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Abstract Epigenetic regulation orchestrates mammalian transcription, but functional links
between them remain elusive. To tackle this problem, we use epigenomic and transcriptomic
data from 13 ENCODE cell types to train machine learning models to predict gene expression
from histone post-translational modifications (PTMs), achieving transcriptome-wide correlations
of ∼ 0.70 − 0.79 for most cell types. Our models recapitulate known associations between histone
PTMs and expression patterns, including predicting that acetylation of histone subunit H3 lysine
residue 27 (H3K27ac) near the transcription start site (TSS) significantly increases expression
levels. To validate this prediction experimentally and investigate how natural vs. engineered
deposition of H3K27ac might differentially affect expression, we apply the synthetic dCas9-p300
histone acetyltransferase system to 8 genes in the HEK293T cell line and to 5 genes in the K562
cell line. Further, to facilitate model building, we perform MNase-seq to map genome-wide
nucleosome occupancy levels in HEK293T. We observe that our models perform well in accurately
ranking relative fold-changes among genes in response to the dCas9-p300 system; however, their
ability to rank fold-changes within individual genes is noticeably diminished compared to
predicting expression across cell types from their native epigenetic signatures. Our findings
highlight the need for more comprehensive genome-scale epigenome editing datasets, better
understanding of the actual modifications made by epigenome editing tools, and improved
causal models that transfer better from endogenous cellular measurements to perturbation
experiments. Together these improvements would facilitate the ability to understand and
predictably control the dynamic human epigenome with consequences for human health.
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Introduction
All cells within a multicellular organism have the same genetic sequence up to a minuscule num-
ber of somatic mutations. Yet, many cell types exist with diverse morphological and functional
traits. Epigenetics is an important regulator and driver of this diversity by allowing differences in
cellular state and gene expression despite having the same genotype (Taherian Fard and Ragan,
2019). Indeed, cells traversing the trajectory from pluripotency through terminal differentiation
have essentially the same genotype.

Epigenetic modifications such as post-translational modifications (PTMs) to histone proteins
are involved in many vital regulatory processes influencing genomic accessibility, nuclear compart-
mentalization and transcription factor binding and recognition (Reik et al., 2001; Kouzarides, 2007;
Gibney and Nolan, 2010; Klemm et al., 2019; Hafner and Boettiger, 2022; Zhang and Reinberg,
2001). The Histone Code Hypothesis suggests that combinations of different histone PTMs specify
distinct chromatin states thereby regulating gene expression (Strahl and Allis, 2000; Jenuwein and
Allis, 2001).

The field of epigenome editing has produced new tools for understanding the outcomes of epi-
genetic perturbations that promise to be useful for therapeutics by enabling fine-tuned control of
gene expression (Matharu and Ahituv, 2020; Thakore et al., 2016; Goell and Hilton, 2021; Stricker
et al., 2017). Currently small molecule drugs are used to potently interfere with epigenetic regula-
tion of gene expression. For example Vorinostat inhibits histone deacetylases thereby impacting
the epigenetic landscape (Estey, 2013; Yoon and Eom, 2016). However, small molecules globally
disrupt the epigenome and transcriptome, and therefore are not suitable for targeting individual
dysregulated genes nor clarifying epigenetic regulatory mechanisms (Swaminathan et al., 2007).
Meanwhile, numerous tools have been designed to harness catalytically dead Cas9 (dCas9) to tar-
get epigenetic modifiers to DNA sequences encoded in guide RNAs (gRNAs) (Jinek et al., 2012;Mali
et al., 2013; Hilton et al., 2015; Stepper et al., 2017; Kwon et al., 2017; Li et al., 2021). CRISPR-Cas9-
based epigenome editing strategies facilitate unprecedented, precise control of the epigenome
and gene activation providing a path to epigenetic-based therapeutics (Cheng et al., 2019).

A major challenge for epigenome editing is designing gRNAs that can achieve a desired level
of transcriptional or epigenetic modulation. Finding effective gRNAs currently typically requires
expensive and low throughput experimental strategies (Mohr et al., 2016; Liu et al., 2020;Mahata
et al., 2023). An alternative approach would be to computationally model how epigenome editing
impacts histone PTMs as well as how perturbing these PTMs would consequently impact gene
expression.

To understand how histone PTMs relate to gene expression, large epigenetic and transcrip-
tomic datasets are required. Advancements in high-throughput sequencing have allowed quan-
tification of gene expression and profiling of histone PTMs. Large consortia have performed an
extensive number of assays across a wide variety of cell types (ENCODE Project Consortium, 2012;
Roadmap Epigenomics Consortium et al., 2015; Barrett et al., 2012).

These include measurements of histone PTMs, transcription factor binding, gene expression,
and chromatin accessibility. These data have enhanced our understanding of how histone PTMs
and other chromatin dynamics impact transcriptional regulation (Keung et al., 2015; Rao et al.,
2014; Holoch and Moazed, 2015).

Studying the function of these histone PTMs, however, has been largely limited to statistical
associations with gene expression, which may not capture causal relationships (Karlić et al., 2010;
Stillman, 2018; Singh et al., 2016). For example deep learning has been successful in predicting
gene expression fromepigeneticmodifications, such as transcription factor binding (Schmidt et al.,
2017), chromatin accessibility (Schmidt et al., 2020), histone PTMs (Singh et al., 2016; Sekhon et al.,
2018; Frasca et al., 2022; Singh et al., 2017; Hamdy et al., 2022; Chen et al., 2022), and DNAmethy-
lation (Zhong et al., 2019). However, these studies predict gene expression as binary levels instead
of a continuous quantity. Finally, as statistical associations can be driven by non-causal mech-

2 of 27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2023.10.03.560674doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.03.560674
http://creativecommons.org/licenses/by-nc-nd/4.0/


Epigenetic Data              Train
    Neural Network

Perturb
Histone PTMs

Predict Gene
Expression

Validate with

Epigenome Editing

Predict Gene
Expression

Validate with
Endogenous
Expression

Can one predict the effect of CRISPR-Cas9-based epigenome editing? 

CRISPR-Cas9-based

 

dCas9-p300gRNA
+

HEK293T Cells

MNase-seq H3K27ac

qPCR

qPCR fold changepr
ed

ic
te

d 
fo

ld
 c

ha
ng

e

RNA-seq expression

pr
ed

ic
te

d 
ex

pr
es

si
onHistone PTMs Train Neural Network to 

Predict Endogenous Expression

in silico PTM perturbations in situ PTM perturbations

Figure 1. Schematic of the epigenome editing prediction pipeline. The pipeline uses epigenetic data totrain models to predict endogenous gene expression. These models were used to predict fold-change in geneexpression based on perturbed histone PTM input data, and their predictions were validated usingCRISPR-Cas9-based epigenome editing data.
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anisms, it is unclear whether such computational models learn mechanistic, causal relationships
between various epigenetic modifications and gene expression. Beyondmodeling the relationship
between histone PTMs and gene expression, to fully describe how a particular gRNA would affect
gene expression, a model of how epigenome editing affects histone PTMs is also required. To our
knowledge, there currently are no computational models that can accurately model, in silico, the
impact of epigenome editing on histone PTMs.

Motivated by these observations, we explored models for how epigenome editing impacts his-
tone PTMs as well as how histone PTMs impact gene expression. We used data available through
ENCODE (Schreiber et al., 2020a; ENCODE Project Consortium, 2012) to train a model of how his-
tone PTMs impact gene expression. Our model is highly predictive of endogenous expression and
learns an understanding of chromatin biology which is consistent with known patterns of various
histone PTMs (Kimura, 2013). To test this model in the context of epigenome editing, we generated
perturbation data using the dCas9-p300 histone acetyltransferase system (Hilton et al., 2015). The
dCas9-p300 system is thought to act primarily through local acetylation of histone lysine residues,
particularly histone subunit H3 lysine residue 27 (H3K27ac). Therefore, we modeled the impact of
dCas9-p300 on the epigenome as a local increase in the H3K27ac profile near the target site; since
the precise effect of these perturbations is unknown, we tried a variety of potential modification
patterns. We then applied our trainedmodel to predict the impact of these putative H3K27acmod-
ifications on gene expression (Figure 1). We found that our models, which are designed to predict
gene expression values, were effective in ranking relative fold-changes among genes in response
to the dCas9-p300 system, achieving a Spearman’s rank correlation of ∼0.8. However, their perfor-
mance in ranking fold-changes within individual genes was less successful when compared to the
prediction of gene expression across cell types from their native epigenetic signatures. We offer
possible explanations in the discussion section.
Results
Histone PTM data are highly predictive of gene expression
Genome-scale datasets are required to train models to predict gene expression using histone
PTMs. Therefore, we obtained histone PTM ChIP-seq and RNA-seq data for 13 different human
cell types from ENCODE (Schreiber et al., 2020a; ENCODE Project Consortium, 2012) (Appendix Ta-
ble 1). We inspected metagene plots (histone PTMs averaged across genes within gene expression
quantiles) describing 6 histone PTMs in each of these 13 different cell types. Based on different
overall signal levels across cell types, we concluded that batch effects, likely due to inconsistent se-
quencing depths, would need to be corrected prior to trainingmodels (Figure 2–figure supplement
1).

We corrected these batch effects by adapting S3norm (Xiang et al., 2020) (Materials and Meth-
ods, Figure 2–figure supplement 2). These corrected histone PTM tracks were then used for the
remainder of our analyses along with RNA-seq data for each of the 13 cell types (Figure 2–figure
supplement 3).

Importantly, we observed that H3K27ac and H3K4me3 histone PTM signal strengths positively
covaried with gene expression quantile (representative cell types shown in Figure 2; all cell types
shown in Figure 2–figure supplement 3). Conversely, repressive histone PTMs such as H3K27me3
and H3K9me3 were strongly inversely correlated with gene expression quantiles. Spatial patterns
in the metagene plots for H3K36me3 suggested that this mark covaried more strongly with gene
expression in the gene body than near the TSS. Taken together, these observations recapitulated
the current understanding of these well-studied histone PTMs with respect to their associations to
gene expression (Kimura, 2013;Millán-Zambrano et al., 2022; Zhao et al., 2021).
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Figure 2. Metagene plots show histone PTMs are consistent across cell types and recapitulate
established relationships between histone PTMs and gene expression. Colors represent genes binnedinto quantiles based on gene expression. Blue 75-100%, Orange 50-75%, Green 25-50%, Red 0-25% of geneexpression within a cell type. The 𝑦-axis represents − log10(p-value) obtained from ChIP-seq data.
Figure 2–figure supplement 1. Metagene plots for different cell types for uncorrected ChIP-seq data acrossgene expression quantiles.
Figure 2–figure supplement 2. S3norm-based approach for correcting ChIP-seq − log10(p-value).
Figure 2–figure supplement 3. Metagene plots for different cell types for batch effect corrected ChIP-seqdata across gene expression quantiles.
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Figure 3. Histone PTMs accurately predict endogenous gene expression. (A) Spearman correlation ongenes from held out chromosomes for different input context lengths, with all cell types pooled together.Blue curve is the mean across 10 computational replicates of CNNs and the red is the mean across 10computational replicates of ridge regression. Shaded area represents standard deviation in the Spearmancorrelation across the 10 computational replicates. (B) Spearman correlation on genes of cell types held outduring training. The bar plots represent the mean across 10 computational replicates and the error barsrepresent the corresponding standard deviations. (C) Distribution of Spearman correlations across genes,computed for each gene in test chromosomes by comparing predictions across the 13 cell types. Thedifferent curves represent 10 computational replicates for each model type.
Figure 3–figure supplement 1. Spearman correlation distribution across all cell types, for each cell type.
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Histone PTMs accurately predict endogenous gene expression
To predict how epigenome editing affects gene expression, we first trainedmodels to predict gene
expression from endogenous histone PTMs. We trained several convolutional neural networks
(CNNs) and ridge regression models to predict the gene expression of each gene in each of the
13 cell types, using only histone PTM data proximal to the TSS as features (Materials and Methods,
Figure 2). We observed that Spearman’s rank correlation between the true gene expression and the
models’ predicted gene expression on held-out chromosomes improves as the input context size
increases; and for all input context sizes, the CNNs outperform ridge regressionmodels (Figure 3A).
Therefore, for the remainder of the analyses, we use a context size of 10,000 base pairs.

To assess the models’ ability to generalize to unseen cell types, we trained a set of 10 models
for each cell type. In particular, we held out the histone PTMs for a given cell type during training
and then tested the models on that held-out cell type.

Weobserved that the CNNs outperformed ridge regressionmodels on this cross-cell type gener-
alization task across essentially all cell types (Figure 3B). The reduced performance on the adrenal
cell type may be driven by a cell-type-specific biological mechanism that leads a lower correlation
of its epigenetic data with other cell types, particularly for H3K36me3 (Figure 3–figure supplement
1).

Although our models accurately predicted endogenous gene expression, this does not guaran-
tee their ability to accurately predict the relationship between local histone PTMvariations andwith
gene expression for a particular gene across different cell types. Therefore, we determined Spear-
man’s rank correlations between the observed expression and the predicted expression for each
held-out gene across the different cell types. The distribution of these correlations suggests that
overall the CNNs can better rank cell types by gene expression than ridge regression (Figure 3C).
In particular, the median cross-cell type correlation is ∼0.53 for CNNs compared to ∼0.39 for ridge
regression.
Models recover established relationships between histone PTMs and gene expres-
sion
We investigated what features of the data the models used to predict gene expression. For a given
gene, we modified the input histone PTMs one-by-one at nucleosome-scale and measured the
predicted fold-change in gene expression (Figure 4, Figure 4–figure supplement 1, Materials and
Methods).

We observed considerable changes to the predicted fold-change upon modifying different his-
tone PTMs. In particular, our CNN models predict that repressive marks such as H3K27me3 and
H3K9me3 proximal to the TSS result in a slight decrease in expression. In contrast, activating his-
tone PTMs such as H3K27ac and H3K4me3 result in an almost two-fold increase in predicted gene
expression near the TSS. Activating both of these markers exhibits a periodic pattern, likely reflect-
ing nucleosome occupancy. However, activation of H3K4me3 results in a sharp increase in gene
expression downstream of the TSS. Additionally, we observed that H3K36me3 is predicted to in-
crease expression, but only if it is deposited in the gene body, and the degree of activation gradually
increases as it is deposited further inside of the gene body. The consistency of these observations
with established mechanisms, observed previously in the literature, via which these histone PTMs
modulate gene expression (Kimura, 2013) lend credence to our gene expressionmodels and show
that these models learn the spatial patterns of histone PTMs.
dCas9-p300 differentially activates genes depending on gRNA-targeted site
To test if our gene expression models could accurately predict the outcome of in situ epigenome
editing experiments, we first generated dCas9-p300 data in the HEK293T cell line for 8 genes (Fig-
ure 5). We assayed at least 5 gRNAs per gene with at least 3 replicates for each gRNA. We used the
HEK293T cell line because it is a widely-used testbed for epigenome editing strategies (Hilton et al.,
2015; Nuñez et al., 2021; O’Geen et al., 2017;Mahata et al., 2023; Escobar et al., 2022;Wang et al.,
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Figure 4. Features learned by gene expression models. Each point on the 𝑥-axis corresponds to in silicoperturbation of that assay at that position and the 𝑦-axis measures the predicted fold-change in geneexpression, averaged across a set of 100 trained models. The fold-changes were averaged across 500randomly chosen genes.
Figure 4–figure supplement 1. Features learned by gene expression models for H3K9me3 in K562.
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Figure 5. dCas9-p300 epigenome editing at eight endogenous genes identifies gene specific responses.The genes tested are CYP17A1, SOX11, C2CD4B, CXCR4, CD79A, TGFBR1, MYO1G, and PRSS12.
(A) gRNA targeting +∕− 250 bp of each gene were selected. (B) These Selected gRNA were individuallyco-transfected with dCas9-p300 with relative mRNA determined with qPCR. (C) Relative mRNA associated withselected guide position are displayed with the highest activating guide position marked in orange. The Y-axiscorresponds to qPCR fold-change.
Figure 5–figure supplement 1 Transfection efficiency is shared across experiments.
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2022). Based on Figure 2 and Figure 4, the largest changes in H3K27ac across gene expression
quantiles occur within 500 base pairs of the TSS, so we constrained gRNA targeting to this critical
window. We filtered gRNAs for predicted specificity (Concordet and Haeussler, 2018) and on-target
activity scores (Sanson et al., 2018). Each gRNA was tested individually, and relative mRNA abun-
dance was measured using quantitative PCR (qPCR).

We successfully increased gene expression of all 8 genes with fold-change activation using the
most effective respective gRNA for each gene ranging from 3-fold to ∼6,500-fold relative to a non-
targeting control gRNA (Figure 5C). Some of this variation may be explained by differences in en-
dogenous gene expression levels, with the targeting of lowly expressed genes resulting in higher
fold-change measurements (Appendix Table 2), as observed previously (Wang et al., 2022). Never-
theless, substantial variability was observed in gRNA efficacy for all targeted genes. In particular,
two (MYO1G and PRSS12) out of eight genes had the most efficacious gRNA downstream of the TSS.
This contrasts with other reports where targeting CRISPR/Cas based activators upstreamof the TSS
leads to the highest activation (Mohr et al., 2016; Gilbert et al., 2014).

These data indicate that the rules governing the outcomes for successful dCas9-p300-based
epigenome editing – and subsequent increased transcriptional activation – are complex, and high-
lights the fact that locus-specific nuances can be important factors in epigenome editing experi-
ments. For example, two gRNAs targeting within ∼50 base pairs of each other on C2CD4B have a
100-fold difference in measured mRNA (Figure 5C). Further, gRNAs targeting the same position in
different genes can have vastly different effects. For instance, several gRNAs targeting ∼250 base
pairs upstream of the CYP17A1 TSS result in a high fold-change while two gRNAs targeting roughly
the same position in MYO1G failed to produce substantial activation (Figure 5C).
Computationally predicting the outcome of dCas9-p300 epigenome editing experi-
ments
To test the hypothesis that dCas9-p300 acts through the local deposition of H3K27ac, we modeled
this process in silico and used these perturbations as inputs to our models trained on endogenous
gene expression.

We modeled the effect of dCas9-p300 on histone PTMs based on evidence from the literature
as well as additional experiments we performed. The key assumptions of this model are: 1) there
exists steric hindrance of dCas9 by nucleosomes (Makasheva et al., 2021; Horlbeck et al., 2016;
Isaac et al., 2016; Radzisheuskaya et al., 2016); 2) dCas9-p300 acts locally, altering H3K27ac levels
near the gRNA target locus (Gemberling et al., 2021; Dominguez et al., 2022) (we adopted this
simplifying assumption since off-target effects are unpredictable and underexplored (Dominguez
et al., 2022; Gemberling et al., 2021;Weinert et al., 2018)); 3) dCas9-p300 can deposit H3K27ac at
nucleosomes, as defined by MNase activity (see Materials and Methods) (Segelle et al., 2022; Zhou
et al., 2016). Our resulting in silico perturbation model had a number of free parameters that we
briefly describe below. Wherever possible, we used values for these parameters obtained from
the literature or tested a range of plausible values. For a more complete description of the model,
see Materials and Methods.

