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Abstract 11 

Understanding the factors that shape variation in the human microbiome is a major goal of 12 

research in biology. While other genomics fields have used large, pre-compiled compendia to 13 

extract systematic insights requiring otherwise impractical sample sizes, there has been no 14 

comparable resource for the 16S rRNA sequencing data commonly used to quantify microbiome 15 

composition. To help close this gap, we have assembled a set of 168,484 publicly available 16 

human gut microbiome samples, processed with a single pipeline and combined into the largest 17 

unified microbiome dataset to date. We use this resource, which is freely available at 18 

microbiomap.org, to shed light on global variation in the human gut microbiome. We find that 19 

Firmicutes, particularly Bacilli and Clostridia, are almost universally present in the human gut. At 20 

the same time, the relative abundance of the 65 most common microbial genera differ between 21 

at least two world regions. We also show that gut microbiomes in undersampled world regions, 22 

such as Central and Southern Asia, differ significantly from the more thoroughly characterized 23 

microbiomes of Europe and Northern America. Moreover, humans in these overlooked regions 24 

likely harbor hundreds of taxa that have not yet been discovered due to this undersampling, 25 

highlighting the need for diversity in microbiome studies. We anticipate that this new compendium 26 

can serve the community and enable advanced applied and methodological research. 27 
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Introduction 30 

The human microbiome is an important factor in understanding health and disease. Systematic 31 

differences are observed between the composition of the microbiome in healthy individuals and 32 

those with microbiota-linked conditions such as colorectal cancer1–3 and inflammatory bowel 33 

disease.4 Thus, understanding and quantifying the determinants of variation in the microbiome 34 

has been a major goal of microbiome research. Studies have shown that this variation is driven 35 

by a variety of factors, including host genetics5 and ethnicity.6–8 While it is difficult to account for 36 

each of these factors individually, many are tied to geographic region. For example, dietary fiber 37 

and the consumption of processed foods varies between countries,9 as does the use of 38 

antibiotics,10 both of which are known to impact gut microbiota. Microbiome composition links 39 

location, culture and human health, a dynamic that can be observed in the compositional shifts 40 

experienced by individuals immigrating to the United States from Thailand,11,12 Latin America and 41 

Korea.13 42 

Despite the importance of understanding microbiome variation between world regions, cultures, 43 

and social groups,14–17 many populations are practically excluded from the microbiome literature: 44 

In our previous work, we demonstrated that high-income countries, such as the United States, 45 

are dramatically overrepresented in public databases, while others, such as countries in eastern 46 

Asia, are under-sampled compared to their population.18 As with genome-wide association 47 

studies,19 a limited range of subjects raises the question of how broadly we can apply the known 48 

links between the microbiome and human health.20,21 The large number of publicly available 49 

microbiome datasets could be useful in quantifying differences between the most thoroughly 50 

studied world regions and those that are still comparatively uncharacterized. 51 

In an environment as noisy and complex as the human gut, gaps in knowledge may be difficult to 52 

detect, and important patterns may only become apparent after collecting thousands or tens of 53 

thousands of samples. Large compendia such as ReCount22,23 that have been developed for 54 

transcriptomic analysis have revealed strain-level differences in complex microbial gene 55 

expression patterns24 and human gene expression modules that can be used to enhance 56 

transcriptome-wide association studies.25 The human microbiome field does not have a 57 

comparable resource. 58 

To mitigate this gap in the bioinformatic capabilities of the field, we present here the Human 59 

Microbiome Compendium, a novel collection of more than 168,000 publicly available human gut 60 

microbiome samples from 68 countries. All samples were reprocessed using state-of-the-art tools 61 

and combined into a single dataset that we have made available in multiple formats, including the 62 

MicroBioMap R Bioconductor package and a website at microbiomap.org. We use this data to 63 

evaluate patterns in microbiome composition around the world and estimate the implications of 64 

gaps in our current knowledge of the human gut. 65 
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Results 66 

Bacilli, Clostridia are universal constituents of the global human gut microbiome 67 

To generate the Human Microbiome Compendium, we started with metadata for 245,627 samples 68 

of 16S amplicon sequencing available in the BioSample database maintained by the U.S. National 69 

Center for Biotechnology Information (NCBI) as of October 2021, limited to those submitted in the 70 

"human gut metagenome" category and flagged with the "amplicon" library strategy. The samples 71 

are organized into studies, as defined in the BioProject database; we processed each study 72 

separately using a pipeline centered around the DADA2 software tool,26 which generates a 73 

"taxonomic table" for each BioProject in which each row is a sample and each column is a single 74 

taxon. We elected conventional quality-control settings that should apply to the broadest number 75 

of studies: removing reads shorter than 20 nucleotides, for example, and reads with any 76 

ambiguous ("N") base calls (see Methods for a comprehensive description of the pipeline and 77 

quality control). Briefly, studies for which paired-end reads could not be reliably merged were 78 

reprocessed as single-end after discarding reverse reads. We removed BioProjects with an 79 

elevated proportion of suspected chimeric reads, those for which taxonomic classification failed 80 

(indicating reads were not generated by conventional amplicon sequencing), and BioProjects for 81 

which the most abundant taxa were not bacterial, generally in studies focused on archaea or 82 

fungi. We focused on Illumina-based assays and discarded BioProjects reporting instruments that 83 

perform pyrosequencing or long-read sequencing. 84 

To integrate the data across BioProjects, we processed and quantified each BioProject's amplicon 85 

sequence variants (ASVs), each representing a single unique sequence observed in the samples 86 

in the BioProject. Then, each ASV was classified as specifically as possible down to the genus 87 

level. The final results quantified the number of reads in each sample that were assigned to each 88 

taxon. We repeated this for the 482 BioProjects in the complete dataset, which resulted in a full 89 

compendium of 168,484 samples from 68 nations, encompassing 5.57 terabases of sequencing 90 

data processed using a uniform pipeline (Figure 1A). Finally, for further analyses, we created a 91 

filtered compendium of 150,721 samples containing at least 10,000 reads each after excluding 92 

rare taxa (see Methods), to filter out low-quality samples with insufficient data on composition 93 

and microbes that are too rare to compare between BioProjects or world regions. The processed 94 

data, the Human Microbiome Compendium, is freely available in multiple formats at 95 

microbiomap.org (see Data Availability), where users can browse, visualize, filter, and download 96 

the data and metadata. We also created an R package, microbiomap, to facilitate further analysis 97 

of the Human Microbiome Compendium data (see Data Availability). Full documentation for the 98 

dataset and R package, as well as tutorials and examples of how to integrate the data into one’s 99 

own work, is available at microbiomap.org. 100 

The median sample contained 40,830 reads, after trimming, quality filtering, and merging of paired 101 

reads, and 90.4 percent of samples had fewer than 150,000 reads (Figure 1B). As observed even 102 

in early sequencing assays of the human gut microbiome,27 we find the Firmicutes phylum is by 103 

far the most prevalent (Supplementary Figure 1), found in 150,540 of 150,721 samples (99.9 104 
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percent), followed by Proteobacteria (144,489 samples; 95.9%), Actinobacteria (141,191 105 

samples; 93.7%) and Bacteroidetes (136,984 samples; 90.9%), before a sharp drop-off to phyla 106 

such as Desulfobacterota and Verrucomicrobia (Figure 1C). Firmicutes also contains three of the 107 

five most prevalent classes (Figure 1D) and five of the 10 most prevalent orders (Supplementary 108 

Table 1). The prevalence of the Bacteroidetes phylum, long a focus of analysis (e.g. ref28) is due 109 

almost entirely to the Bacteroidales order in our data (136,085 samples; 99.3 percent of 110 

Bacteroidetes-positive samples; Figure 1E), particularly the Bacteroidaceae family. 111 

Visual inspection of the phylum-level relative abundances found in the compendium shows a 112 

surprisingly uniform distribution for the abundance of Firmicutes (Figure 1G), which is in the top 113 

two phyla of 137,091 samples (91.0 percent) and combines with Bacteroidetes, the fourth-most 114 

prevalent phylum, to make up the majority of the reads classified in 51.0 percent of samples 115 

(Supplementary Table 2). In samples with lower abundances of Firmicutes and Bacteroidetes, a 116 

limited number of phyla take their place (Figure 1F; Supplementary Figure 2): Of the 73,859 117 

samples in which at least one other phylum appears in the top two, Actinobacteria is a top-two 118 

phylum in 52.1 percent of them, followed by Proteobacteria (46.2 percent). Of the 4,750 samples 119 

for which neither Firmicutes nor Bacteroidetes is in the top two, Proteobacteria is in the top two 120 

of 97.5 percent. We find the relative abundance distribution of Proteobacteria closely resembles 121 

that of Actinobacteria, and that Desulfobacterota, despite being the fifth-most prevalent phylum 122 

by appearing in 70,302 samples, is found at relative abundances lower than 1 percent in 88.8 123 

percent of those samples (Figure 1G; Supplementary Figure 3). 124 

We observed a wide range of alpha diversity (a measure of taxonomic richness within samples), 125 

with a median Shannon diversity of 2.33 and values as high as 5.07 (Figure 1H), consistent with 126 

ranges identified in previous meta-analyses of alpha diversity across multiple microbiome 127 

studies.29,30 To estimate the completeness of this census, we performed a sample-based 128 

rarefaction analysis,31 in which we selected random subsamples of different sizes without 129 

replacement from the full compendium and evaluated the number of unique taxa observed in each 130 

subsample (see Methods for details). The discovery rate for new taxa approached zero after 131 

25,000 samples for all levels except genus, the most specific. Between subsamples of 150,000 132 

samples and the full dataset of 168,484, we observed one new genus every 4831 samples 133 

(Figure 1I). This demonstrates that the compendium currently captures all but the rarest taxa in 134 

the populations covered by the dataset, given the current distribution of reads per sample. Overall, 135 

we find that there is broad variation in the composition of human gut samples (Figure 1F), but 136 

within a limited selection of microbial taxa drawn mostly from the Firmicutes phylum (Figure 1E). 137 
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 138 

Figure 1. Overview of the Human Microbiome Compendium. (A) A list of the general steps in the 139 
data pipeline and how many samples completed each step. See Methods for more details about 140 
each process. (B) A histogram illustrating the distribution of reads that were classified in each sample. 141 
The x-axis indicates the number of reads in a given sample, and the y-axis indicates the number of 142 
samples with that number of reads. (C–E) The most prevalent taxa observed in the compendium. 143 
The reads in each sample are assigned the most specific taxonomic name possible, down to the 144 
genus level. Each panel illustrates results when these assignments are consolidated at the three 145 
highest taxonomic levels; in each, the y-axis lists the 10 most prevalent taxa at that level, and the x-146 
axis indicates the number of samples in which that taxon was observed at any level. Panel C indicates 147 
the most prevalent phyla, and the top five are each assigned a color. These colors are used in the 148 
remaining two panels to indicate the phylum of each taxon. Panel D indicates the most prevalent 149 
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classes of bacteria observed in the dataset, and Panel E indicates the most prevalent orders. Lower 150 
taxonomic orders are illustrated in Supplementary Figure 1. (F) A stacked bar plot illustrating the 151 
relative abundance of 5000 randomly selected samples from the compendium. Each vertical bar 152 
represents a single sample, and the colored sections each represent the relative abundance of a 153 
single phylum in that sample. These bars use the same colors as panel C. The samples are sorted 154 
first by the most abundant phylum's identity, followed by the second-most abundant phylum's identity, 155 
followed by the combined relative abundance of these two taxa. For example, the first group on the 156 
left is made up of samples in which Firmicutes was the most abundant phylum and Proteobacteria 157 
was the second-most abundant. Next is samples in which Firmicutes was most abundant and 158 
Actinobacteria was second-most prevalent, and so on. Another version of this figure, sorted by 159 
Firmicutes relative abundance, is available as Supplementary Figure 2. (G) A density plot illustrating 160 
the relative abundance of phyla across the compendium. Each line represents one of the five most 161 
prevalent phyla in the dataset, using the same colors as panel B. The gray line indicates all other 162 
phyla. The x-axis indicates the relative abundance of a given phylum in a single sample, and the y-163 
axis indicates how many samples were observed to have that abundance of the given taxon. A 164 
version of this figure using a linear y-axis is available as Supplementary Figure 3. (H) A histogram 165 
illustrating the distribution of Shannon diversity observed in the compendium. The x-axis indicates a 166 
given sample's alpha diversity, as measured by Shannon Diversity Index. The y-axis indicates the 167 
number of samples that were observed to have that score. (I) The results of a rarefaction analysis in 168 
which a simulated compendium of various sizes was generated repeatedly and evaluated for 169 
taxonomic richness. The x-axis indicates the number of microbiome samples in the simulated 170 
compendium, and the y-axis indicates the number of unique taxa were observed in that simulation. 171 
Each line indicates the number of observed taxa at successively specific taxonomic levels. 172 

World regions harbor unique microbiome signatures 173 

Though much of the public metadata available for BioSamples is inconsistently reported 32, the 174 

"geo_loc_name” identifier was available for 92.4 percent of samples in the filtered compendium. 175 

This field provides general information about where a sample was collected, and in most cases 176 

directly specifies the country of origin. We manually reviewed all 455 unique "geo_loc_name" 177 

values (Supplementary Table 3) and associated each with a standardized list of countries (see 178 

Methods); we then consolidated all of these countries into eight world regions defined by the 179 

United Nations Sustainable Development Goals (SDG) program (Figure 2A). As in previous 180 

work,18 we found that the majority of samples were from Europe and Northern America (91,144 181 

samples; 60.5 percent), with the Eastern and South-Eastern Asia region a distant second at 182 

17,086 samples (11.3 percent; Figure 2B). Sub-Saharan Africa was the third-most represented 183 

(5538 samples; 3.7 percent), followed closely by Central and Southern Asia (5046 samples; 3.4 184 

percent). 185 

We observed the highest alpha diversity among the 1195 samples from Latin America and the 186 

Caribbean, with a median Shannon index of 2.90 (Figure 2C). Samples from Central and 187 

Southern Asia exhibited the lowest average diversity (median Shannon index=1.55), though it's 188 

possible we are underestimating the diversity of under-studied world regions because of gaps in 189 

reference databases used for taxonomic assignment (see Discussion). Pairwise comparisons 190 

show significant differences in alpha diversity between all world regions (Wilcoxon rank-sum test, 191 

q<10-4; Supplementary Table 4) except for Australia/New Zealand, which was not significantly 192 

different from Sub-Saharan Africa (q=0.61). We also reconsidered this analysis because of 193 

differences in read depth between regions: The Australia/New Zealand region had the lowest 194 
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median reads per sample (30,415 reads; Figure 2D), compared to the average of 98,641 reads 195 

from the most deeply sequenced samples of Latin America and the Caribbean. To account for 196 

this, we performed a rarefaction analysis (see Methods) that allowed us to determine an average 197 

Shannon diversity while controlling for both reads per sample and samples per region 198 

(Supplementary Figure 5); the mean Shannon diversity was reduced slightly in all regions, as 199 

expected because of lower read counts, but none of the means differed by more than 0.2 percent 200 

(Supplementary Table 5). 201 

To explore differences in microbiome composition across world regions, we used principal 202 

coordinates analysis (PCoA) for visualization of the dataset (Figure 2E; see Methods). We 203 

plotted the samples from each region on the same axes calculated for the dataset as a whole, 204 

allowing for direct comparison between groups along two dimensions that together account for 205 

44.9 percent of variation (Supplementary Figure 6). Though this approach meant the analysis was 206 

heavily weighted in favor of variance observed in Europe and Northern America, using these axes 207 

helps to illustrate whether samples from the rest of the world differ from those of the most 208 

thoroughly characterized region. Even in these two dimensions, we observe systematic 209 

differences between world regions—some, such as Australia/New Zealand, appear to cluster in 210 

subsets of the main areas occupied by Europe and Northern America, but others, such as Latin 211 

America and the Caribbean, occupy areas of the projected space that are far less commonly 212 

observed elsewhere. This pattern continues when we evaluate more than the first two axes of 213 

variation: We can observe large-scale regional differences in the distributions of the first four axes 214 

(Figure 2F), and, using all eight axes extracted from the dataset (Supplementary Figures 7–13), 215 

clusters defined by world region are much more compact and distinct than would be expected by 216 

random (Davies–Bouldin index=6.93; p<4×10-6; Supplementary Figure 22). Though there is 217 

substantial overlap between the world regions, unintuitive differences are apparent in the first two 218 

axes. For example, the "hot spots" of Central and Southern Asia occupy a different space in the 219 

ordination plots than the samples of Latin America and the Caribbean (Figure 2E), while the 220 

samples of Europe and Northern America occupy a very similar area to the samples from Eastern 221 

and South-Eastern Asia. Together, these results demonstrate a link between microbiome 222 

composition and geography, even at this high level in which some regions encompass many 223 

countries home to billions of people. 224 
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 225 

Figure 2. Regional structure. (A) A map illustrating which areas were categorized into world 226 
regions. The colors here match those labeled in panel B. Oceania is represented here in orange, 227 
though this region was excluded from these analyses because only four Oceanis samples 228 
remained in the filtered dataset used here. (B) A bar plot illustrating the number of samples from 229 
each world region analyzed here. The x-axis illustrates total samples, and the y-axis lists all regions 230 
evaluated. The colors used here are the same as those used in panel A. (C) A violin plot illustrating 231 
the distribution of observed Shannon index values assigned to samples from each world region. 232 
The x-axis indicates the Shannon index value, as calculated using all unique taxonomic 233 
identifications in samples from each world region. Colors indicate the region (same as in A), and 234 
the y-axis for each violin indicates the relative frequency with which diversity of a given magnitude 235 
was observed. The vertical lines in each violin indicate the median value. The black points within 236 
each violin indicate the mean Shannon diversity as determined by rarefaction analysis (see 237 
Methods). (D) A violin plot organized in the same manner as panel C, but the x-axis indicates 238 
reads per sample. "Reads" in this case refers to merged reads that were included in the filtered 239 
taxonomic table. (E) A series of plots illustrating the results of a principal coordinates analysis of 240 
samples from all world regions. The top-left plot is a scatter plot in which each point is a single 241 
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sample; the color indicates the sample's region, using the scheme described in panel A. The x-axis 242 
is the first PCoA axis, which explains the most variation across the dataset; the y-axis is the PCoA 243 
axis explaining the second-most variation. The seven other plots use the same axes, but each 244 
includes only samples from a single world region. These plots use a heatmap design rather than a 245 
scatter plot, to help evaluate areas with many overlapping points—yellow areas indicate portions of 246 
the space with a higher concentration of samples, and dark blue areas indicate portions in which 247 
few (but not zero) samples are found. The gray shadow indicates the area occupied by all points 248 
from all world regions. (F) A series of density plots illustrating the distributions of the first four axes 249 
of variation determined by the ordination analysis displayed in panel E. Each panel illustrates a 250 
single factor; the x-axis indicates the value of that factor, and the y-axis indicates the relative 251 
frequency of the value in the given world region. 252 

Uneven microbiome sampling leaves taxa undiscovered 253 

To investigate microbiome diversity in world regions, we repeatedly subsampled each region and 254 

identified the number of unique microbial taxa present in the selected microbiome samples 255 

(Figure 3A; Supplementary Figures 14–17). For this analysis, we used all 4,018 taxa quantified 256 

by the initial DADA2 assignment and all samples with a world region assignment. Notably, more 257 

taxa are discovered in samples from Eastern and South-Eastern Asia than any other region, 258 

despite having around 70,000 samples fewer than the largest region. Approximately 2.5 percent 259 

of samples from Eastern and South-Eastern Asia contain more than 300 distinct taxa, but this 260 

many taxa are found in only 0.05 percent of samples from Europe and Northern America. 3,662 261 

of the 4,018 taxa are present in samples from Eastern and South-Eastern Asia; only 3,299 and 262 

874 of these taxa are present in Europe and Northern America and Latin America and the 263 

Caribbean, respectively. 264 

We note that the rate of discovery drops for each world region after the first few thousand samples. 265 

On average, 371 more taxa were discovered in 2,000 samples from Eastern and South-Eastern 266 

Asia than in 1,000 samples, yet only 210 more taxa were found in 17,086 samples (all samples 267 

from the region) than in 10,000 samples in the same region, demonstrating the decline in 268 

discovery rate. This decline in discovery rate holds true for the most sampled region as well: 2,190 269 

unique taxa were identified in the first 10,000 samples from Europe and Northern America, but 270 

the subsequent 81,144 samples uncovered only 1,109 new taxa.  271 

The rate of discovery for Europe and Northern America falls below one new taxon per million 272 

reads by the time 30,000 samples are assayed (Figure 3A inset), indicating the sequencing effort 273 

required to identify new taxa in this region: when all samples from this region are included, the 274 

discovery rate is a mere 0.39 taxa per million reads. By comparison, when including all samples 275 

from Northern African and Western Asia, we continue to discover an average of 8.19 taxa per 276 

million reads (Supplementary Figure 16). In Latin America and the Caribbean, the discovery rate 277 

is 3.03 new taxa per million reads when all samples from the region are assayed. In fact, other 278 

than Europe and Northern America, the lowest discovery rate observed is 2.58 taxa per million 279 

reads, when all samples are assayed in Sub-Saharan Africa. The stark difference in discovery 280 

rate between Europe and Northern America and that of the next-lowest region emphasizes the 281 

unequal sampling between world regions, and the relatively high discovery rate in world regions 282 
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other than Europe and Northern America indicates that many taxa may be uncovered with further 283 

sampling in underrepresented regions.  284 

While the top phyla remain consistent across world regions, their abundance and prevalence differ 285 

(Figure 3B; Supplementary Figures 18–19): In Europe and Northern America, the relative 286 

abundance of Firmicutes is approximately uniformly distributed. In Sub-Saharan Africa, however, 287 

the distribution of Firmicutes peaks at approximately 40 percent, with higher relative abundances 288 

becoming less and less common. Samples in Northern Africa and Western Asia have nearly 289 

identical distributions of Firmicutes and Bacteroidetes, though we do observe broad patterns of 290 

diversity within world regions as well (Figure 3C). While Firmicutes is dominant in each region, 291 

samples from Central and Southern Asia have higher relative abundances of Actinobacteria 292 

(Wilcoxon test, p<2.2×10-16 for Central and Southern Asia vs other) than the other regions, plus 293 

correspondingly lower abundances of Bacteroides (Wilcoxon test, p<2.2×10-16 for Central and 294 

Southern Asia vs other; Figure 3C). 295 
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 296 

Figure 3 Geographic regions vary in microbiome composition. (A) The number of unique taxa 297 
discovered in subsamples of varying size from each world region. Each point represents the average 298 
number of unique taxa identified in a subsample from a given region over 1,000 repetitions. The x-299 
axis indicates the number of microbiome samples selected, the y-axis the number of unique taxa 300 
identified in those samples, and the color indicates the world region being sampled. The inset uses 301 
the same x-axis and color scheme but displays the average number of taxa discovered per million 302 
reads on the y-axis. (B) Histograms illustrating the distribution of the relative abundance of the most 303 
prevalent phyla in the compendium. Each panel visualizes all samples from a single world region. 304 
The x-axis indicates the relative abundance of the taxon, and the y-axis indicates the number of 305 
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samples (on a log scale) with the indicated relative abundance. Each line illustrates the results for a 306 
single phylum, indicated by line color. (C) As in Figure 1F, this stacked bar chart shows the relative 307 
abundance of the five most prevalent phyla in the compendium. Each column is a sample, and the 308 
colored segments indicate the relative abundance of a given phylum in that sample. Phylum color 309 
follows the same color scheme as Figure 3B. Samples are ordered first by world region (indicated 310 
by the colored bar below the x-axis), and then by relative abundance of the 5 most prevalent phyla, 311 
as in Figure 1F. World region color follows the same color scheme as Figure 3A.  312 

Systematic differences in microbiome composition between world regions 313 

To quantify how specific microbial taxa vary between world regions, we performed differential 314 

abundance analysis using a linear mixed model that accounts for BioProject, mean ASV length, 315 

and amplicon used for sequencing (Supplementary Table 6), as these experimental artifacts may 316 

bias results (see Methods). We focused our analysis on the 65 genera that had a minimum of 1 317 

percent prevalence and 0.5 percent relative abundance in at least one world region (see 318 

Methods). Pairwise comparison of each region revealed distinct differences among these genera, 319 

and all 65 taxa tested were found to be significantly differentially abundant between at least one 320 

pair of regions (Supplementary Table 7). The highest number of differentially abundant taxa (56) 321 

were found when comparing samples from Sub-Saharan Africa to samples from Australia/New 322 

Zealand, while the fewest differentially abundant taxa (8) were found between Europe and 323 

Northern America and Northern Africa and Western Asia (Figure 4A). 324 

As samples from Europe and Northern America make up over half of the compendium, 325 

subsequent analyses focused on the differences found between Europe and Northern America 326 

and each of the other world regions, to evaluate the most broadly observed differences relative 327 

to the most sampled region (Supplementary Figures 20–21). Prevotella and Bacteroides were two 328 

genera with the lowest adjusted p-value between Europe and Northern America and any other 329 

region, indicating strong differences between world regions (Figure 4B). Bacteroides abundance 330 

is higher in Europe and Northern America than Sub-Saharan Africa (q<2.2×10-16), Latin America 331 

and the Caribbean (q<2.2×10-16), Central and Southern Asia (q<2.2×10-16), and Australia/New 332 

Zealand (q=7.87×10-14). Conversely, Prevotella abundance is lower in Europe and Northern 333 

America than Sub-Saharan Africa (q<2.2×10-16), Latin America and the Caribbean (q<2.2×10-16), 334 

and Central and Southern Asia (q<2.2×10-16). Concordant with prior literature,33 we observe a 335 

higher relative abundance of Bacteroides in Europe and Northern America than in non-336 

westernized regions such as Sub-Saharan Africa and Central and Southern Asia, and we observe 337 

an increase in the abundance of Prevotella in Sub-Saharan Africa as compared to Europe and 338 

Northern America (Figure 4B). 339 

Closer examination of the distribution of relative abundances of different genera across world 340 

regions reveals more specific patterns. Nearly every region has a high number of samples with 341 

high abundance of Bacteroides, as evidenced by the strong peak close to 1 in Figure 4C. Notably, 342 

Central and Southern Asia and Sub-Saharan Africa appear to have fewer samples with such high 343 

relative abundance of Bacteroides, as these regions lack a strong peak at 1 in Figure 4C. Over 344 

26 percent of samples from Europe and Northern America contain more than 30 percent 345 

Bacteroides; only 4.3 percent and 2.2 percent of samples from Sub-Saharan Africa and Central 346 
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and Southern Asia, respectively, contain as much Bacteroides. Prevotella, a taxon commonly 347 

associated with positive health outcomes and non-western microbiomes, appears to be higher in 348 

abundance in Sub-Saharan Africa q<2.2×10-16) and Latin America and the Caribbean (q<2.2×10-349 
16) when compared to Europe and Northern America. Only 19 percent of samples from Europe 350 

and Northern America have more than 1 percent Prevotella–visible in the strong peak near 0 in 351 

Figure 4C–compared to 43 percent of samples from Northern Africa and Western Asia, 61 352 

percent of Latin America and the Caribbean, and 65 percent of Sub-Saharan African samples. 353 

After evaluating compositional differences between regions, we then sought to define region-354 

specific signatures of gut microbiomes by identifying the taxa most closely linked to the overall 355 

variance observed in principal components analysis, performed separately for each region 356 

(termed here the ‘variance score’; see Methods). We find variability in Europe and Northern 357 

America is best represented by the relative abundances of Escherichia/Shigella (variance 358 

score=0.98; Supplementary Table 8), Enterococcus (0.97), Lactobacillus (0.95), Akkermansia 359 

(0.94) and Bifidobacterium (0.93), while the microbiomes of Northern Africa and Western Asia are 360 

defined by the genera Prevotella (0.85), Shigella (0.81), Akkermansia (0.77), Dialister (0.57) and 361 

Bacteroides (0.52). Of the top five taxa in each regional signature, all are members of the six most 362 

prevalent phyla in the compendium (Figure 1C). Escherichia/Shigella was the only genus to 363 

appear in the top 5 taxa for all evaluated regions. Using the top 10 taxa in each regional signature, 364 

we found that six genera appear in the signatures of all world regions: Bifidobacterium, 365 

Bacteroides, Prevotella, Streptococcus, Veillonella, and Shigella, which together form what we 366 

could consider the core taxa most useful for explaining global variation in the human gut 367 

microbiome—not necessarily the most prevalent, but the taxa that vary most widely in all regions. 368 

Oppositely, there are five genera that appear in the top 10 taxa for only a single region: 369 

Staphylococcus (Central and Southern Asia), Megamonas (Eastern and South-Eastern Asia), 370 

Dialister (Northern Africa and Western Asia), Collinsella (Sub-Saharan Africa), and Alistipes (Latin 371 

America and the Caribbean).  372 
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 373 

Figure 4 Taxa are differentially abundant between world regions. (A) 65 taxa were selected to 374 
be tested for differential abundance between regions. The x and y axes are each colored by world 375 
region; at each intersection, the size of the circle and the number underneath it indicate the number 376 
of taxa that were significantly different between the two regions listed. (B) The red-white heat map 377 
illustrates adjusted p-values for regional differences when each world region is compared to Europe 378 
and Northern America. The y-axis lists all evaluated genera, the x-axis lists each region (using the 379 
same color scale as panel A), and each cell represents the strength of the differential abundance 380 
result for that taxon. The blue-green heat map illustrates mean relative abundance (log 10) of each 381 
taxon in each world region, as indicated by the x-axis. The bar chart illustrates the mean relative 382 
abundance of each taxon across all regions. (C) Each panel illustrates the relative abundance (log 383 
10) of one of the 5 most abundant taxa. Each colored area indicates the distribution from a single 384 
world region, using the same colors as panel A. The x-axis indicates (log 10) relative abundance of 385 
the specified genus, and the y-axis indicates the relative frequency with which that abundance is 386 
observed in the specified region. Black vertical lines indicate the median. 387 
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Discussion 389 

Here, we integrated data from 168,484 publicly available 16S rRNA amplicon sequencing 390 

samples from 482 BioProjects to evaluate global variation in the human gut microbiome. We found 391 

the majority of available samples were from Europe and Northern America, which has been so 392 

extensively sampled that most microbiota present in the region's gut microbiomes have likely 393 

already been observed, while further samples from other regions may uncover up to 20 times as 394 

many new taxa per million reads. Thousands of unique taxa have also been observed in Eastern 395 

and South-Eastern Asia, but samples show such remarkable diversity that there are likely many 396 

more yet to be uncovered. Though practically all taxa are shared to some degree between world 397 

regions, we found each region occupies a unique niche within the ordination space defined via 398 

multidimensional scaling, identified dozens of taxa that are differentially abundant between each 399 

region, and determined strong regional signatures indicating the primary gradients that define the 400 

composition of microbiomes around the world. 401 

Others have articulated the vital importance of studying microbiomes from diverse populations20,21 402 

and evaluating the potential consequences of inaction.15,34 Though our analysis uses only 403 

samples from previous works, compiling hundreds of disparate studies enabled the evaluation of 404 

differences we can observe even given the comparatively limited sample sizes. We find that 405 

variance in Europe and Northern America, by far the most thoroughly sampled region, is closely 406 

tied to the relative abundance of Lactobacillus (variance score=0.95), which has been linked to 407 

obesity in the United States35 and bipolar disorder in Austria.36 It remains to be answered how 408 

these results should be interpreted in Latin America and the Caribbean, where Lactobacillus is 409 

practically absent from the regional signature (variance score=0.03) though not necessarily 410 

absent from the microbiomes there. We also found many taxa with consistent differences in world 411 

regions when compared to Europe and Northern America (Figure 4B), including highly abundant 412 

genera such as Bacteroides, Bifidobacterium and Prevotella, the abundance and proportions of 413 

which may play a role in inflammation,37 obesity,38 inflammatory bowel disease,39 and the early 414 

development of the pediatric gut microbiome,40 among many other conditions. 415 

Still, there is reason for caution in drawing strong conclusions from such a broad range of samples 416 

collected for very different reasons in hundreds of projects. First, world region may be confounded 417 

with why the samples were collected, and the data currently does not have consistent metadata 418 

related to host health. Relatedly, reference databases may have less coverage of taxa that appear 419 

more commonly outside of Europe and North America,41,42 which would result in more unidentified 420 

taxa and deflated diversity estimates in samples from other regions of the world. Regarding our 421 

analysis, any combination of studies raises concerns about batch effects, or artifactual findings 422 

that are caused by technical details but appear to be of biological origin.43,44 We are optimistic 423 

that these effects are minimized in large-scale analyses—in our previous work, we found batch 424 

correction of large compendia is ineffective when there are many "batches" (in this case, 425 

projects)—as the number of batches grows, the disparate project-level effects are overshadowed 426 

by the legitimate biological signal, which is more consistent across studies.45 Lastly, the dataset 427 

compiled for this project does not resolve the broad issue of representational imbalances in global 428 

human microbiome research,18,46,47 though there are many ongoing projects that seek to increase 429 
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the diversity of microbiome research—projects such as the African Microbiome Program are 430 

expanding work not only in humans, but agricultural microbiomes as well,48 and initiatives like 431 

H3ABioNet aim to address some of the structural challenges to expanding the populations under 432 

study.49,50 433 

In addition to our findings on global variation, we are also optimistic about the Human Microbiome 434 

Compendium's utility as a way to better utilize existing resources: The National Institutes of Health 435 

have directly invested more than $1 billion in human microbiome research,51 and raw data for tens 436 

of thousands of microbiome samples are uploaded to SRA every year, plus many more from 437 

collaborators in the International Nucleotide Sequence Database Collaboration (INSDC), which 438 

includes organizations in Japan and the European Union. Although these are world-class 439 

repositories for a huge variety of genomic data, this raw data is difficult to manage at scale: The 440 

primary utility of compendia such as recount3, a database of uniformly processed RNA-seq data, 441 

is that these sequencing reads have already been processed, curated and combined together 442 

into a unified dataset. There are several microbiome resources like this: the MicrobiomeHD 443 

project integrated data from 28 case–control studies 52; the most recent version of GMrepo 444 

includes 45,111 amplicon sequencing samples 53; and the curatedMetagenomicData project54 445 

now includes data from 22,588 whole-metagenome shotgun samples.55 These projects focus on 446 

human-curated data with uniform metadata, a valuable asset to the field. However, these projects 447 

still represent a small fraction of the available samples; we hope our compendium, several times 448 

larger than those currently available, will be useful in situations where sample size is a more 449 

important factor than thorough annotation, such as performing further meta-analysis or providing 450 

context for other datasets (e.g. ref56). 451 

In summary, we present here the Human Microbiome Compendium, a new, large-scale collection 452 

of human gut microbiome data. We use this compendium to study microbiome variation at a global 453 

scale, comparing world regions and showing that some regions likely have many taxa that remain 454 

undiscovered due to undersampling. We expect this compendium will be a valuable resource for 455 

the community and enable novel insights into the microbial ecology of the human gut. 456 

Methods 457 

Sample selection. We retrieved metadata for all BioSamples categorized in the NCBI 458 

Taxonomy57 under "human gut metagenome" on 9 October 2021. After removing samples that 459 

could not be associated with a BioProject or sequencing run, we selected only those for which 460 

the library source was "genomic" or "metagenomic," excluding the values "metatranscriptomic," 461 

"transcriptomic," "viral RNA," "synthetic" and "other." Of these, we then limited the dataset to 462 

samples with a "library strategy" value of "amplicon" (and not values such as "WGS" and "RNA-463 

Seq"). This left 245,627 samples across 1,437 BioProjects. We then excluded BioProjects that 464 

contained less than 50 samples meeting our criteria, leaving us with a list of 234,875 samples in 465 

811 BioProjects. 466 

Because pyrosequencing technologies developed by companies such as 454 Life Sciences and 467 

Ion Torrent require different processing steps, we then sought to remove BioProjects containing 468 
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pyrosequencing data and other sequencing instruments that use processes dissimilar from 469 

Illumina sequencing, such as MinION. We used the SRA Toolkit APIs to retrieve sequencing 470 

instrument information for each sample and evaluated BioProjects that reported using 454 or Ion 471 

Torrent instruments. We found 19 such instruments ("454 GS FLX Titanium,” "Ion Torrent PGM,” 472 

"454 GS FLX,” etc.), but manual review revealed one instrument was consistently mislabeled: In 473 

many BioProjects (PRJNA685914 and PRJNA605031, for example) the sequencing instrument 474 

was reported as "454 GS" even though the authors report elsewhere in the BioProject that they 475 

used sequencers such as Illumina’s MiSeq platform, which we were not attempting to remove. 476 

More careful examination revealed these BioProjects (and many others) performed their analysis 477 

using Mothur,58 a popular microbiome analysis tool, and "454 GS" is Mothur’s default entry for the 478 

"instrument” field when uploading to SRA.59 To avoid removing applicable samples, we removed 479 

BioProjects reporting using any of the pyrosequencing instruments except for "454 GS.” 480 

Sequencing data retrieval. Samples were exported from the database one BioProject at a time; 481 

each BioProject had a file listing all accessions of runs associated with samples meeting the 482 

criteria described above. This file was used as the input for the "fasterq-dump" tool60 from the 483 

SRA Toolkit maintained by NCBI. This tool downloads the data from the Sequence Read Archive 484 

and splits the information into FASTQ files for downstream processing. We used samples from 485 

all available INSDC members—of the completed samples, 126,452 were from the Sequence 486 

Read Archive (74 percent), 38,971 were from European Nucleotide Archive, and 5249 were from 487 

the DNA Data Bank of Japan. We did not include projects in which more than 10 samples failed 488 

to download, which was generally caused by files missing from SRA. 489 

Amplicon processing. If the number of files for forward reads matched the number of files for 490 

reverse reads, we processed the BioProject as paired-end sequencing. If there was a mismatch, 491 

or there were no reverse reads, we processed the BioProject as single-end data. In both cases, 492 

we used DADA2 v1.14.0 to process the data.26 We used general settings that we believed would 493 

be effective across many BioProjects,61 aiming to maintain as many samples as possible while 494 

excluding low-quality data: We did not trim a set number of bases from either end, nor did we limit 495 

the maximum length of a read. We removed reads shorter than 20 nucleotides, reads with any 496 

ambiguous ("N”) base calls, and any reads that aligned to the phiX genome (if present, almost 497 

certainly as a control in Illumina sequencing runs). We also disabled quality-based truncation of 498 

reads. Paired-end reads were merged with a minimum overlap of 20 bases. In some cases, the 499 

process of merging reads failed, and close to zero forward reads were merged with their paired 500 

reverse read, likely due to sequencing strategies that involve non-overlapping reads or reads with 501 

very minimal overlap. For BioProjects in which fewer than 50 percent of forward reads were 502 

merged successfully, we discarded the reverse reads rather than concatenating them, to avoid 503 

situations in which merging failed because of low-quality calls or mismatched forward and reverse 504 

read files. In those cases, the reverse reads were removed, and these BioProjects were re-505 

processed as single-end data. If the number of forward reads did not match the number of reverse 506 

reads in a sample, we attempted to use DADA2 to detect the sequence identifier field in the 507 

FASTQ file to match the samples that could be salvaged. If this was unsuccessful, we removed 508 

the reverse reads and reprocessed these as single-end data as well. Taxonomic assignment was 509 

performed by DADA2 using the SILVA database release 138.1.62,63 We believe this was the most 510 
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reliable way to process this data, given the lack of information about project-level sequencing 511 

strategies. The merging process in paired-end datasets would be much more effective with more 512 

knowledge of study design and primer choices, for example, particularly in cases where the 513 

amplicon length was greater than the read length and the paired-end reads did not overlap. In 514 

addition, DADA2 recommends building separate error models for each sequencing run,64 but only 515 

BioProject could be reliably inferred, which means ASV inference at the study level may not 516 

capture run-level patterns. 517 

Though we removed obviously non-applicable samples (mycobiome assays using the 18S rRNA 518 

gene rather than 16S, for example), we did not pursue more stringent filtering. To minimize the 519 

number of legitimate samples removed from the compendium, we avoided making discretionary 520 

decisions about removing samples or BioProjects from the compendium that we encountered 521 

during analysis—for example, 199 samples from BioProject PRJEB25853 are included because 522 

they were deposited in the "human gut metagenome" category, though manual review of the 523 

metadata shows the samples are actually from a novel assay of the vaginal microbiome.65 We 524 

plan to expand the automated curation processes used to review results for future iterations of 525 

the compendium but will continue to favor approaches that are too permissive rather than risk 526 

filtering out legitimate samples with compositions that don't "look right." We also plan to integrate 527 

more metadata from both samples and projects to enable more precise filtering. 528 

Pipeline success. Due to resource constraints, we did not attempt to process BioProjects with 529 

fewer than 50 samples, which accounted for 10,752 out of 245,627 samples. Of the 234,875 530 

samples we processed, we found 31,887 samples (13.6 percent) contained non-applicable data—531 

BioProjects that targeted fungi or archaea, for example, and mislabeled BioProjects that used 532 

shotgun or nanopore sequencing instead of 16S amplicon sequencing. Another 31,509 samples 533 

(13.4 percent) were excluded because extracting acceptable results, if possible at all, would have 534 

required manual intervention and more knowledge of the sequencing strategy: DADA2 identified 535 

excessive chimeric reads in some BioProjects, for example, and we excluded any BioProject in 536 

which at least five of the first 10 samples processed contained more than 25 percent chimeric 537 

reads. Several BioProjects were also excluded because they contained samples associated with 538 

multiple sequencing runs, or were associated with samples that could not be downloaded. 807 539 

samples were removed from BioProjects because all of their reads were filtered out. 540 

Dataset for analysis. We combined BioProject-level taxonomy tables into one large matrix 541 

containing 168,464 samples (from 482 BioProjects) for rows and 4018 unique taxonomic 542 

identifiers for columns, making up the Human Microbiome Compendium. For most of the analysis 543 

reported in this paper, we applied additional quality control steps: First, we removed 16,781 544 

samples (10 percent) with fewer than 10,000 reads. We then removed 2018 taxonomic entries 545 

(50 percent) with fewer than 1000 total reads across all remaining samples, and a further 578 546 

taxa (14 percent of the original) that were detected in fewer than 100 samples. After these taxa 547 

were removed, we again evaluated the sample read counts and removed another 19 samples 548 

that now had less than 10,000 reads. (The removal of these 19 samples did not push any more 549 

taxa below the above thresholds.) We then evaluated the proportion of reads in each sample for 550 

which a taxonomic assignment could not be assigned at at least the phylum level. We removed 551 
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943 samples for which more than 10 percent of the sample's reads had an unassigned phylum. 552 

This left us with 150,721 samples and 1422 taxa. This filtered compendium was used in almost 553 

all presented analysis, except for Figures 1I and 3A where we used the unfiltered compendium 554 

with 168,464 samples. 555 

Calculation of Shannon diversity. To calculate the Shannon index for individual samples, we 556 

used the "diversity" function in the vegan R package v2.6.4,66,67 using natural logarithms and all 557 

columns in the filtered dataset—that is, ASVs were consolidated if their taxonomic assignments 558 

matched exactly, but counts were not consolidated at any single taxonomic level. This data was 559 

also used to calculate each sample's Simpson's Index and species count via vegan's "diversity" 560 

and "specnumber" functions respectively. 561 

Rarefaction analysis, taxon discovery rate. We estimated the relationship between 562 

compendium size (in number of samples) and total taxa observed by performing a sample-based 563 

assessment.31 Specifically, we built simulated compendia of various sizes between 1 and 150,000 564 

by subsampling the filtered analysis dataset and counting the number of unique taxa observed in 565 

each subsample at each taxonomic level. We repeated each compendium size simulation 150 566 

times and plotted the mean observed taxa at each taxonomic level; this allowed us to build curves 567 

plotting observed taxa against compendium size.68,69 Generally, the x-axis of this curve would plot 568 

total reads, rather than total samples, to account for variation in the number of "observations" (i.e. 569 

a single read from a single microbe) in different size compendia. Here, we visualized total samples 570 

instead (Figure 1H) to incorporate the differences in read depth actually observed in the data. 571 

The trade-off is that these metrics will likely underestimate future taxa observed if used to 572 

extrapolate forward into larger compendium sizes, as the distribution of reads per sample (Figure 573 

1B) will likely shift as time passes and sequencing costs continue to drop. 574 

World region alpha diversity comparison. We compared alpha diversity measurements 575 

between all regions using the Wilcoxon rank-sum test,70 with multiple test correction done using 576 

Hochberg's method71 as implemented in the R "stats" package's "wilcox.text" and "p.adjust" 577 

functions respectively. The calculations were performed using the filtered compendium dataset 578 

used in other analyses, but was limited to samples with a world region annotation other than 579 

"unknown." 580 

Rarefaction analysis, regional alpha diversity. We estimated regional alpha diversity (in the 581 

filtered analysis dataset) by selecting 1000 random samples from each world region (enough that 582 

each region could provide all samples without replacement), then rarefied each of these samples 583 

down to 10,000 randomly selected reads each. From these rarefied samples, we determined the 584 

mean Shannon diversity for each region, then repeated the entire process 1000 times.72 585 

Country and region inference. We were able to obtain a "geo_loc_name" tag from the NCBI 586 

BioSample database (https://www.ncbi.nlm.nih.gov/biosample/) for 155,584 of 168,484 samples 587 

(92.4 percent). These tags held 455 unique values, which were associated with countries by 588 

manually reviewing the values and associating them with a country (Supplementary Table 3). 589 

Most tags contained enough context to confidently assign a country name: The most common tag 590 

value was "usa:new york" found in 14,142 samples from six BioProjects, followed by "usa" (12,510 591 
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samples in 46 BioProjects). However, the third-most common tag was "missing" (5532 samples; 592 

27 BioProjects), and other tags such as "not applicable" (4317 samples) and "not available" (3481 593 

samples) appeared many times. Overall, we were able to assign a country to 447 of the 455 594 

unique values (98.2 percent) representing 153,152 samples (90.9 percent). In total, we found 68 595 

countries represented in the geo_loc_name values—to simplify comparisons, we consolidated 596 

these assignments into eight world regions defined by the United Nations Sustainable 597 

Development Goals (SDG) program (Figure 2A). 598 

World region inference accuracy estimate. To assess the accuracy of our process for 599 

associating samples with their country (and therefore region) of origin, we selected a random 600 

sample of microbiomes and manually determined the country of origin (Supplementary Table 9), 601 

primarily by finding publications referencing the data but also using other metadata associated 602 

with the samples and parent BioProjects. We found the "geo_loc_name" tags to reliably include 603 

country names, which gave us confidence in our ability to infer country from tag, but the additional 604 

factor of interest is whether samples were mislabeled by the original authors. Between these two 605 

factors, we assumed 95 percent accuracy for our sample-size calculation, which was designed to 606 

detect this level of accuracy at a precision of ±5 percent at a 95 percent confidence interval.73 607 

This results in a sample size of 73.0; after accounting for a 25 percent "dropout" rate (samples 608 

with a "geo_loc_name" tag but no other means with which to verify it), our new sample size was 609 

97.3. Because some BioProjects are 60 times larger than others, we wanted to mitigate the effect 610 

of selecting many samples from one large, single-country BioProject by first selecting 100 random 611 

BioProjects, then selecting one sample from each project to evaluate. To verify the accuracy of 612 

our inferences, we first looked for an explicit statement of the study's country of origin in the project 613 

description in the BioProject database. If this did not yield an answer, we looked to any 614 

publications linked to the BioProject and searching Google Scholar for several factors indicating 615 

a link to the BioProject: First, we searched the BioProject accession, then its corresponding SRA 616 

accession (such as "ERP006059" for BioProject PRJEB6518), then its ID number (such as 617 

"bioproject 589558" for BioProject PRJDB6499), then any unique phrases from the BioProject title 618 

or description. If the paper did not explicitly state a country of origin for the subjects, we considered 619 

the classification confirmed if the paper included ethical approval from an institutional review 620 

board in that country. If none of these steps could confirm a country, we classified it as a dropout. 621 

Of 100 samples evaluated, eight were dropouts. Two were deemed not applicable because the 622 

papers described samples that were incubated prior to sequencing. Of the remaining 90, we were 623 

able to validate that all 90 had world region assignments that were confirmed by either the 624 

BioProject description or a publication associated with the data. With a 100 percent success rate, 625 

we can then use the rule of three74 to estimate that the lower bound of the confidence interval (at 626 

our original 95 percent confidence level) is 96.67 percent accuracy. 627 

Principal coordinates analysis. We began by using the matrix of read counts to build a distance 628 

matrix between all samples using the robust Aitchison distance.75 We then performed 629 

multidimensional scaling (Figure 4) using the "divide and conquer” approach described by 630 

Delicado and Pachon-Garcia76 and implemented in the "bigmds" R package. We extracted 8 631 

principal coordinates and used 16 points as the overlap between partitions.77 632 
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World region cluster evaluation. We measured the effectiveness of regional clustering by 633 

calculating the Davies–Bouldin Index78,79 of the regional clusters formed in the 8-dimensional 634 

space generated by the ordination described above. This gave us a single score (6.93), but no 635 

context for comparison, so we estimated a p-value by performing a bootstrap analysis in which 636 

we generated 250,000 additional scores using the same data but with regional labels that were 637 

shuffled without replacement. This provided a distribution to which we could compare the real 638 

score, but the observed range of values in the shuffled data was 83.98–468.73, resulting in an 639 

estimated p-value of 0. 640 

Differential abundance analysis. We further filtered the dataset used for analysis for genera 641 

with a mean relative abundance of at least 0.5 percent and prevalence of at least 1 percent in any 642 

world region, resulting in 65 remaining genera. We then filtered the samples to include only those 643 

with at least 1000 reads in the 65 genera. This resulted in analysis of 123,346 samples and 65 644 

genera. To test these taxa for differential abundance, we used a linear mixed model using the 645 

lme4 and lmerTest R packages.80,81 We modeled world region as a fixed effect, and to account 646 

for technical artifacts included BioProject, mean ASV length, and amplicon as random effects. We 647 

ran a single model for each taxon, running each model 7 times so that each world region could 648 

be the reference variable, to enable pairwise comparison between each region–region pair as 649 

follows: 650 

taxon abundance ~ region + (1 | BioProject) + (1 | amplicon) + (1 | mean ASV length) 651 

To account for the inherent compositionality of microbiome data, the taxon abundances were 652 

centered log-ratio transformed after adding a pseudocount of 1 to any 0 values, and subsequently 653 

scaled to a mean of 0 and standard deviation of 1. The p-values outputted from each model were 654 

multiple-test corrected using Benjamini-Hochberg. For figure presentation, p-values lower than 655 

2.2×10-16 were adjusted to 2.2×10-16. The full results of this analysis are reported in 656 

Supplementary Table 7. 657 

World region taxon discovery rate. To generate the region-level taxon discovery rate curves 658 

shown in Figure 3A, we performed the following analysis: For each world region, we selected n 659 

random microbiome samples from the region and recorded the number of unique taxa present in 660 

these samples. We repeated this subsampling 1,000 times for each sample size, and reported 661 

the mean in Figure 3A. We repeated this strategy for all listed sample sizes in all world regions. 662 

This data is available in Supplementary Table 10. To verify that the curves for each world region 663 

in Figure 3A are distinct, we performed pairwise Wilcoxon rank-sum tests on each region-region 664 

pair for all possible sample sizes, comparing the number of unique taxa discovered over all 1000 665 

repetitions for each region. This data is available in Supplementary Table 11. The inset panel in 666 

Figure 3A was generated using the same sampling strategy, but we also recorded the total 667 

number of reads in the selected samples. We then calculated the number of taxa discovered per 668 

one million reads for each repetition, and reported the mean in the inset in Figure 3A. We 669 

calculated 95 percent confidence intervals for this value by bootstrapping with 1000 repetitions 670 

and present this data in Supplementary Figure 16. 671 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2023. ; https://doi.org/10.1101/2023.10.11.560955doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.11.560955
http://creativecommons.org/licenses/by/4.0/


Global patterns of the human gut microbiome 22 

 

 

World region signature determination. We used principal components analysis (PCA) to 672 

extract the taxa that are most closely linked to overall variance observed in the microbiomes of 673 

each region, which results in a heuristic we refer to here as the variance score. This score ranges 674 

from 0, indicating no relationship, to 1, indicating that the major axes of variation in the region also 675 

perfectly explain the variation observed in that taxon. We started with the taxonomic table of each 676 

region, applied the robust centered log ratio transformation to the read counts,75 then applied PCA 677 

to each region separately. We kept as many principal components (PCs) as was required to 678 

account for at least 50 percent of variance in each region's data. We then used the resulting 679 

eigenvectors to calculate a score for each taxon observed in that region that indicates how much 680 

variance of that taxon was explained by the selected PCs. These proportions range between 0 681 

and 1 and are used as the variance score for each taxon. The key assumption is that if a subset 682 

of principal components explains the majority of variance in the dataset, and those same PCs 683 

explain a high proportion of variance for a single taxon, then that taxon is more strongly linked to 684 

overall variability in the dataset than taxa that are poorly captured by the selected PCs. 685 

Amplicon inference. We used the amplicon sequence variants (ASVs) generated by DADA2 for 686 

each BioProject to infer the sequencing strategy used by each BioProject—primarily determining 687 

which of the nine hypervariable regions were targeted for amplification, but also the size of the 688 

amplicon targeted. To do this for each BioProject, we retrieved the sequence of all ASVs detected 689 

in that BioProject. We aligned each ASV to the sequence of the full E. coli 16S rRNA gene 690 

sequence, obtained from GenBank82 under accession J01859.1,83 using the striped Smith–691 

Waterman library84 integrated into scikit-bio v0.5.8.85 If the optimal alignment covered 70 percent 692 

or less of the full ASV sequence, the alignment was discarded and the ASV was classified as 693 

unknown. For the remaining ASVs, the coordinates of the alignment were used to determine 694 

which of the nine hypervariable regions were covered by the ASV, as defined by Chakravorty et 695 

al.86 A region was considered to be covered if more than half of its length was covered by the 696 

ASV—for example, if an ASV's alignment starts just before the beginning of V3 and ends 60 bases 697 

into the 107-base V4 region, that ASV would be classified as "V3–V4." If the same alignment 698 

ended only 20 bases into the V4 region, that ASV would be classified only as "V3." Beginning 699 

region and ending region (i.e. "V3" and "V4" from this example) were tallied separately. If more 700 

than half of all ASVs were categorized in a single starting region, that region was determined to 701 

be the starting region for the entire BioProject. If more than half of all ASVs were categorized in 702 

the same ending region, that region was determined to be the ending region for the entire 703 

BioProject. In situations where the threshold was met for only the starting or ending region 704 

(generally because of wide variation in ASV length), the opposite region was determined using 705 

the known region and the average ASV length. In situations where the ending region was 706 

determined to be before the starting region, the assignments were discarded under the 707 

assumption that this indicated multiple sets of primers were used. 708 

Website for high-level exploration. We designed a website to serve as an entry point to the 709 

Human Microbiome Compendium, hosted at https://microbiomap.org. The website displays 710 

important links to downloads and materials, provides a brief overview of the project and data, and 711 

features controls and visualizations for answering basic questions about the data. A search box 712 

allows users to check if a sample, BioProject, or taxon of interest is present in the data, and 713 
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interactive maps and charts show sample counts at different geographic and taxonomic levels. 714 

Users can select a country or world region on the map, and the taxonomic level chart will adjust 715 

to show sample counts associated with the selected feature. 716 

The website was implemented as a React single-page application, scaffolded and bundled with 717 

Vite, to allow for cleaner implementation of interactive features. The D3 library was used for more 718 

complex visualizations and interactions. The entire project utilizes TypeScript to ensure full static 719 

type safety. 720 

The website's data is generated by a set of pre-processing "compile" scripts, which automatically 721 

download the latest Human Microbiome Compendium data files from the place of record, then 722 

restructure and pare-down the data into a more practical, static subset for efficient display on the 723 

web. These scripts run before any build of the website, and can also be run on a schedule or on-724 

demand. 725 

Bioconductor package implementation. We implemented a Bioconductor87 package, 726 

MicroBioMap (https://github.com/seandavi/MicroBioMap), that provides convenient access to 727 

compendium data. Data are loaded into a Bioconductor TreeSummarizedExperiment object,88 728 

providing opportunities to use our compendium data with extensive Bioconductor microbiome 729 

analysis and visualization tools. The package includes documentation and example use cases. 730 

Software tools. The diagram in Figure 1A was created using Lucidchart (https://lucidchart.com). 731 

Most analyses were performed using R 4.2.2. Analyses requiring a high-performance computing 732 

environment, the rarefaction curves in Figure 1 and the multidimensional scaling analysis from 733 

figure 2, used R 4.3.1. Maps use the Equal Earth projection89 and the rnaturalearth R package.90 734 

Other information 735 

Supplementary information 736 

Supplementary Figure 1: Prevalence at the family and genus levels. 737 

Supplementary Figure 2: Relative abundance across samples. 738 

Supplementary Figure 3: Relative abundance of top phyla. 739 

Supplementary Figure 4: Diversity across world regions. 740 

Supplementary Figure 5: Rarefaction diversity estimates. 741 

Supplementary Figure 6: Scree plot for the compendium-wise ordination analysis. 742 

Supplementary Figures 7–12: Ordination plots. 743 

Supplementary Figure 13: Ordination results. 744 
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Supplementary Figure 14: Region-level discovery curve with 95% confidence intervals 745 

Supplementary Figure 15: Region-level discovery curve (x-axis: sample size vs y-axis: taxa per 746 

read) 747 

Supplementary Figure 16: Region-level discovery curve (x-axis: number of reads vs y-axis: 748 

unique taxa) 749 

Supplementary Figure 17: Region-level discovery curve (x-axis: sample size vs y-axis: taxa per 750 

million reads) - same as 3A inset, but with error bars 751 

Supplementary Figure 18: Histograms from fig 3B with individual y-axes 752 

Supplementary Figure 19: Histograms from fig 3B with linear y-axes 753 

Supplementary Figure 20: Ridgeline plots of differentially abundant taxa 6–35 754 

Supplementary Figure 21: Ridgeline plots of differentially abundant taxa 36–65 755 

Supplementary Figure 22: Cluster strength analysis.  756 

 757 

Supplementary Table 1: Observed prevalence at each taxonomic level 758 

Supplementary Table 2: Frequency of combinations of top-two phyla in each sample. Each row 759 

indicates the most abundant phylum in a sample, each column indicates the second-most 760 

abundant, and the cells indicate how many samples were observed with a given combination. 761 

Supplementary Table 3: geo_loc_name values associated with countries 762 

Supplementary Table 4: Pairwise world region alpha diversity comparison. 763 

Supplementary Table 5: Regional rarefaction summary statistics 764 

Supplementary Table 6: BioProject-level inferred metadata on amplicon choice and ASV length 765 

Supplementary Table 7: Differential abundance analysis results 766 

Supplementary Table 8: Regional signatures 767 

Supplementary Table 9: World region inference analysis notes 768 

Supplementary Table 10: Region-level discovery rate results 769 

Supplementary Table 11: Results of Wilcoxon rank-sum test to compare region-level discovery 770 

rate curves 771 
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