Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Oct 5:2023.10.03.560366. [Version 1] doi: 10.1101/2023.10.03.560366

Pan-Cancer Drug Response Prediction Using Integrative Principal Component Regression

Qingzhi Liu, Gen Li, Veerabhadran Baladandayuthapani
PMCID: PMC10592913  PMID: 37873111

Abstract

The pursuit of precision oncology heavily relies on large-scale genomic and pharmacological data garnered from preclinical cancer model systems such as cell lines. While cell lines are instrumental in understanding the interplay between genomic programs and drug response, it well-established that they are not fully representative of patient tumors. Development of integrative methods that can systematically assess the commonalities between patient tumors and cell-lines can help bridge this gap. To this end, we introduce the Integrative Principal Component Regression (iPCR) model which uncovers both joint and model-specific structured variations in the genomic data of cell lines and patient tumors through matrix decompositions. The extracted joint variation is then used to predict patient drug responses based on the pharmacological data from preclinical models. Moreover, the interpretability of our model allows for the identification of key driver genes and pathways associated with the treatment-specific response in patients across multiple cancers. We demonstrate that the outputs of the iPCR model can assist in inferring both model-specific and shared co-expression networks between cell lines and patients. We show that iPCR performs favorably compared to competing approaches in predicting patient drug responses, in both simulation studies and real-world applications, in addition to identifying key genomic drivers of cancer drug responses.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES