r1 and r2 in three-way admixture simulations. (B) gLike was first applied 271 
under a two-way admixture model, then the model is expanded into a three-way admixture and gLike likelihood is 272 
optimized while fixing shared parameters between two models (see Methods for technical details). The distributions 273 
of log likelihood improvement after model expansion are shown as histogram. Model selection through the Akaike 274 
information criterion (AIC) resulted in a classification accuracy of 92%. 275 
 276 
gLike reproduces complex demographic histories from stdpopsim 277 

Having established that gLike sensitively detects components of admixtures and estimates 278 
parameters with high accuracy, we further evaluate its ability to reconstruct two additional 279 

demographic models with increasing complexity, as published in stdpopsim23 – the American 280 

Admixture (stdpopsim model 4B11; Figure 4) and the Ancient Europe (stdpopsim model 2A21; 281 
Figure 5) demographies. 282 

 283 
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The American Admixture model consists of four populations (AFR, EUR, ASIA and ADMIX; 284 

Figure 4A), where ADMIX is formed by a very recent admixture from the other three 285 
populations. This model has 15 parameters, including 4 event times, 2 admixture proportions, 6 286 

population sizes and 3 exponential growth rates. We simulate 1000 haplotypes from population 287 
ADMIX on a 30Mb chromosome. gLike on the true trees inferred all 15 parameters with overall 288 

11.3% relative error (Figure 4B). The majority of the error was in Nooa, the size of the out-of-289 

Africa predecessor of the European population, which was overestimated by 38.5%. gLike on 290 
the tsdate-reconstructed trees inferred parameters with overall 23.5% relative error (Figure 4C). 291 

Except from the overestimation of Nooa by 77.8%, the error concentrated on the African branch. 292 

For example, r1 (the African admixture proportion) was overestimated by 30.2%, and Nanc was 293 
overestimated by 27.1%. Fastsimcoal2, in comparison, estimated the same set of parameters 294 

with 258.7% relative error (Figure 4D). Fastsimcoal2 estimated the African proportion fairly 295 
accurately, but appears unable to distinguish between the European and Asian proportions 296 

(Figure 4E).  297 
 298 
As AFS-based methods presumably have better performance in the presence of a multi-299 

dimensional allele frequency spectrum, we compared gLike and Fastsimcoal2 in additional 300 
simulations where 500 haplotypes from each ancestral population were sampled to supplement 301 
the 1000 admixed samples (Figure S5). Presence of ancestry reference samples improved the 302 
accuracy and consistency of Fastsimcoal2’s estimation of almost all parameters (an average of 303 

213.1% relative error), especially the admixture proportions. But gLike based on the true and 304 
inferred trees (5.8% and 16.7% relative errors, respectively) was still more accurate in capturing 305 
the histories of these populations (Figure S5). 306 
  307 
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 308 
Fig 4. gLike reconstructs the American admixture demography 309 
(A) American admixture demography with parameters from stdpopsim model 4B11. All population sizes are drawn 310 
to scale. (B-D) The reconstructed demography using estimations averaged over 50 replicate simulations (left) and 311 
boxplots of relative errors in each simulation (right). Trees and genotypes of 1,000 haplotype from the admixed 312 
population were simulated on a 30 Mb chromosome, the demographic parameters were estimated by gLike on the 313 
true trees (B) or the tsinfer+tsdate reconstructed trees (C), and by Fastsimcoal2 on the allele frequency spectra 314 
derived from true genotypes (D). Boxplots are capped at 300% relative error for ease of visualization. For 315 
Fastsimcoal2 results, the parameter estimates for the single run with the highest likelihood out of 50 independent 316 
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runs are labeled in red. A reference for the width of the population sizes equivalent to 50,000 is given in each panel. 317 
(E) Ternary plots showing admixture proportions estimated by gLike on the true trees (left), by gLike on the 318 
tsinfer+tsdate reconstructed trees (middle) or by Fastsimcoal2 on the allele frequency spectra of the true genotypes 319 
(right), with slide lines indicating true parameters.  320 
 321 
To test gLike’s performance on intra-continental admixtures, we also evaluated the Ancient 322 

Europe model from stdpopsim (2A21). This model is a four-way admixture model where the two 323 

intermediate ancestors of Bronze Age population are each in turn admixed from two ancestors 324 

(Figure 5A). We simulated 1000 haplotypes from the present-day population that descended 325 

from the Bronze Age, and 200 from each of the ancient populations, according to the times 326 

specified by stdpopsim. Applying gLike to the true trees resulted in estimates of the 20 327 
parameters with overall 3.0% relative error (Figure 5B). The main misestimated parameter was 328 
the 29.6% underestimation of Nneo, an ancient population that only existed for 20 generations 329 
(180-200gen) when its samples were collected. Fastsimcoal2 estimated all parameters with an 330 
average relative error of 132.3% (Figure 5C). The estimates of several population sizes reside 331 

near the preset borders -- a behavior that has been suggested to be an intrinsic pitfall of AFS-332 
based methods24. We did not test tsdate in this experiment because its ARG inference method 333 
does not currently make full use of the ancient samples (instead, they are inserted as “proxy 334 

sample ancestors” onto the existing ARG). Given our evaluation above, however, we would 335 
expect that gLike will substantially improve over Fastsimcoal2 in accuracy of parameter 336 
estimates if inferred ARGs can accurately incorporate ancient samples, and that gLike can 337 
generally handle intra-continental admixtures when ancestral populations may be relatively 338 

closely related. 339 
 340 
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 341 
 342 

Fig 5. gLike reconstructs the ancient Europe demography 343 
(A) Ancient Europe demography with parameters from stdpopsim model 4A21. The Bronze Age population is 344 
plotted with initial size true to scale, but the growth rate is shown as text to avoid a disproportionate figure. All other 345 
population sizes are constant size and drawn to scale. (B, C) The reconstructed demography using estimates 346 
averaged over 50 replicate simulations (left) and boxplots of percentage errors in each simulation (right). Trees and 347 
genotypes were simulated on a 30 Mb chromosome. A total of 2200 haplotype samples (1000 contemporary samples 348 
descended directly from the Bronze Age population and 200 ancient samples each from the six ancient populations) 349 
were drawn at collection times as described by stdpopsim. The demographic parameters were estimated by gLike on 350 
the true trees (B) or by Fastsimcoal2 on the allele frequency spectra of the true genotypes (C). Boxplots are capped 351 
at 300% relative error for ease of visualization. For Fastsimcoal2 results, the parameter estimates for the single run 352 
with the highest likelihood out of 50 independent runs are labeled in red. A reference for the width of the population 353 
sizes equivalent to 10,000 is given in each panel. 354 
 355 
Inferring admixture history of Latinos and Native Hawaiians using genome-wide array 356 

data 357 
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We applied gLike to investigate populations with complex demographic history using genome-358 

wide genotyping data from Latinos and Native Hawaiians, each with 500 subsampled diploid 359 
individuals. We parameterized a four-way admixture model consisting of Africans, Europeans, 360 

East Asians and a fourth ancestral population, which is used to model the Indigenous 361 
Americans (for Latinos) or the Polynesians (for Native Hawaiians). We estimated genealogical 362 

trees from the genotyping data using tsdate and estimated a total of 16 parameters using gLike 363 

(Figure 6; Supplemental Table 1). We estimated the Latino lineages to be 10.7% from 364 
Africans, 44.2% from Europeans, 45.1% from Indigenous Americans, and 0% (across all 20 365 

independent threads) from East Asians, while the Native Hawaiian lineages were 19.8% from 366 

Europeans, 33.4% from East Asians, 46.8% from Polynesians, and 0% (across all 20 367 
independent threads) from Africans (Figure 6). As expected, we estimated the Native 368 

Hawaiians to be more recently admixed than the Latinos (19 compared to 25 generations ago). 369 
Also, the Native Hawaiians had a slightly smaller initial population size than the Latinos 370 

(35,682±10,656 compared to 41,579±16,851; but both are likely overestimated. See 371 
Discussion) and grew at a slower rate (0.078±0.009 compared to 0.132±0.012) since the 372 
admixture.  373 

 374 
The European ancestries participated in both admixtures. As expected, we found the estimates 375 
of its population size (13,388±2,388 and 13,341±4,702) and of time of divergence with the East 376 
Asians (1,018±172 and 1,041±87 generations ago) to be highly concordant between two data 377 

sets, suggesting the same underlying population that colonized the Americas and Polynesia. 378 
Note that this ancestry should be more appropriately interpreted as the ancestral population 379 
responsible for the colonization, which is less genetically diverse than the entire European 380 

continent currently or at the time. The Indigenous Americans and Polynesians, though 381 
represented as the same component in the model, were estimated to have different sizes 382 

(73,170±28,939 compared to 15,695±7,393), which may reflect greater population sizes or more 383 

extensive structure in the ancestors to the Latino samples than to the Native Hawaiian samples. 384 

Considering the potential errors during the ARG-reconstruction process (as have been seen in 385 

Figures 2, 4 and S2) and biases due to the lack of high-quality sequencing data for these two 386 

admixed cohorts (Table S2), these estimates of the demographic parameters for both 387 
populations should be taken with caution. Nevertheless, our results suggest that gLike is able to 388 

qualitatively capture known features of the demographic history of Latinos and Native Hawaiians 389 

without reference data from their ancestral populations, and the results stand to improve as 390 
ARG-reconstruction approaches advance. 391 
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 392 

 393 
Fig 6. parameter estimations for the demographic histories of Latinos and Native Hawaiians. 394 
gLike was applied under a potential four-way admixture model reminiscent of stdpopsim model 4B11 for both the 395 
Latino (A) and Native Hawaiian (B) data. The four potential ancestral populations are African, European, East 396 
Asian, and Indigenous American (for Latinos) and Polynesian (for Native Hawaiians).  The reconstructed 397 
demographic diagrams are to scale, marked with relevant parameters. N, size of the admixed population in diploids 398 
at time of admixture; gr, growth rate of the admixed population. Ancestral populations estimated to have 0% 399 
admixture proportion are shown as translucent, because their sizes cannot be estimated. Pie charts show the 400 
estimated admixture proportions of ancestral populations. 401 
  402 

A

B

1

10
25

100

353

1018
2094

10000

ge
ne

ra
tio

ns
 a

go

1

10
19

100

411
1041
2005

10000

ge
ne

ra
tio

ns
 a

go

10.7%

44.2%
45.1%

19.8%

33.4%
46.8%

N = 41579

gr = 0.132

4987
13341 73170

N = 35682

gr = 0.078

13388 25234 15695

African
European
East Asian
Indigenous American
Latino

African
European
East Asian
Polynesian
Native Hawaiian

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.10.561787doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.10.561787
http://creativecommons.org/licenses/by-nc/4.0/


Discussion 403 

With the fast development of scalable ARG inference over the past few years, development of 404 
population-genetic approaches that explicitly use the ARG or its marginal trees is an exciting 405 

area of active research. With this in mind, our current study introduced a framework that 406 
explains the stochastic formation of the genealogical trees in a multi-population context, and 407 

computes the full likelihood of each demographic scenario. Our results revealed that the history 408 

of at least three ancestral populations can be clearly decoded from the genealogical trees of a 409 
single admixed sample without knowledge of the ancestral populations. For many understudied 410 

diverse populations across the world, it is often unclear whether they are admixed, and if so, 411 

what the ancestral populations were. Even if the ancestral populations are known or can be 412 
hypothesized, they likely no longer exist or are difficult to sample. For these populations, 413 

demographic inference using allele frequencies is difficult, since distinct demographic scenarios 414 
can give similar AFSs12. gLike has the potential to provide new insights into studies of these 415 

understudied or ancient populations, as well as the demographic history of other species. 416 
 417 
It is worth clarifying that the admixture proportions in the demographic context (such as those 418 

estimated by Fastsimcoal211 and gLike here) have a slightly different meaning from that in the 419 
genomic context (such as those estimated by STRUCTURE25 and ADMIXTURE26). As a 420 
demographic parameter, the admixture proportion describes the probability of a lineage to 421 
migrate (backward in time) from one population to another, while in the genomic context, this 422 

proportion describes how much of the genome one population shares with another. The two 423 
concepts can deviate primarily in two cases: 1. There is considerable genetic drift after the 424 
admixture, especially when the population size is small; 2. The admixed population, O, may 425 

have a genetic component from, say, population A, not because A participated in the formation 426 
of O, but because of more ancient migrations from A to other ancestries of O. In gLike results, 427 

all admixture proportions should be interpreted in demographic context. In practice, admixture 428 

proportions could be estimated through other means in the genomic context, and then be used 429 

as the initial values for gLike to improve optimization speed and stability, while allowing gLike to 430 

make further adjustments as needed. 431 

 432 
We also note that currently gLike is not utilizing the full information encoded in an ARG, but 433 

rather is relying on sets of presumed independent trees. In many ways, gLike was inspired by 434 

HMM-based demographic inference2–6, where genealogical trees are implicitly utilized. 435 
However, these methods are computationally intensive and have limited scalability, primarily 436 
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due to the intricate handling of recombination events. We reasoned that while recombination 437 

events are essential for ARG inference, they are less informative for ARG-based demographic 438 
inference. Once the ARG (and thus the genealogical trees within the ARG) has been accurately 439 

inferred from the genotypes, reliance on recombination events for insights into demography 440 
becomes less important. Recombination can be modeled as a random breakpoint in the 441 

genealogical tree re-coalesced onto the rest of the tree – the random break is independent of 442 

demography, and the re-coalescence holds minimal information compared to the numerous 443 
coalescences already on the tree. In light of this, gLike currently focuses on rigorously modeling 444 

lineage assortments and coalescent events within individually independent trees, rather than the 445 

variability between neighboring trees, to achieve greater scalability (in order to handle 446 
thousands of samples and multiple populations). Future enhancements of gLike may then 447 

model recombination to incorporate the remaining information encoded in the ARG. 448 
Furthermore, gLike has some commonality with approaches to species-tree inference based on 449 

gene trees, where gene trees can be used to estimate the topology and branch lengths of a 450 
phylogenetic tree27. Whereas such methods estimate the whole topology, we pre-specify the 451 
demographic history and estimate parameters related to it, including processes like admixture 452 

that do not feature as prominently in species-tree inference. In cases where the demographic 453 
history is sketchy, it may be possible to develop approaches akin to the species-tree inference 454 
to estimate parts of the topology. 455 
 456 

One current limitation of gLike is that certain parameters are not individually identifiable, but 457 
could only be optimized in combination. For example, the effects of population size and growth 458 
rate are hard to separate if a population exists for only a short time (Figure S6). Any 459 

combination of the two parameters that produces the same average coalescence rate will have 460 
a similar likelihood, making it difficult to identify the global optimum. Such entangled parameters 461 

are in fact a limitation in many demographic inference methods and often result in similar 462 

likelihoods for many combinations of parameters. When applying gLike with hill-climbing-based 463 

optimization methods, the estimates of entangled parameters could be path dependent. Thus, a 464 

grid search on specific entangled parameters after a general optimization routine may be 465 

beneficial to an unbiased estimation of the demography. 466 
 467 

In addition, continuous migration is not currently supported by gLike, because it drastically 468 

increases the number of states. In the American Admixture simulations (Figure 4), we omitted 469 
the weak migrations (10-5-10-4 per generation) between continental populations as originally 470 
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specified by the stdpopsim model. Omitting the continuous migrations have no visible impact on 471 

estimating the remaining parameters unless they are ~100 times more intense than that 472 
currently specified in the stdpopsim model and presumed to be typical between continental 473 

human populations (Figure S7). However, such frequent migrations (10-3-10-2 per generation) 474 
may exist between intra-continental populations where geographical separations are minimal. 475 

Estimating the migration rate itself is also of interest in ecological studies of other species, and a 476 

future focus will be extending gLike to incorporate continuous migration. One obvious solution is 477 
to discretize the continuous migration into a number of pulse migrations, which results in many 478 

layers each containing a large number of states. An effective discretization strategy, as well as 479 

an efficient random sampling technique on the states, seems necessary to address this 480 
challenge. 481 

 482 
Current ARG inference methods have achieved remarkable scalability and accuracy, but their 483 

biases and errors still deserve attention in genetic applications. We have showcased the varying 484 
performance of tsinfer+tsdate and Relate at different time scales in admixed populations 485 
(Figure S2). The overestimation of branch lengths at recent times appears to be a common 486 

problem for both methods, but is more severe in Relate-inferred trees, to the degree that 487 
meaningful GOSs are difficult to construct. Tsinfer and tsdate are also faster because they use 488 
heuristic algorithms to avoid the O(n2) pair-wise comparisons. However, the bottom-up 489 
approach of tsdate is somewhat less accurate for ancient coalescences, whereas Relate’s 490 

hierarchical clustering-based method infers the deep part of the genealogies with higher 491 
accuracy (especially beyond 1000 generations ago), and thus captures global relatedness more 492 
robustly17. There may be techniques to adjust one’s result with the other, thus combining both of 493 

their advantages. With scalable and accurate ARG inference across broader scales, we expect 494 
the reliability and accuracy of gLike demographic inference to be further improved. 495 

 496 

Finally, we acknowledge that human migrations and admixtures exist on a continuum. In the 497 

current framework we opted to model discrete populations and components of ancestries, as is 498 

customary when modeling the histories of recently admixed populations such as the Latinos. 499 

But one of the advantages of an ARG-based view of human history may be to remove the 500 
notion of distinct populations. Enabling continuous rather than pulse-like migrations between 501 

populations to enhance gLike may be another step forward, but future developments of ARG-502 

based demographic inference may emphasize on the paradigm shift to represent human 503 
histories and structure on a continuum. 504 
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 505 

Methods 506 
Formalization of the problem: Probability of a genealogical tree under a demography 507 

The demographic history of 𝐾 populations can be represented by the interplay between two 508 

stochastic processes affecting the lineages – coalescence and movement among populations. 509 

The coalescence rate 𝑛((𝑡) of each population 𝑎 as a function of time 𝑡 is 510 

𝑛((𝑡) =
!

)*!(,)
, 𝑎 ∈ {1,… , 𝐾}, 𝑡 ∈ (0,∞), 511 

where 𝑁( is the effective population size, and 𝑘 is ploidy. And the migration probability matrix 𝑚 512 

at each of the 𝑆 historical events is 513 

𝑚(.(𝑡%), 𝑎, 𝑏 ∈ {1,… , 𝐾}, 𝑠 ∈ {1,… , 𝑆}, 514 

where 𝑡% is the time of the 𝑠-th historical event, and 𝑚(.(𝑡%) is the instantaneous probability for a 515 

lineage to move (backward in time) from population 𝑎 to 𝑏. 516 

 517 
The demography is thus defined as 518 

𝒟 = (𝑛,𝑚) = ({𝑛(}, {𝑚(.}), 519 

a size-𝐾 vector of coalescence rates defined on continuous time, and a 𝐾 × 𝐾 matrix of 520 
migration probabilities defined on a discrete set of times. While gLike currently does not 521 

explicitly incorporate continuous migration, it can potentially be represented as a series of 522 
historical events through discretization. 523 

