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Abstract 

Picking protein particles in cryo-electron microscopy (cryo-EM) micrographs is a crucial step in the 
cryo-EM-based structure determination. However, existing methods trained on a limited amount of 
cryo-EM data still cannot accurately pick protein particles from noisy cryo-EM images. The general 
foundational artificial intelligence (AI)-based image segmentation model such as Meta's Segment 
Anything Model (SAM) cannot segment protein particles well because their training data do not include 
cryo-EM images. Here, we present a novel approach (CryoSegNet) of integrating an attention-gated U-
shape network (U-Net) specially designed and trained for cryo-EM particle picking and the SAM. The 
U-Net is first trained on a large cryo-EM image dataset and then used to generate input from original 
cryo-EM images for SAM to make particle pickings. CryoSegNet shows both high precision and recall 
in segmenting protein particles from cryo-EM micrographs, irrespective of protein type, shape, and size. 
On several independent datasets of various protein types, CryoSegNet outperforms two top machine 
learning particle pickers crYOLO and Topaz as well as SAM itself. The average resolution of density 
maps reconstructed from the particles picked by CryoSegNet is 3.32 Å, 7% better than 3.57 Å of Topaz 
and 14% better than 3.85 Å of crYOLO. 

Introduction 

Protein structure determination is a significant area of research in the field of structural biology and 
bioinformatics, enabling researchers to understand the roles of proteins in various biological processes1.  
This structural insight is important for studying the interaction of proteins with other molecules in the 
cellular processes. It is useful for finding the potential binding sites for drug molecules to act on to 
modulate the function of proteins2,3. Further, many diseases are the result of protein misfolding and 
aggregation. Thus, it is imperative to determine the protein structure for understanding protein function 
and interaction, studying their roles in the diseases, and accelerating the design of drugs.  

X-ray crystallography, nuclear magnetic resonance (NMR), and cryo-EM4,5 are three main experimental 
techniques to determine protein structures. Among them, cryo-EM is the cutting-edge technique for 
solving the structure of large protein complexes. With advancements in electron microscope and 
detector devices, cryo-EM has revolutionized the field of structural biology and enabled the 
determination of very large protein complex structures at near atomic resolution that other experimental 
techniques cannot handle.  
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The cryo-EM-based structure determination process6,7 involves sample preparation with vitreous ice, 
imaging them with electron dose from the microscope to generate 2D projections of the samples at 
different orientations, followed by protein particle picking in cryo-EM micrographs (images). Once the 
particles are picked and extracted, the single particle analysis is employed to determine the 3D structure 
of the specimen.  

Particle picking in cryo-EM micrographs has posed significant challenges due to the low contrast of 
micrographs with a low signal to noise ratio (SNR) caused by using limited electron dose during 
imaging process. Further, the prevalence of ice contamination, carbon edges, protein aggregates and 
deformed particles have further complicated the particle picking. Reconstructing a 3D protein structure 
from cryo-EM micrographs requires thousands of extracted particles of good quality, and therefore it is 
important to pick protein particles accurately and automatically, releasing the burden of human 
intervention and reducing the bias and inconsistency associated with manual particle picking. 

With advancements in hardware and software tools8–12, numerous semi-automated or automated 
approaches varying from traditional computational methods to modern deep learning techniques have 
been proposed to streamline the cryo-EM processing and particle picking. Conventional computer 
vision methods like edge detection, blob detection and template matching4 are still widely used for 
particle picking. However, due to the low SNR of cryo-EM micrographs, these techniques are 
susceptible to picking ice patches, carbon areas and aggregated particles, resulting in a high number of 
false positives. RELION11 leverages a regularized likelihood optimization technique and utilizes the 
template-based and blob-based picking13 approaches. In the template-based approach, an initial set of 
2D templates are generated from the manually picked particles, which are used to correlate with the 
different regions of micrographs to extract similar patches. This approach is highly sensitive to noise 
and may introduce significant bias. Similarly, in the blob-based picking, the regions of high intensity 
and local maxima are extracted from cryo-EM micrographs using Laplacian of Gaussian. This method is 
useful if the particles have significant contrast difference with the background of the micrographs and 
all the particles within the micrograph are of similar shape and size. If the particles are of different 
conformations and size, this method faces a lot of difficulty in picking the true protein particles. Other 
conventional tools like EMAN210, SPIDER14, XMIPP15 utilizing similar computer vision approaches 
require a lot of manual intervention, computational resources, memory, and human time and face 
significant challenges of filtering out false positives. 

Recent advancements in machine learning, particularly deep learning, have shown great potential for 
particle picking. Several machine learning approaches have been put forth to automate the particle 
picking process and reduce the number of false positives. Notable approaches include APPLE picker16, 
crYOLO17, PIXER18, WARP19, Topaz20, CASSPER21, AutoCryoPicker22, DeepCryoPicker23, DRPnet24 
and CryoTransformer25. They utilize either convolutional neural networks or unsupervised learning 
algorithms like clustering. Nevertheless, these methods typically underwent training with a limited set 
of micrographs. For instance, crYOLO was trained with only 840 micrographs. Consequently, they may 
struggle to generalize effectively to diverse protein types characterized by irregular and complex shapes, 
as well as heterogenous conformations. They often overlook the diversity of the proteins and are usually 
evaluated on one or a few simple datasets like Apoferritin and Keyhole Limpet Hemocyanin (KLH) due 
to lack of manually annotated particle data. Among these methods, crYOLO and Topaz are most widely 
used. CrYOLO utilizes the You Only Look Once (YOLO), an object detection algorithm26 trained on 
cryo-EM micrographs, and Topaz employs positive-unlabeled convolutional neural networks20 for 
particle picking. While both approaches have demonstrated significant potential in automating particle 
picking, their training has been based on a relatively small number of micrographs. CrYOLO often 
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misses many true protein particles while Topaz picks too many particles including false positives and 
duplicates. The large number of particles picked by Topaz also causes difficulty in storing and 
processing the extracted particles required for the down-stream processing steps. As a result, the 
potential of deep learning for particle picking has not yet been fully harnessed, and the cryo-EM 
community still needs to mostly rely on traditional semi-automated methods like template-based picking 
tools like RELION and CryoSPARC to perform particle picking, which are time consuming and error-
prone.  

Two recent developments provide good opportunities to further improve automated particle picking. 
The first is the recent creation of a large, labeled protein particle dataset - CryoPPP4 from the Electron 
Microscopy Public Image Archive (EMPIAR)27, which enables the development and training of 
sophisticated deep learning methods for particle picking. The second one is the availability of large 
foundational AI image segmentation models such as Meta’s Segment Anything Model (SAM) 28 that 
may be used to segment objects in images. However, a direct application of SAM to cryo-EM images 
can segment few particles because cryo-EM images are very different from the image data used to train 
SAM. Moreover, a simple retraining of SAM on cryo-EM images only yielded somewhat improved but 
still unsatisfactory results.  

To leverage the opportunities and address the challenges above, we first designed a specialized U-Net 
architecture29 with the inclusion of attention gates in each decoder block and trained it on the CryoPPP 
dataset to pick protein particles. After training, the attention-gated U-Net is applied to any cryo-EM 
micrograph to generate a segmentation map as input for SAM’s automatic mask generator28 for 
accurately localizing protein particles in the cryo-EM micrograph. This segmentation network of 
integrating the specialized U-Net architecture and SAM for particle picking (called CryoSegNet) 
performs better than the two most popular AI based pickers crYOLO and Topaz in terms of both the 
accuracy of particle picking and the resolution of 3D protein density maps reconstructed from picked 
particles. Particularly, CryoSegNet substantially increases the resolution of density maps constructed 
from picked particles over crYOLO and Topaz, making it a useful tool for generating more accurate 
protein structures from both existing and new cryo-EM image data.  

Results 

I. Combining the specialized attention-gated U-Net trained on cryo-EM images with the general 
foundational Segment Anything Model (SAM) for particle picking 

Fig. 1 illustrates the process of particle picking from cryo-EM micrographs using CryoSegNet. A cryo-
EM micrograph is first denoised by the image processing techniques22,30,31. The denoised micrograph is 
then used as input for an attention-gated U-Net trained on a comprehensive and diverse dataset 
consisting of thousands of manually labeled cryo-EM micrographs of 22 diverse protein types to pick 
particles to generate a segmentation map, which is used as input for SAM to generate a mask map with 
identified particles. The particles in the mask map are further post-processed (e.g., combined or filtered) 
by a post-processing module to generate the final output containing the picked particles. The final 
output includes the protein particle coordinates in the form of .star files, which are compatible with 
widely used tools like RELION11 and CryoSPARC12 and can be directly used by them to generate 3D 
protein density maps. The design and training of the attention-gated U-Net and the details of each 
processing step above are described in the Methods section.  

After CryoSegNet was trained and validated on the training/validation, we blindly benchmarked it on a 
test dataset consisting of thousands of labeled cryo-EM micrographs of 7 different protein types from 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2023.10.02.560572doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.02.560572
http://creativecommons.org/licenses/by/4.0/


the CryoPPP4 dataset. The particles picked by CryoSegNet were compared with the ground truth 
coordinates of the expert-labeled particles.  

 

Fig. 1  The process of particle picking with CryoSegNet. (A) An input micrograph is first denoised and then sent to the U-Net 
model. (B) U-Net model outputs a segmentation mask for each micrograph that is fed to SAM automatic mask generator for 
predicting the bounding boxes of protein particles. (C) The output generated by SAM is further processed based on 
thresholding the prediction confidence scores to filter out some false particles to generate the final output of picked particles 
stored in .star files. 

The standard image segmentation metrics including precision, recall, F1-score (i.e., 
��������� 
 ������


����������������/�
), 

and Dice score32 of particle picking made by CryoSegNet were calculated to evaluate its performance. 
Dice score is used to evaluate the similarity between predicted segmentation masks and ground truth 
masks. It ranges from 0 (zero overlap) to 1 (perfect overlap). Furthermore, as an ultimate test, we 
constructed 3D density maps for each protein from the particles picked by CryoSegNet, crYOLO and 
Topaz respectively and compared the resolution of the reconstructed density maps. The detailed results 
are reported in the sub-sections below. 

II. The performance of particle picking on the CryoPPP test dataset in terms of image 
segmentation metrics 

The number of cryo-EM micrographs and labeled particles for each of the seven different types of 
proteins in the CryoPPP test dataset is reported in Table 1.  There are 1,879 labeled cryo-EM images 
and 401,263 labeled particles in total, which form the largest test dataset for evaluating particle picking 
methods to date. To fairly compare the three methods: CrYOLO, Topaz and CryoSegNet, we trained 
and tested all these methods with the same set of training, validation and test data. The CrYOLO was 
trained with “PhosaurusNet” architecture and Topaz with “ResNet16” architecture. The details of 
parameters used in training of CrYOLO and Topaz can be found in Supplementary Note S1. The per-
protein and average precision, recall, F1-score, and Dice score of CryoSegNet, crYOLO, and Topaz on 
the dataset are summarized in Table 1. The average precision, recall, F1-score, and Dice score of 
CryoSegNet are 0.792, 0.747, 0.761 and 0.719 respectively, while for CrYOLO, they are 0.744, 0.768, 
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0.751, and 0.698. Topaz has an average precision, recall, F1-score, and Dice score of 0.704, 0.802, 
0.729, and 0.683, respectively. Among the three methods, CryoSegNet has the highest F1-score, 
precision, and Dice score, while Topaz has the highest recall. The higher F1-score of 0.761 for 
CryoSegNet, in contrast to 0.729 for Topaz and 0.751 for CrYOLO, indicates that CryoSegNet is a more 
balanced particle picker than Topaz and CrYOLO, considering both sensitivity (recall) and specificity 
(precision).  

Table 1. Evaluation results on the CryoPPP test dataset. The EMPIAR ID of the cryo-EM image set for 
each of the 7 test proteins is listed in Column 1. The type of each protein, number of cryo-EM images 
and number of labeled particles are reported in Columns 2-4. The precision, recall, F1-score, and Dice 
score for crYOLO, Topaz and CryoSegNet are reported in the other columns. Bold font denotes the best 
average score of each metric. 
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1002833 Ribosome (80S) 300 26,391 0.807 0.941 0.869 0.863 0.696 0.937 0.799 0.786 0.833 0.944 0.885 0.859 

1008134 Transport 300 39,352 0.822 0.884 0.852 0.822 0.732 0.872 0.796 0.758 0.835 0.922 0.876 0.876 

1034535 Signaling  295 15,894 0.648 0.665 0.656 0.452 0.544 0.805 0.650 0.507 0.746 0.920 0.824 0.743 

1105636 Transport 305 125,908 0.726 0.780 0.752 0.718 0.764 0.909 0.830 0.778 0.757 0.687 0.720 0.663 

1053237 Viral 300 87,933 0.756 0.774 0.765 0.724 0.732 0.939 0.823 0.788 0.796 0.628 0.702 0.649 

1009338 Membrane 295 56,394 0.623 0.744 0.678 0.641 0.610 0.216 0.319 0.279 0.716 0.515 0.600 0.537 

1001739 β-galactosidase 84 49,391 0.824 0.588 0.686 0.663 0.847 0.936 0.889 0.886 0.859 0.616 0.718 0.703 

Average 0.744 0.768 0.751 0.698 0.704 0.802 0.729 0.683 0.792 0.747 0.761 0.719 
 

Moreover, we compared the predictions made by the three methods for some individual micrographs to 
study their characteristics. Fig. 2 illustrates the typical disparities in particle picking among crYOLO, 
Topaz and CryoSegNet on three individual cryo-EM micrographs of two protein types (EMPIAR ID 
10345 and EMPIAR ID 11056). CrYOLO tends to pick fewer protein particles, thereby discarding many 
true particles. Topaz, when using with default parameters, picks an excessive number of true particles 
with a lot of overlaps (redundancy) as well as false particles within carbon edges and ice patches that 
can cause a serious difficulty for the 3D reconstruction of density maps from the picked particles. The 
storage requirement for processing the redundant particles from Topaz for 3D reconstruction is 
substantial. In contrast, CryoSegNet usually picks most true protein particles while selecting only a 
small number of false positives, minimizing the number of redundant/duplicated/overlapped particles 
and largely excluding false particles in the carbon edges and ice patches.  

We also compare the precision, recall, F1-score, and Dice score of the output of each of the three 
prediction modules of CryoSegNet: (1) the attention-gated U-Net, (2) the SAM and (3) the 
postprocessing module (Supplementary Table S1). At the end of each subsequent module, the F1-
scores are computed, revealing higher values for SAM (0.768) and the postprocessing module (0.761) in 
comparison to U-Net (0.71). This indicates that the performance is improved by incorporating SAM into 
the output of U-Net.  Interestingly, applying the SAM module to the output of the U-Net substantially 
increases the recall from 0.739 to 0.820, while decreasing the precision from 0.747 to 0.729. Adding the 
post-processing on top of the SAM output increases the precision from 0.729 to 0.792, while decreasing 
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the recall from 0.820 to 0.747. At the end, the precision of the final output of CryoSegNet (e.g., the 
output of the post-processing module) is substantially higher than the U-Net (0.792 versus 0.747), while 
its recall is slightly higher than the U-Net (0.747 versus 0.739), resulting in a higher F1-score (0.761 
versus 0.71). The results show that the three prediction steps of CryoSegNet complement each other, 
leading to the balanced performance.  

To further assess the performance of these methods, we fine-tuned each of the three pre-trained methods 
above for each EMPIAR ID in the test dataset by using 20 labeled micrographs as training and 
validation data and the remaining micrographs as the test data. We compared the fined-tuned 
CryoSegNet with the fine-tuned CrYOLO and fine-tuned Topaz on the withheld test data of each 
EMPIAR ID. The overall average performance of each method is improved by the fine tuning, 
indicating that fine-tuning each method using a small number of human-labeled micrographs for a target 
protein can further enhance the accuracy of particle picking.  The fine-tuned CryoSegNet still has higher 
F1-score, precision, and Dice score than the fine-tuned CrYOLO and Topaz. The detailed results are 
presented in Supplementary Table S2. 

III. The performance of particle picking in terms of the resolution of 3D density maps 
reconstructed from picked particles 

The F1-score, precision and recall of particle picking can measure the accuracy of a machine learning 
method discriminating particles from non-particles, but they do not directly measure the quality of the 
density maps of proteins reconstructed from the picked particles, which are the end product concerning 
users most. Reconstructing 3D density maps from picked particles involves very complex algorithms of 
converting 2D particle images to 3D density maps, whose performance depends on many factors such as 
the number of true particles, the uniqueness of true particles capturing different orientations (views) of 
protein structure, and the severity of false particles that cannot be simply measured by a single score 
such as F-measure, precision and recall. Therefore, as an ultimate test, we compare CryoSegNet, Topaz, 
and crYOLO in terms of the resolution of 3D density maps reconstructed from picked particles on 
CryoPPP test dataset.   

A. The comparison of the resolution of the density maps reconstructed from the particles picked 
by CryoSegNet, crYOLO and Topaz on CryoPPP test dataset 

For each protein type in the test dataset, we generate star files containing particles picked by a method, 
which are then imported into CryoSPARC for 3D ab-initio reconstruction of density maps and 
homogenous refinement12. In the context of ab-initio reconstruction, we reconstruct a 3D density map 
from only a set of particles without using any initial structural model or starting structure as input. 
Homogeneous refinement is employed to rectify higher-order aberrations and to refine particle defocus 
caused by factors such as beam tilt, spherical aberration, and other optical issues. We compare the 3D 
resolution of the density maps reconstructed from the particles picked by crYOLO, Topaz, and 
CryoSegNet. Results are computed both with and without considering the best 2D templates from the 
Select2D job12 in CryoSPARC. Select2D is a process used by CryoSPARC internally to filter out low-
quality/false particles provided by users before the density map reconstruction.  

The experiments were conducted across three trials with random seed initialization, and the best 
resolution was considered for comparison. The summary results of the three methods on the 
micrographs in CryoPPP test dataset are presented in Table 2, while the detailed trial results can be 
found in Supplementary Table S3. The resolution of both CryoSegNet and Topaz is higher than 
crYOLO on 6 out of 7 protein types. CryoSegNet has a higher resolution than Topaz on 5 out of 7 
protein types and a lower resolution than Topaz on two protein types. The average resolution of 
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CryoSegNet with Select 2D is 4.94 Å, better than 5.16 Å of Topaz and 5.29 Å of crYOLO. Also, on all
7 protein types, Topaz picked most particles (67,906 on average), CryoSegNet second most (46,893 on
average), and crYOLO least (42,475 on average), indicating that the quality of density maps does not
fully depend on the number of picked particles. This result can be largely explained by the observation
that crYOLO picks fewer particles, Topaz identifies many particles with some redundancy/overlap, and
CryoSegNet picks most true particles with little redundancy.  

Moreover, applying Select 2D to the density map reconstruction improves the resolution of all these
methods. It is worth noting that, even though the results in Table 2 were obtained from particles picked
from at most 305 micrographs for each protein type in CryoPPP test dataset, the resolution of
CryoSegNet for some protein types is high. For instance, on two protein types (EMPIAR ID 10028 and
10345), the resolution of CryoSegNet, after removing some false positives by Select 2D, is below 3 Å.  

 

Fig. 2 Comparison of particle picking by crYOLO, Topaz and CryoSegNet on three cryo-EM micrographs of two protein types
(EMPIAR ID 10345 and EMPIAR ID 11056). (A) Topaz picks ice patches and more particles in the contaminated regions than
CryoSegNet while crYOLO picks  few particles (EMPIAR ID 10345). (B) Topaz picks more false positives (particularly the
ones on the black ice patch) compared to CryoSegNet (EMPIAR ID 10345). (C) CryoSegNet picks a zero to small number of
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particles in undesired (carbon or ice) regions (black holes) of the micrograph (EMPIAR ID 11056), while Topaz picks some 
false particles in the regions. 

Table 2. Comparison of CryoSegNet with crYOLO and Topaz in terms of the resolution of 3D density 
maps on CryoPPP test dataset. Bold font denotes the highest resolution.  

 
 

EMPIAR 
ID 

Without Select 2D With Select 2D 

Number of Picked Particles Best Resolution (Å) Number of Particles Best Resolution (Å) 

CrYOLO Topaz CryoSegNet CrYOLO Topaz CryoSegNet CrYOLO Topaz CryoSegNet CrYOLO Topaz CryoSegNet 

10028 32,687 52,588 47,764 4.13 3.98 2.72 31,699 35,514 45,218 4.11 3.93 2.72 

10081 44,440 58,217 60,158 5.65 6.13 4.58 36,821 37,808 44,819 4.97 5.08 4.16 

10345 15,821 29,208 25,919 3.98 3.73 3.48 11,369 21,343 15,209 3.83 3.64 2.84 

11056 60,648 98,680 71,342 8.98 8.11 7.83 43,599 66,651 53,073 8.32 8.03 7.13 

10532 46,162 73,196 67,219 4.23 4.54 4.09 29,434 38,372 30,155 4.08 4.23 3.89 

10093 43,305 
110,57

7 
43,886 7.27 6.35 7.27 33,183 61,698 27,745 6.87 6.12 6.99 

10017 54,263 52,875 11,961 4.99 5.13 6.90 47,704 45,511 10,026 4.84 5.08 6.86 

Average 42,475 67,906 46,893 5.60 5.42 5.27 33,401 43,842 32,321 5.29 5.16 4.94 
 

B. The comparison of resolution of 3D density maps reconstructed from all cryo-EM micrographs 
of five protein types in EMPIAR 

In addition to evaluating the on the test dataset from CryoPPP that has only approximately 300 
micrographs for each protein type (see Table 1), we extended the assessment of the methods to the 
complete set of micrographs available on the EMPIAR website for five different protein types in 
CryoPPP test dataset (Table 3) to gauge the resolution that they can achieve in a real-world setting. 
CryoSegNet and Topaz substantially outperform crYOLO on each protein type and on average.  
Moreover, CryoSegNet performs better than Topaz for all the protein types except EMPIAR ID 10093. 
The average resolution of CryoSegNet with Select 2D is 3.32 Å, about 7% better than 3.57 Å of Topaz 
and 14% better 3.85 Å of crYOLO. Remarkably, for EMPIAR ID 10345, the resolution of the density 
map reconstructed from CryoSegNet is 2.67 Å, which is much higher than CrYOLO and Topaz.  
Moreover, the average resolution across all test sets resulting from CryoSegNet picked particles (3.32 
Å) is 3% better than the average 3.33Å of the density maps built by their original authors possibly with 
some manual particle picking, and CryoSegNet has a better resolution than the original ones for three 
out of five proteins, indicating that it can be applied to the existing cryo-EM micrographs in EMPIAR to 
generate better density maps.  

Comparing the results on all the micrographs of the five protein types (Table 3) and the results on a 
smaller number of micrographs of the same five protein types (Table 2), the average performance of all 
three methods on the five protein types is improved, indicating that using more micrographs generally 
improve the quality of reconstructed density maps as expected. Moreover, applying Select 2D to the 
density map reconstruction improves the resolution of all the three methods on this dataset, even though 
Select 2D filters out a substantial number of particles including some true ones picked by each method, 
indicating that other factors such as the quality and representativeness of picked particles are important. 
This explains why a single particle picking metric such as recall (sensitivity) does not fully correlate 
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with the resolution of reconstructed density maps. The detailed results of the three methods in all the 
trials can be found in Supplementary Table S4. 

The superiority of CryoSegNet is not only evident in terms of resolution but also in the quality of 
viewing direction and the representation of various orientations of picked particles. Fig. 3 showcases the 
best 2D classes for the five protein types obtained from CryoSegNet, which clearly shows that 
CryoSegNet picked particles representing many different orientations/views of proteins, which is an 
important factor of obtaining high-resolution reconstruction of 3D density maps. Further,  

Fig. 4 illustrates the comparison of viewing direction, resolution, and 3D density map of the particles 
picked by crYOLO, Topaz and CryoSegNet, visually showing that CryoSegNet performs better than 
crYOLO for all the protein types and better than Topaz for most protein types.  

Table 3. Comparison of 3D resolution of on the full set of micrographs of five protein types. The last 
column lists the resolution of the density maps built by their original authors as a reference.   

 
EMPIAR 

ID 

Without Select 2D With Select 2D Original 
EMPIAR 

Resolution 
(Å) 

Number of Particles Best Resolution (Å) Number of Particles Best Resolution (Å) 

CrYOLO Topaz CryoSegNet CrYOLO Topaz CryoSegNet CrYOLO Topaz CryoSegNet CrYOLO Topaz CryoSegNet 

10028 65,376 104,652 93,881 3.97 2.72 2.72 63,562 96,352 92,532 3.94 2.72 2.72 3.20 

10345 50,506 102,977 120,357 3.56 3.50 2.74 40,047 87,472 73,377 3.54 3.45 2.67 3.51 

10081 148,488 171,396 202,988 4.26 4.34 3.95 123,963 130,941 153,333 4.15 4.06 3.45 3.50 

10532 232,220 362,115 181,259 3.25 3.52 3.42 161,497 206,460 90,477 3.22 3.22 3.20 2.90 

10093 264,447 801,208 267,983 4.54 4.55 4.70 192,337 437,235 169,330 4.41 4.40 4.54 3.55 

Average 152,207 308,470 173,294 3.92 3.73 3.51 116,281 191,692 115,810 3.85 3.57 3.32 3.33 
 

 

Fig. 3 2D classes from particles picked by CryoSegNet for EMPIAR 10081, EMPIAR 10345, EMPIAR 10532, EMPIAR 
10028 and EMPIAR 10093. These classes show particles with multiple orientations that have been picked by CryoSegNet. 
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Fig. 4 Comparison results for viewing direction, resolution, and 3D density map of particles picked by crYOLO, Topaz and
CryoSegNet. The top 3 rows illustrate the viewing direction comparison, the middle 3 rows show the resolution comparison
and the bottom 3 rows illustrate the 3D density map comparison. From the viewing direction plots, it is observed that crYOLO
picks very few particles and misses many true protein particles and CryoSegNet picks particles with multiple
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orientations/views. 3D density maps for CryoSegNet have much better resolution and low noise compared to crYOLO in all the 
cases and better resolution than Topaz for most of the protein types. 

C. How does the resolution of density maps change with respect to the number of micrographs? 

We further analyzed the impact of the number of micrographs on the resolution of the reconstructed 3D 
density maps for the five protein types by comparing the performance of CryoSegNet on a few hundred 
micrographs in CryoPPP test dataset and the full set of micrographs in EMPIAR (Table 4). The results 
show that augmenting the number of micrographs generally results in an increased number of protein 
particles at different viewing directions on  four of  five  protein types, thereby contributing to improved 
resolution. However, if the number of particles with different conformations remains unchanged, 
increasing the number of micrographs does not significantly impact the final 3D resolution. For 
example, EMPIAR ID 10028 (ribosome), the resolution of using 300 micrographs is 2.72 Å, which is 
the same as that of using 600 micrographs. 

Table 4. Comparative analysis of 3D resolution of CryoSegNet between the complete EMPIAR 
micrograph set and the smaller CryoPPP test dataset 

 
EMPIAR ID 

CryoPPP Dataset EMPIAR Dataset 

Number of 
Micrographs 

Number of 
Particles 

Best Resolution 
(Å) 

Number of 
Micrographs 

Number of 
Particles 

Best Resolution 
(Å) 

10028 300 47,764 2.72 600 92,532 2.72 

10345 295 25,919 2.84 1,644 73,377 2.67 

10081 300 60,158 4.16 997 153,333 3.45 

10532 300 67,219 3.89 1,556 90,477 3.20 

10093 295 43,886 6.99 1,873 169,330 4.54 

 

The results show that the pretrained CryoSegNet has the ability to pick protein particles in large new 
datasets with great accuracy leading to high resolution density maps. Moreover, for some protein types, 
fine-tuning the pretrained model can lead to even better results. We fine-tuned CrYOLO, Topaz and 
CryoSegNet for each EMPIAR ID in the EMPIAR test dataset and compared the results. The details of 
the fine-tuning can be found in Supplementary Note S2 and the results are shown in Supplementary 
Table S5 and Supplementary Table S6.  
 

IV. Comparison of CryoSegNet and CASSPER 

To further assess the performance of CryoSegNet, we compared it with another segmentation method -
CASSPER and compared their results on the micrographs of 3 different proteins, EMPIAR ID 10017, 
10081 and 10089, which were used to train, validate, and test the CASSPER model. EMPIAR ID 
10017, 10081 are in the CryoPPP test dataset, while EMPIAR ID 10089 does not exist in the CryoPPP 
dataset at all. We fine-tuned both the pretrained CASSPER model and pretrained CryoSegNet model 
with 20 micrographs from each of these three datasets as training and validation data and then tested 
them on the remaining micrographs (test datasets). We then compared the 3D resolution of density maps 
reconstructed from the particles in the test datasets picked by the two fine-tuned models. The details of 
the resolution of the reconstructed density maps and the number of particles picked are presented in 
Table 5. CryoSegNet performs better than CASSPER on each of the three datasets. CryoSegNet has an 
average resolution of 4.04 Å, better than 4.53 Å of over CASSPER.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2023.10.02.560572doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.02.560572
http://creativecommons.org/licenses/by/4.0/


Table 5. Comparison of CryoSegNet with CASSPER in terms of the resolution of 3D density maps. 
Bold font denotes the highest resolution. 

Discussion 

In this study, we have introduced CryoSegNet, a novel approach for protein particle picking from cryo-
EM micrographs. The results show that CryoSegNet consistently outperforms the existing particle 
pickers in terms of the accuracy (i.e., F1-score) of particle picking and the resolution of reconstructed 
3D density maps. Particularly, it substantially outperforms the state-of-the-art deep learning particle 
picking method Topaz in terms of the resolution of density maps reconstructed from picked particles. 
These advances mostly come from two sources. The first is to train CryoSegNet on the large, 
comprehensive and diverse dataset for protein particle picking – CryoPPP. The second is to combine the 
power of multiple useful techniques, including the image processing techniques of denoising input cryo-
EM micrographs, the special attention-gated U-Net for particle picking, the foundational AI model 
SAM, and the post-processing of the output from SAM. Combining these techniques together in 
CryoSegNet works better than using only one or some of them. For instance, the U-Net reduces the 
noise from the original cryo-EM micrographs while preserving the fine details so that the segmentation 
maps from the U-Net model are better understood by the SAM model for improving particle picking. 
The postprocessing module eliminates some of the low-quality particles and false positives generated by 
SAM, leading to the improved resolution of the reconstructed density maps. A detailed ablation study of 
the performance of pretrained SAM, fine-tuned SAM, and U-Net + SAM in particle picking is presented 
in Supplementary Note S3, demonstrating that combining the U-Net with SAM outperforms the 
pretrained SAM and fine-tuned SAM.  

As cryo-EM particle picking is still a young field, the metrics of evaluating its performance have not 
been well established. In this work, we use the standard image classification metrics including precision, 
recall, F1-score and Dice score as well as the specialized evaluation metrics such as the resolution of 
density maps reconstructed from picked particles that users care about most. Each classification metric 
is an indicator of the performance of the particle picking but none of them is 100% correlated with the 
resolution of density maps. The correlation between each of the classification metrics (F1-score, 
precision, Dice score, and recall) and the resolution value (quality) of the density maps reconstructed 
from CryoSegNet with Select 2D is -0.88, -0.94, -0.91, and -0.78. The correlation is computed from the 
classification metric values for five protein types from Table 1 and the resolution values of the density 
maps in Table 3. The correlation shows that the F1-score, precision and Dice score are the rather 
informative classification metric for predicting the quality of reconstructed density maps, which have a 
much stronger correlation with the resolution of the reconstructed density maps than recall. The recall is 
the least informative probably because when there are enough picked particles, the quality or the 
representativeness of the particles may be more important and low-quality or false particles may 

 
 

EMPIAR 
ID 

 
 

Number of 
Micrographs 

CASSPER CryoSegNet 

 
Number 

of 
Particles 

Best 
Resolution 
Å (Without 
Select 2D) 

 
Number 

of 
Particles 

Best 
Resolution 

Å (With 
Select 2D) 

 
Number 

of 
Particles 

Best 
Resolution 
Å (Without 
Select 2D) 

 
Number 

of 
Particles 

Best 
Resolution 

Å (With 
Select 2D) 

10017 84 44,213 5.38 38,460 5.32 38,349 5.27 31,941 5.2 

10081 997 133,366 4.37 115,297 4.18 202,988 3.95 153,333 3.56 

1008940 97 14,565 4.37 10,335 4.09 13,533 4.36 11,847 3.36 

Average 393 64,048 4.71 54,697 4.53 84,957 4.53 65,707 4.04 
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severely reduce the quality of the reconstructed density maps.  Moreover, none of the standard 
classification metric can perfectly predict the resolution of the reconstructed density maps because the 
density reconstruction process is very complicated, and its outcome depends on many factors such as the 
quality and diversity of true particles picked that the standard classification metrics cannot measure. 
Therefore, the resolution of the reconstructed cryo-EM density maps is the most important metric of 
assessing the effectiveness of a particle picking method.  

In comparison to the conventional approaches, such as manual picking and template-based methods, 
CryoSegNet offers a more reliable and automated solution, eliminating the need for labor-intensive 
manual particle selection. This presents a significant improvement in the field by minimizing human 
bias and increasing objectivity in particle picking. Moreover, the average resolution of the density maps 
reconstructed from the particles picked by CryoSegNet is higher than that of the density maps built by 
the original authors probably with some human intervention, indicating that CryoSegNet has the 
potential to substitute the time-consuming manual or template-based picking. Compared to two 
automated machine learning methods crYOLO and Topaz, CryoSegNet substantially improves the 
resolution of reconstructed density maps, indicating it can be applied to generate more accurate protein 
structures from the existing cryo-EM data processed by Topaz and crYOLO before or new cryo-EM 
data. Moreover, in terms of F1-score, precision and Dice score of particle picking – the three metrics 
that have the strongest correlation with the resolution of reconstructed density maps, CryoSegNet also 
outperforms crYOLO and Topaz.   

There are still some challenges faced by AI-based particle picking methods including CrYOLO, Topaz 
and CryoSegNet on some datasets like EMPIAR ID 10532 and EMPIAR ID 10093 that have few 
samples representing rare protein view orientations, some of which could be missed by the automated 
AI methods. In the two cases, they performed worse than the blob-based picking11,13,39 in RELION used 
by the original authors (Table 3). One reason is that the blob-based picking was used by the authors to 
capture rare but diverse protein-like objects, even though it might also pick undesired false particles that 
required subsequent steps of false positive removal. We tested if providing a small number of labeled 
micrographs to fine-tune CrYOLO, Topaz, and CryoSegNet can help them identify more particles with 
rare view orientations. Fine-tuning the pretrained model with 20 annotated micrographs resulted in an 
improved resolution of density maps for CrYOLO and CryoSegNet on EMPIAR-10093 (specifically 
0.3Å improvement for CrYOLO and 0.56Å improvement for CryoSegNet), but not for Topaz. On 
EMPIAR-10532, the fine-tuning did not improve the performance of any of the three methods, 
emphasizing the need for additional diverse particle samples, particularly those representing rare views, 
to enhance the AI-based particle picking. This analysis underscores the intricate relationship between 
dataset complexity, sample diversity, and algorithm efficacy in the cryo-EM particle picking. Another 
limitation is the requirement of high computing resources for training CryoSegNet on large cryo-EM 
datasets. We will explore better optimization techniques to address this issue in the future.  

Methods 

1. Dataset 

We employed an extensive and diverse dataset (CryoPPP) to train, validate and test CryoSegNet. 
Specifically, we utilized the micrographs of 22 EMPIAR IDs (protein types) from the CryoPPP for 
training and validation. We allocated 80% of the micrographs from each of the 22 protein types for 
training and the remaining 20% for validation. For the independent test, we selected a separate set of 7 
different EMPIAR IDs from the CryoPPP dataset. The selection of EMPIAR IDs for training and testing 
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was carefully conducted, taking into consideration various factors such as protein type, shape, size, and 
total structural weight. We included proteins from different categories, including transport proteins, 
membrane proteins, signaling proteins, viral proteins, ribosomes, aldolase, and others, each 
characterized by distinct shapes such as rod and circular, as well as a wide range of structural weights 
spanning from 77 kDa to 2198 kDa. We used a large number of cryo-EM micrographs unlike most 
existing machine learning methods in the field trained on very limited and simplified datasets with a 
small number of protein types and shapes. Our training dataset consisted of 4,948 micrographs, while 
our validation set was comprised of 1,244 micrographs. The details of the training dataset and validation 
dataset are presented in Table 6, while those of the independent test dataset are described in Table 7.  

Table 6. An overview of the dataset used for training and validation of CryoSegNet 

SN EMPIAR 

ID 

Type of Protein Image Size Total 

Structure 

Weight (kDa) 

Training 

Images 

Validation 

Images 

 

Total 

Images 

1 1000541 TRPV1 Transport Protein (3710, 3710) 272.97 23 6 29 

2 1005942 TRPV1 Transport Protein (3838, 3710) 317.88 232 59 291 

3 1007543 Bacteriophage MS2 (4096, 4096) 1000* 239 60 299 

4 1007744 Ribosome (70S) (4096, 4096) 2198.78 240 60 300 

5 1009645 Viral Protein (3838, 3710) 150* 240 60 300 

6 1018446 Aldolase (3838, 3710) 150* 236 60 296 

7 1024047 Lipid Transport Protein (3838, 3710) 171.72 239 60 299 

8 1028948 Transport Protein (3710, 3838) 361.39 240 60 300 

9 1029148 Transport Protein (3710, 3838) 361.39 240 60 300 

10 1038749 Viral Protein (3710, 3838) 185.87 239 60 299 

11 1040650 Ribosome (70S) (3838, 3710) 632.89 191 48 139 

12 1044451 Membrane Protein (5760, 4092) 295.89 236 60 296 

13 1052652 Ribosome (50S) (7676, 7420) 1085.81 176 44 220 

14 1059053 TRPV1 Transport Protein (3710, 3838) 1000* 236 60 296 

15 1067154 Signaling Protein (5760, 4092) 77.14 238 60 298 

16 1073755 Membrane Protein (5760, 4092) 155.83 233 59 292 

17 1076056 Membrane Protein (3838, 3710) 321.69 240 60 300 

18 1081657 Transport Protein (7676, 7420) 166.62 240 60 300 

19 1085258 Signaling Protein (5760, 4092) 157.81 274 69 343 

20 1105159 Transcription/DNA/RNA (3838, 3710) 357.31 240 60 300 

21 1105760 Hydrolase (5760, 4092) 149.43 236 59 295 

22 1118361 Signaling Protein (5760, 4092) 139.36 240 60 300 

Total 4,948 1,244 6,192 

* represents theoretical weight of the proteins. 

Table 7. An overview of the independent dataset for testing CryoSegNet 

SN EMPIAR ID Type of Protein Image Size Total Structure Weight (kDa) Number of Images 

1 10028 Ribosome (80S) (4096, 4096) 2135.89 300 
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2 10081 Transport Protein (3710, 3838) 298.57 300 

3 10345 Signaling Protein (3838, 3710) 244.68 295 

4 11056 Transport Protein (5760, 4092) 88.94 305 

5 10532 Viral Protein (4096, 4096) 191.76 300 

6 10093 Membrane Protein (3838, 3710) 779.4 295 

7 10017 β -galactosidase (4096, 4096) 450* 84 

Total 1,879 

* represents theoretical weight of the proteins. 

2. Prediction Methods  

2.1 Attention-Gated U-Net 

The advent of deep learning architectures like U-Net has greatly simplified segmentation tasks in 
biomedical images like localizing mitochondria cells and brain tumors. In this work, we designed a 
special U-Net architecture (Fig. 5A) for cryo-EM protein particle picking by making it deeper and 
introducing an attention mechanism into it, considering the large size of the cryo-EM micrographs and 
the nature of protein particles in the micrographs. Cryo-EM micrographs often contain objects that are 
not actual single protein particles, such as ice patches, protein aggregates, and false particles along the 
carbon edges. These false positives can negatively degrade the resolution of the final 3D structures 
reconstructed from the particles. Therefore, it is important to prioritize the picking of true protein 
particles for an accurate segmentation. Thus, we added attention gates in the expanding path of the U-
Net architecture to put a significant emphasis on true protein particles. Our model consists of 5 encoder 
blocks in the contracting path, a bottleneck layer and 5 decoder blocks in the expanding path, each 
equipped with attention gates. This architecture modification can effectively handle the complexity of 
cryo-EM micrographs and achieve the precise segmentation of protein particles. 

The U-Net takes as input a cryo-EM micrograph of size 1024x1024 and outputs a segmentation mask of 
size 1024x1024. A loss function which combines both binary cross entropy loss and dice loss is used to 
measure prediction error in training. The former allows for measuring individual pixel error 
independently while the latter assesses the degree of dissimilarity between the predicted segmentation 
mask and the ground truth segmentation masks. By minimizing these two, the network is trained to 
achieve more accurate segmentation of protein particles. The output of the U-Net is used as input for 
SAM’s automatic mask generator for further segmentation.  

2.2 SAM automatic mask generator 

Meta’s Segment Anything Model (SAM) has achieved great success in segmenting objects in many 
images. However, directly applying the pretrained SAM to cryo-EM micrographs can only pick very 
few particles because cryo-EM images are very different from the images used to train SAM. Fine 
tuning (retraining) the SAM’s mask decoder on cryo-EM micrographs for thousands of epochs 
improved results over the original SAM but still could not achieved satisfactory results and performed 
worse than the state-of-the-art deep learning particle pickers such as Topaz. After many trials, we finally 
devised a hybrid approach that combines the U-Net model with SAM's automatic mask generator, which 
is proved to be highly effective for particle picking. 
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Fig. 5 Architecture of the CryoSegNet model. (A) The attention-gated U-Net to predict segmentation mask for a micrograph. 
The numbers in the top of the rectangular slices indicate the number of channels and in the bottom indicate the size of the 
output. The U-Net has five encoders, one bottleneck component, and five decoders. The skip connection from each encoder to 
its corresponding decoder goes through an attention gated block. Each attention block for a decoder also takes an input from its 
previous decoder or the bottleneck component. The details of the attention block are illustrated at the middle top. (B) The SAM 
mask generator takes input from the output of the U-Net model and outputs bounding box coordinates and intersection over 
union score for each predicted protein particle in the micrograph. (C) The postprocessing module outputs the star file 
containing picked particles and processed output micrographs based on the thresholding criterion for each protein type. 

In the hybrid approach, the output of the attention-gated U-Net is fed to the SAM’s automatic mask 
generator module. This module was tailored for automatic mask generation for input images and was 
trained on the SA-1B dataset. Firstly, it generates the masks from a grid of points, incorporating various 
scales of the original and zoomed images. Then, cropping is performed using a regular grid of points, 
and any masks intersecting crop boundaries are discarded. Redundant masks are then eliminated through 
non-maximum suppression with an intersection over union (IoU) threshold of 0.7, retaining only masks 
with confidence scores exceeding 88.0. Subsequent processing steps refine the masks by removing 
small artifacts and filling minor gaps, which are particularly important considering the high noise and 
low contrast characteristics of cryo-EM micrographs. These refined masks as well as the IoU scores and 
bounding box coordinates for each picked protein particle within the micrographs are then passed 
through our postprocessing modules below designed to filter out some false positives and improve the 
precision of particle picking. 
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2.3 Postprocessing 

The output generated by SAM's automatic mask generator undergoes the additional postprocessing to 
generate .star files, which contain coordinate information for protein particles. Algorithm 1 outlines the 
complete steps of the postprocessing. 

Algorithm 1. Postprocessing of the output of SAM 

Require: a segmentation mask from SAM’s automatic mask generator as input 

1. Consider only the particles with a predicted IoU greater than 0.94. 
2. Extract the bounding-box information ‘bbox’ for each picked particle in the segmentation mask, 

where the 1st and 2nd values are the x and y coordinates, and the 3rd and 4th values are the width 
and height, respectively. 

3. Calculate the mode of the widths (m_w) and mode of the heights (m_h) for the particles from 
step 2 for each segmentation mask. 

4. Determine the new diameter (d) of the picked particles from each segmentation mask. Rescale 
the m_w and m_h values from step 3 according to the size of original micrograph. Calculate d 
using the formula: 
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� ��� �                                      (1) 

 where, o_w and o_h are the width and height of the original micrograph.  

5. Set a threshold value (th) equal to 10% of the diameter: 
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 ��                                                                      (2) 

6. Select particles with width and height that satisfy the following criteria: 
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7. Calculate the scaled x and y-coordinates of the center of the protein particles for each 
segmentation mask of micrograph: 

��	_�� � � ���������������
�����

�

����
� 
 	����                                                (5) 

��	_�� � � ���������������
������

�

����
� 
 ������                                              (6) 

8. Output the values new_x, new_y and d of each particle from micrographs to a .star file.  

3. Data preprocessing 

3.1 Denoising of micrographs 

The cryo-EM micrographs have low contrast and low SNR, necessitating the use of image denoising 
techniques before using them as input for the U-Net. Fig. 6 illustrates the denoising techniques used for 
preprocessing cryo-EM micrographs. The image preprocessing pipeline begins with reading the images 
in the .mrc format and applying a Gaussian filter. Subsequently, the images are standard normalized and 
converted to grayscale, with pixel values ranging from 0 to 255. To effectively reduce noise while 
preserving image details, the Fast Non-Local Means (FastNLMeans) denoising technique22 is applied, 
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followed by noise mitigation through Weiner filtering22. To enhance the contrast of cryo-EM 
micrographs and improve the visibility of protein particles, the contrast limited adaptive histogram 
equalization (CLAHE) technique is then incorporated. CLAHE technique is widely used to enhance 
images with regions of non-uniform illumination and low contrast. Finally, the CLAHE equalized image 
is used as a guided image to the Weiner filtered image to perform guided filtering, allowing selective 
smoothing and enhancement of the cryo-EM micrographs while preserving edges and fine details. 

 

 

Fig. 6 The denoising process used to preprocess cryo-EM micrographs. (A) An original low contrast and low SNR cryo-EM 
micrograph (EMPIAR ID 10406). (B) A standard normalized cryo-EM image. (C) A denoised image using FastNLMeans 
technique. (D) Weiner filter applied to the (C) for further denoising. (E) Contrast enhancement using CLAHE technique. (F) 
Guided filtered image with (E) as a guided image to the Weiner filtered image (D). As shown in these images, the 
preprocessing techniques gradually improve the contrast and SNR of the micrograph.  

3.2 Standardization of inputs and labels 

The CryoPPP dataset comprises diverse protein types, each with varying micrograph sizes. Image size 
ranges from as low as (3710, 3710) to as high as (7676, 7420). For the uniformity in the training 
process, we resized all the micrographs to (1024, 1024) after denoising them and before feeding them to 
the U-Net model. From the ground truth coordinate files in the .csv format, containing information like 
centers of the particles and corresponding diameters, we created a separate ground-truth segmentation 
mask for each micrograph. This mask was then resized to (1024, 1024). The input micrograph was fed 
to the network for training while the ground truth segmentation mask was utilized as a target and 
compared with the output segmentation mask for calculation of loss. Fig. 7 shows a sample denoised 
image and its corresponding ground truth segmentation mask.  
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Fig. 7 Illustration of data preparation for training the U-Net model. (A) A denoised cryo-EM micrograph (EMPIAR ID 10406) 
as input. (B) The ground truth segmentation mask. (C) The information from the ground truth coordinate file with x-coordinate 
and y-coordinate of center of protein particles and corresponding diameters used to generate (B).  

4. Training 

The attention-gated U-Net of CryoSegNet was trained using denoised and resized micrographs of 22 
different EMPIAR IDs from CryoPPP dataset. The training was done with a batch size of 6, learning 
rate of 0.0001 for 200 epochs with a combined loss function of the dice loss and binary cross entropy on 
NVIDIA A100 80GB GPU. 

Data availability  

The dataset for this study is available on https://github.com/BioinfoMachineLearning/cryoppp and 
https://zenodo.org/record/7934683 

Code availability  

The source code is available on https://github.com/jianlin-cheng/CryoSegNet 
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