The first component of our perturbation model is steric hindrance of dCas9-p300 by nucleo-
somes (Figure 6A). Intuitively, if DNA is tightly wound around a nucleosome, the gRNA would be
less likely to bind successfully. Mathematically, wemodeled this as an inverse relationship between
the amount of H3K27ac deposited and the MNase activity at the gRNA target locus.

It is widely assumed that dCas9-p300 activates genes through the local deposition of H3K27ac
(Klann et al., 2017; Dominguez et al., 2022). To model this, we increased local levels of H3K27ac
relative to endogenous levels according to a Gaussian kernel centered at the gRNA target locus
(Figure 6B). This adds acetylation primarilywithin a distance controlled by the standard deviation (𝜎)
of the kernel. We performed CUT&RUN experiments (see Appendix) that suggest that this distance
is at least 1,000 base pairs (Figure 6–figure supplement 1). Since we also do not know the degree
to which dCas9-p300 alters H3K27ac levels, we modeled this as another free parameter, 𝜆, which
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we varied over a range of plausible values (Materials and Methods).
Finally, we assumed that dCas9-p300 does not affect the positioning of nucleosomes and hence

can only add H3K27ac at positions currently occupied by histones (Zhou et al., 2016). As such, we
expect H3K27ac levels to only increase at loci where there is MNase activity. In particular, we mod-
ulated the Gaussian kernel described above, by performing point-wise multiplication with MNase
activity (Figure 6C).

Since nucleosome positioning plays a crucial role in our perturbation model, we generated, to
our knowledge, the first MNase-seq data for the HEK293T cell line (see Appendix).

To get a baseline of how well our perturbation model might be able to predict the effect of
dCas9-p300 on gene expression, we considered the 13 distinct cell types as being analogous to
natural perturbations of local histone PTMs. Across the 8 genes discussed above, which were ex-
cluded from the training set, we observed a Spearman’s rank correlation of ∼0.8 between the en-
dogenous expression and that predicted by our expressionmodel (Figure 6D). This correlation was
in line with the correlation observed across the endogenous transcriptome (Figure 3A,B). We fur-
ther observed that our expression models were able to accurately rank gene expression across
cell types within individual genes (Figure 6–figure supplement 2).

We then computed fold-changes between the expression predicted using endogenous histone
PTMs and the expression predicted using in silico perturbations of these histone PTMs. We ob-
served that our models were effective in ranking relative fold-changes across genes in response
to dCas9-p300, achieving a Spearman’s rank correlation of ∼0.8 between these predicted fold-
changes and the experimentally determinedmRNA fold-changes inducedbydCas9-p300 (Figure 6E).
However, the performance in ranking fold-changes within individual genes was less accurate (Fig-
ure 6–figure supplement 3) when compared to the prediction of cell-type-specific gene expression
from native epigenetic signatures (Figure 6–figure supplement 2).

We extended this analysis to a Perturb-seq dataset, consisting of gRNAs targeting proximal to
the TSS of 5 genes in the K562 cell line to further assess themodel’s ability to estimate gene expres-
sion changes. Consistent with the performance observed in Figure 6E, the model demonstrated
robustness in predicting gene expression fold-changes across these 27 gRNAs targeting these 5
genes. Notably, these predictions achieved a Spearman’s rank correlation of ∼ 0.47 with the exper-
imentally determined mRNA fold-changes measured by Perturb-seq, as shown in Figure 6–figure
supplement 4 (see Appendix). These results reinforce the model’s effectiveness in capturing the
nuanced effects of epigenome editing across different genes and cell types.
Discussion
Here, we sought to investigate whether we could predict how targeted epigenome editing affects
endogenous gene expression. First, we collected data from ENCODE which reflects how post-
translational modifications (PTMs) to histones covary with gene expression across cell types. We
trained models to predict endogenous gene expression from these histone PTMs and found that
thesemodelswere highly predictive (Figure 3). We further showed that suchmodels learned known
relationships between histone PTMs and gene expression (Figure 4). To test whether these ex-
pression models could predict the outcomes of epigenome editing experiments, we generated
dCas9-p300 epigenome editing data in the HEK293T cell line for eight genes along with genome-
wide MNase-seq data for this testbed cell line. We anticipate that the genome-wide nucleosome
occupancy information for the HEK293T cell line provided by our MNase-seq experiment will be a
useful resource for the genomics community. We also generated dCas9-p300 epigenome editing
data via a perturb-seq experiment in K562 cells with gRNAs targeting the promoter regions of five
genes. In this study, we focused on the histone changes induced by dCas9-p300 epigenome edit-
ing, but future studies may use the framework described in our manuscript and apply it to other
transcriptional editors as well.