 524 

A genealogical tree with 𝑁 nodes can be defined by the time and children of each node 525 

𝒢 = 9(𝜏/ , 𝜋/)|𝑖 ∈ {1, … ,𝑁}>, 526 

where 𝜏/ is the time of the node 𝑖 (or equivalently, the emergence of lineage 𝑖), and 𝜋/ is the set 527 

of its child nodes (which is empty if 𝑖 is a leaf node). The end time 𝜔/ of lineage 𝑖 can be 528 

calculated as time of its parent node (that is, 𝜔/ = 𝜏0 if 𝑖 ∈ 𝜋0) or ∞ if it has no parent. Our goal is 529 

to compute ℙ(𝒢|𝒟) for arbitrary 𝒢 and 𝒟, and we will omit thereafter the “conditional on 𝒟” 530 

notation, which is always implied.  531 

 532 

It is helpful to define the set of lineages existing at time 𝑡 as 533 

𝐿(𝑡) = {𝑖|𝜏/ ≤ 𝑡 < 𝜔/}, 534 

and the lineages emerging between 𝑡 and 𝑡1 as 535 

𝐿(𝑡, 𝑡1) = {𝑖|𝑡 < 𝜏/ , 𝜔/ < 𝑡1}. 536 

 537 
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Migration trajectory and states 538 

The population identity of a lineage 𝑖 during its existence,  539 

𝑥/(𝑡), 𝑡 ∈ [𝜏/ , ∞) 540 

is a time-dependent variable taking values from {1, … , 𝐾} that describes how this lineage, or its 541 

ancestor lineage when 𝑡 > 𝜔/, migrates in history. For convenience, the value of 𝑥/(𝑡) at exactly 542 

the time of a historical event is defined as the left limit 𝑥/(𝑡%) = lim
,→,"&

𝑥(𝑡), so that 𝑥(𝑡) is left-543 

continuous. 544 

 545 
The population identity of all lineages existing at any time throughout the history is 546 

𝑥(𝑡) = {𝑥/(𝑡)|𝑖 ∈ 𝐿(𝑡)}, 𝑡 ∈ [0,∞), 547 

which gives a complete migration trajectory of the genealogical tree. The genealogical tree itself 548 

does not dictate 𝑥, and the probability of it should be computed as the sum over all possible 549 

trajectories, 550 

ℙ(𝒢) = ∑ ℙ(𝒢 ∩ 𝑥)3 . 551 

In order to compute ℙ(𝒢) recursively over time, we define 𝒢(0, 𝑡) as the genealogical history in 𝒢 552 

until time 𝑡, and define a “state” as 553 

𝒢(0, 𝑡) ∩ 𝑥(𝑡). 554 

For example, the state “ABCC” in Figure 1 at 𝑡! contains 𝒢(0, 𝑡!), which indicates that lineages 555 

2 and 3 coalesced at 𝜏! but all other possible coalesces has not happened at 𝑡!, and 𝑥(𝑡!) =556 

ABCC, which indicates that the remaining four lineages (1,6,4 and 5) are in populations A,B,C 557 

and C, respectively, at 𝑡!. 558 
 559 

Now ℙ(𝒢) can be expressed as the sum of probability of root states  560 

ℙ(𝒢) = ℙO𝒢(0,∞)P = Q ℙO𝒢(0,∞) ∩ 𝑥(∞)P
3(4)

 561 

 562 
Conditional probability between states 563 

The conditional probability between states 564 

ℙO𝒢(0, 𝑡%5!) ∩ 𝑥(𝑡%5!)|𝒢(0, 𝑡%) ∩ 𝑥(𝑡%)P565 

= ℙO𝒢(0, 𝑡%) ∩ 𝑥(𝑡%5!)|𝒢(0, 𝑡%) ∩ 𝑥(𝑡%)PℙO𝒢(0, 𝑡%5!) ∩ 𝑥(𝑡%5!)|𝒢(0, 𝑡%) ∩ 𝑥(𝑡%5!)P 566 

consists of a migration probability and a genealogical probability.  567 

 568 
The migration probability 569 
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ℙO𝒢(0, 𝑡%) ∩ 𝑥(𝑡%5!)|𝒢(0, 𝑡%) ∩ 𝑥(𝑡%)P = R 𝑚3#(,")3#(,"$%)
/∈7(,")

(𝑡%) 570 

describes the migration of each lineage 𝑖 from 𝑥/(𝑡%) to 𝑥/(𝑡%5!) at time 𝑡%. 571 

 572 

The genealogical probability ℙO𝒢(0, 𝑡%5!) ∩ 𝑥(𝑡%5!)|𝒢(0, 𝑡%) ∩ 𝑥(𝑡%5!)P describes how likely the 573 

genealogical tree grows according to 𝒢 backward in time from 𝑡% to 𝑡%5!, given population 574 

identities 𝑥(𝑡%5!). This requires that every coalescence in 𝒢 happened exactly at its time in 𝒢 575 

(which we call the coalescence probability) and that any other possible coalescence did not 576 

happen (which we call the non-coalescence probability).  577 

 578 
The coalescence probability is 579 

R S𝑛3#(,"$%)(𝜏/)T
/∈7(,",,"$%)

9:;(<,|>#|&!)
 580 

where 𝑛3#(,"$%)(𝜏/) is the coalescence rate of lineage 𝑖’s population when it emerges. Note that 581 

the lack of migration between 𝜏/ and 𝑡%5! guarantees 𝑥/(𝜏/) = 𝑥/(𝑡%5!). And max(0, |𝜋/| − 1) is 582 

the number of coalescences at the emergence of 𝑖 (for example, a binary node is formed with 583 
one coalescence, a ternary node can be viewed as two coalescences at the same moment, and 584 
a leaf node or unary node does not have coalescence). 585 

 586 

The non-coalescence probability is 587 

R expZ−[ Z
𝑙((𝑡)
2
^ ∙ 𝑛(𝑡)𝑑𝑡

,"$%

,"
^

(∈{!,…,A}

 588 

where 589 

𝑙((𝑡) = |{𝑖|𝑖 ∈ 𝐿(𝑡), 𝑥/(𝑡%5!) = 𝑎}| 590 

is the number of lineages in population 𝑎 at time 𝑡 (if population identities are specified by 591 

𝑥/(𝑡%5!)), which is a step function that jumps when lineages emerge or coalesce; OC!(,)" P =592 
C!(,)(C!(,)&!)

"
 is the number of lineage pairs in 𝑎 that are possible to coalesce; and the exponential 593 

term is the probability that none of them actually coalesced during (𝑡%, 𝑡%5!), which is derived 594 

from a nonhomogeneous Poisson process with rate 𝜆(𝑡) = OC!(,)" P ∙ 𝑛(𝑡). Note that 𝑛(𝑡) can be 595 

any integrable function, enabling flexibility to the population size variation in the demographic 596 

model. 597 
 598 
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We conclude that the conditional probability between states is 599 

ℙO𝒢(0, 𝑡%5!) ∩ 𝑥(𝑡%5!)|𝒢(0, 𝑡%) ∩ 𝑥(𝑡%)P 600 

= b R 𝑚3#(,")3#(,"$%)
/∈7(,")

(𝑡%)c ∙ d R S𝑛3#(,"$%)(𝜏/)T
/∈7(,",,"$%)

9:;(<,|>#|&!)
e601 

∙ d R expZ−[ Z
𝑙((𝑡)
2
^ ∙ 𝑛(𝑡)𝑑𝑡

,"$%

,"
^

(∈{!,…,A}

e 602 

= (migration	probability) ∙ (coalescence	probability) ∙ (noncoalescence	probability) 603 

= (migration	probability) ∙ (genealogical	probability) 604 
 605 

Practically, the migration probability has to be computed between any parent-child state pair, 606 
but the genealogical probability is independent from the child state and needs to be calculated 607 

only once for every state. As a boundary condition, the origin state at the bottom (i.e. leaves) of 608 
the tree has probability one 609 

ℙO𝒢(0, 0) ∩ 𝑥(0)P = ℙO𝑥(0)P = 1, 610 

where 𝑥(0) specifies the population identities of each individual in the study samples. 611 
 612 

The minimal graph of states 613 

All possible states at all times of all historical events 𝑡!, 𝑡", … , 𝑡D form a directed acyclic graph, 614 

named as the graph of states (GOS), where states in adjacent layers (one at 𝑡% and the other at 615 

𝑡%5!) are connected with their conditional probability as introduced above. A state with zero 616 
marginal probability will not contribute to the marginal probability of its parent state and is 617 
redundant in the graph. A GOS without redundant states is called a minimal GOS.  618 

 619 

The coalescence probability and non-coalescence probability are always above zero, because 620 
population sizes cannot be zero or infinity. This means that, to judge if a state is possible or not, 621 

we only have to check the migration probabilities, which are decomposable into migrations of 622 

each individual lineage. In other words, a state is possible if every lineage is in a possible 623 
population. To put it mathematically, we have 624 

ℙO𝒢(0, 𝑡%) ∩ 𝑥(𝑡%)P > 0		 ⟺		 q𝐼O𝑥/(0)P R 𝑚(𝑡E)
!FEF%

s
3#(,")

> 0, ∀𝑖 ∈ 𝐿(0) 625 

where 𝐼O𝑥/(0)P is a size-𝐾 indicator vector with value 1 at the population 𝑥/(0) where sample 𝑖 626 

was collected, and all other elements zero; ∏ 𝑚(𝑡E)!FEF%  is the transition matrix summarizing the 627 
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first 𝑠 historical events; and S𝐼O𝑥/(0)P∏ 𝑚(𝑡E)!FEF% T3#(,") is the probability that lineage 𝑖 migrated 628 

from 𝑥/(0) to 𝑥/(𝑡%). Figure 1 step 1 can be understood as the non-zero elements in 629 

𝐼O𝑥/(0)P∏ 𝑚(𝑡E)!FEF%  for every 𝑠. 630 

 631 
Implementation details and optimization 632 

With the above-mentioned theory to calculate ℙ(𝒢|𝒟G) on a demographic model 𝒟G 633 

parameterized by 𝜃, the estimated parameters that best explains the observed 𝒢 is 634 

𝜃∗ = argmax
G

ℙ(𝒢|𝒟G) 635 

gLike encapsulates the likelihood computation and a simulated annealing-based optimization 636 

into an open-source Python package, alongside a C extension to accelerate Cartesian product 637 
operations when searching for child states (GitHub page: https://github.com/Ephraim-usc/glike). 638 
All probabilities are implemented in log scale, and sums of probabilities are calculated with the 639 

scipy logsumexp function. If the number of states at a layer exceeds the preset limit (10# by 640 

default), a random subsample of states is generated to approximate the likelihood. When 641 

multiple, presumed independent and neutrally evolving, trees are provided, the final log 642 
likelihood is the sum of log likelihoods of each tree. We presume independence of trees as the 643 
total likelihood would assume more complicated forms if trees were nearby and not 644 

independent. We also presume neutrality as coalescence probabilities would deviate from the 645 

inverse of population sizes when there are variants under natural selection. We set a user-646 
defined parameter to drop some proportion (default: 50%) the lowest likelihood trees during 647 

optimization, as we found in practice that this filtering improves robustness against errors in tree 648 
reconstruction (such as erroneous coalescences) and migrations that are neglected in the 649 
demographic model. 650 

 651 
Demographic inference in simulations 652 
All simulations were performed on a 30 Mb chromosome with both recombination and mutation 653 

rates set to 10-8 per generation per base pair, with a sample size of 1,000 haplotypes from the 654 

admixed population. The demographic parameters are annotated in the corresponding figures, 655 
or cloned from stdpopsim23 models 4B11 (American Admixture) and 4A21 (Ancient Europe). In 656 

American Admixture simulations, we ignored the continuous migrations in our simulations and 657 

estimations. The extent to which hidden migrations potentially undermines gLike results was 658 
tested on additional simulations with 1-, 10- and 100-times continuous migrations as reported by 659 

stdpopsim 4B11. In the Ancient Europe simulation, we additionally sampled 200 haplotypes 660 
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from each ancestral population according to the collection times reported by stdpopsim, in order 661 

to mimic genetic studies with ancient DNA. 662 
 663 

To evaluate gLike, ARGs and genotypes were simulated by msprime28. ARG reconstructions by 664 
tsinfer+tsdate29,30 or Relate31 were performed with all default parameters as suggested in the 665 

user manual. One hundred evenly spaced trees across the chromosome were selected for 666 

gLike inference. The precision of gLike parameter estimation (i.e., the minimal step size during 667 
optimization by simulated annealing, relative to the current estimate) was set to 2%. The 668 

absolute difference between the average estimate and the truth, divided by truth, is defined as 669 

the relative error. The average estimates across 50 replicate simulations were used as the final 670 
pictorial representation of the reconstructed demography, with boxplots of the relative errors 671 

across 50 replicates also shown. The standard deviation across 50 replicate simulations serves 672 
as an indicator of the parameter uncertainties as listed in Tables S1 and S2.   673 

 674 
To compare gLike to Fastsimcoal2 (ref 11), derived allele frequency spectra were computed on 675 
all simulated SNPs (including singletons), and parameter estimation was performed with 676 