We modeled dCas9-p300’s impact on local H3K27ac using a variety of parameter choices and
found that these models accurately predicted fold-changes across genes. However, they were less
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Figure 6. In silicomodel for dCas9-p300-based epigenome editing (A) dCas9-p300 is more likely to bind toa position not occupied by the nucleosome. Thicker green arrow represents higher probability of binding fora gRNA targeting that site. (B) The in silico perturbation is modeled as a Gaussian kernel parameterized by astandard deviation, 𝜎, and the amount of H3K27ac deposited, 𝜆. (C) The final perturbed H3K27ac is obtainedby point-wise multiplication of the Gaussian kernel with nucleosome occupancy quantified by MNase activitysince dCas9-p300 can only acetylate histones within nucleosomes. (D) Ranks for predicted and endogenousexpression across 8 genes and 13 cell types. Rank 1 corresponds to the highest numerical value. (E) Ranks forpredicted and empirically measured expression fold-changes following perturbation by dCas9-p300 for 8genes in HEK293T cells. Rank 1 corresponds to the highest numerical value.
Figure 6–source data 1. Raw qPCR data.
Figure 6–source data 2. Raw CUT&RUN qPCR data.
Figure 6–source data 3. Primer sequences, sources, assay use, and corresponding direction.
Figure 6–figure supplement 1. H3K27ac levels elevation is similar across quantified regions following gRNAdCas9-p300 targeting.
Figure 6–figure supplement 2. Gene-wise predicted vs experimental gene expression TPM ranks.
Figure 6–figure supplement 3. Gene-wise predicted vs experimental fold-change ranks.
Figure 6–figure supplement 4. Predicted vs experimental fold-change ranks.
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accurate at predicting the outcome of these experiments within a given gene, as compared to pre-
dicting gene expression from the endogenous epigenetic signatures (Figure 6–figure supplement
2, Figure 6–figure supplement 3). Since the endogenous epigenetic signatures could be different
across genes, these global factors might drive the models’ accurate inter-gene fold-change pre-
diction accuracy. However, since ranking fold-changes within a gene requires a detailed under-
standing of the epigenetic profiles before and after dCas9-p300 epigenome editing, the reduction
in performance from predicting endogenous expression to predicting the outcome of epigenome
editing experiments is likely explained by one or more of the following hypotheses: 1) dCas9-p300
activates gene expression bymechanisms other than the local acetylation of H3K27 or dCas9-p300
functions differently from native p300; 2) differences in gRNA efficacy are not accurately explained
by existing computational scores; or 3) ourmodels, trained on endogenous gene expression across
various cell types, failed to generalize even if dCas9-p300 perturbations are correctly modeled. We
discuss these possible explanations more in depth below.