100,000 simulations and 40  ECM (expectation/conditional-maximization) loops, using the 677 
commands “-n 1 -s0 -d -k 1000000” for AFS simulation and “-n 100000 -s0 -d -M -L 40” for 678 
parameter estimation. The estimate with the highest likelihood obtained among 50 independent 679 
runs was used as the final pictorial representation of the reconstructed demography (following 680 

the same practice recommended by the authors of Fastsimcoal232), with estimates from all 50 681 
shown in the accompanying boxplots. We also compared gLike performance to pg-gan21, a 682 
deep learning demographic parameter inference method that uses generative adversarial 683 

networks to create realistic simulated training data. Genotypes from simulated ARGs of the 684 
same demographic model were used as training data, run for up to 300 training iterations with 685 

default training parameters. We also used the same range for each demographic parameter to 686 

be consistent with the Fastsimcoal2 comparisons. Since pg-gan gives multiple sets of 687 

parameter proposals at end of training, the set of inferred demographic parameters with the 688 

lowest relative error compared to the true parameters was selected as the final estimate of this 689 

run. A total of 50 independent runs were conducted. 690 
 691 

To characterize the impact of ARG reconstruction using array data instead of sequencing data, 692 

we performed additional simulation experiment in which SNPs were retained with the probability 693 

𝑝(MAF) = 𝐶IJK(MAF) 𝐶LM9(MAF)⁄ , 694 
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where MAF is the minor allele frequency of the simulated SNP, 𝐶IJK(MAF) is the number of 695 

occurrences of MAF in the Latinos array data, and 𝐶LM9 is the number of occurrences of MAF in 696 

a simulated genome (3,000Mb). As expected, it was found that 𝐶LM9 is greater than 𝐶IJK across 697 

all values of MAF ∈ [0, 0.5], which ensures 𝑝 is always less than one. We then inferred the ARG 698 
using tsinfer+tsdate using the simulated array data. 699 

 700 

Model selection in simulations 701 
To test for the existence of an additional ancestral component, gLike was applied under a two-702 

way admixture model and a three-way admixture model, and the maximum likelihoods achieved 703 

under both models were compared. Specifically, the two-way admixture model structurally 704 
mimicked the three-way admixture as in Figure 2A, but without population D, so that all 705 

lineages from population B entered population C. As such, the two-way admixture model had 706 
two fewer parameters – r2 (admixture proportion from D) and ND (population size of D). gLike 707 

was then applied in a two-step manner. First, the parameters were estimated under the two-way 708 
admixture model with the default hill-climbing optimization. Next, we applied gLike under the 709 
three-way admixture model and perform a grid search on r2, NC and ND, while fixing other 710 
parameters at their two-way admixture estimates. Finally, the difference between the maximum 711 

log likelihoods achieved under two models was used for AIC model selection (with 2 degrees of 712 
freedom, to account for the two extra parameters in the three-way admixture model), and the 713 
model with the higher AIC value was selected.  714 

 715 
Latinos and Native Hawaiians data processing 716 
A total of 5,382 self-identified Native Hawaiians and 3,659 self-identified Latinos from the 717 
Multiethnic Cohort (MEC) were genotyped on two separate GWAS arrays: Illumina MEGA and 718 

Illumina Global Diversity Array (GDA). After taking the intersection of SNPs found on both 719 
arrays, the genotyping data were lifted to hg38 using triple-liftover33 to ensure alleles in inverted 720 

sequences between reference genome builds were properly lifted. We removed variants that 721 

were genotyped in fewer than 95% of individuals, variants out of Hardy-Weinberg Equilibrium (p 722 
< 10−6), and individuals with greater than 2% missing genotypes (though no one was removed 723 

with this threshold). After quality check, the Native Hawaiian and Latino datasets contained 724 
990,549 and 1,093,693 SNPs, respectively. The data were phased without a reference using 725 

EAGLE34 and its default hg38 genetic map. We randomly subsampled 1,000 haploids and 726 

removed monomorphic SNPs, resulting in 879,040 and 927,254 SNPs in the Native Hawaiian 727 
and Latinos datasets, respectively. The ancestral alleles were called by a comparison with the 728 
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human ancestor GRCh38 e107 genome (URL: ftp.ensembl.org/pub/release-729 

86/fasta/ancestral_alleles/). Tsinfer and tsdate were used with all default parameters as 730 
suggested in the user manual to reconstruct the ARG. The human neutralome35 (i.e., the 731 

regions of the human genome identified as likely selectively neutral) was converted into hg38 732 
coordinates, and 319 neutral regions that are at least 5Mb from each other were selected for 733 

gLike analysis. Ten trees were sampled in each gLike optimization thread, and 20 threads were 734 

run in parallel. The estimates of demographic parameters were averaged over 20 threads. The 735 
precision of gLike parameter estimation was set to 5%, higher than 2% used in simulations. This 736 

choice is due to the broader span of the likelihood curve's plateau, which generally extends 737 

beyond 5%, wider than observed in simulations. Therefore, using smaller step sizes would 738 
increase computational costs with little gain in performance. 739 

 740 
Data Availability 741 

The individual level genetic data for Native Hawaiian and Latino datasets were derived from the 742 
Multiethnic Cohort (MEC), and are available on dbGaP (accession numbers: phs000220.v2.p2 743 
and phs002183.v1.p1). The gLike package is available on its github page 744 

(https://github.com/Ephraim-usc/glike2). 745 
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