We considered numerousmodels of how dCas9-p300 affects local histone PTMs. Thesemodels
span current hypotheses of how dCas9-p300 alters local histone PTMs such as H3K27ac. The poor
generalization of our models in predicting intra-gene epigenome editing fold-changes could be
explained by dCas9-p300 acting via mechanisms beyond local acetylation of histone proteins and
H3K27 (Zhao et al., 2021). For example, p300 is a promiscuous lysine acetyltransferase and dCas9-
p300 could be broadly acetylating across the proteome impacting trans factors (Weinert et al.,
2018). Alternatively, local acetylation could be contingent on unmodeled factors such as trans-
acting proteins or other histone PTMs present at the locus (Zhao et al., 2021; Zheng et al., 2021).
Furthermore, the genome-wide specificity of dCas9-p300-mediated histone acetylation – although
likely better than smallmolecule-based perturbations – remains imperfect (Gemberling et al., 2021;
Dominguez et al., 2022). Our inability to accurately predict the relative fold-change of different
gRNAs targeting the same gene suggests that these unmodeled factors would have to differentially
affect neighboring loci within the same gene. This highlights that the current understanding of
the mechanism via which dCas9-p300 drives gene expression is potentially incomplete. To better
understand this mechanism, it would be immensely helpful to generate a compendium of histone
PTMprofiles before and after performing epigenome editing, whichwould enable us to train better
machine learning models to predict the impact of dCas9-p300 on gene expression.

Another possible explanation for the drop in accuracy is varying gRNA efficacies. For example,
gRNAs might have different levels of on-target and off-target effects. Although we ensured that all
of the gRNAs used in generating the dCas9-p300 epigenome editing data were predicted to have
high on-target and low off-target scores, we observed examples of gRNAs that targeted roughly
the same genomic position but had vastly different impacts on gene expression. This suggests that
these differences could be driven by inconsistencies in gRNA efficacy instead of local acetylation
dynamics. Generating a large number of pairs of gRNAs, such as through CRISPR screens (Schmidt
et al., 2022), targeting nearby positions could help to elucidate the factors that drive differential
gRNA efficacy for epigenome editing.

The ambiguity in how to accurately model the impact of epigenome editing stands in contrast
to the simpler case of DNA sequence changes, where perturbations are relatively trivial to model.
Indeed, dCas9-p300 changes histone PTMs in complexways rendering themodeling of such pertur-
bations much more challenging. In contrast, models like Enformer (Avsec et al., 2021) that predict
gene expression directly from DNA sequence may be able to generalize to DNA sequence pertur-
bations better due to their relative simplicity.

Another source of generalization error could be extrapolating beyond the range of the training
data. Massively increasing the amount of H3K27ac at a locus may make a gene look different than
any other endogenous gene observed during training. Regression approaches including neural
networks are known to have limitations in extrapolation (Xu et al., 2020).

Our research indicates that we can predict endogenous gene expression accurately based on
histone PTMs. By creating a comprehensive dataset of epigenome editing, which assays histone
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PTMs before and after in situ perturbations, we can enhance machine learning models. This will
improve our understanding of the effects of dCas9-p300 on gene expression and assist in the
design of gRNAs for achieving fine-tuned control over gene expression levels. These advancements
are vital for devising experiments that deepen ourmechanistic insight and offer effective strategies
for human epigenome editing.
Materials and Methods
Data preparation
We obtained − log10(𝑝-value) ChIP-seq tracks created by running the MACS2 peak-caller (Feng et al.,
2012) on read count data, from the ENCODE Imputation Challenge (Schreiber et al., 2020a). For
three tracks where data were not available, we downloaded Avocado (Schreiber et al., 2020b) im-
putations from the ENCODE data portal (ENCODE Project Consortium, 2012). We binned each epi-
genetic track at 25 base pair resolution and pre-processed them with an additional log operation
before inputting them into the models for training.

We downloaded polyA-plus RNA-seq gene expression Transcripts Per Million (TPM) values for
each of the 13 cell types in Appendix Table 1, from the ENCODE data portal (ENCODE Project Con-
sortium, 2012) and preprocessed them with a log operation.
Normalizing p-values by adapting S3norm
We assigned IMR-90 to be a reference cell type, for each of the 6 histone PTMs and kept its 𝑝-values
unchanged. We then performed a transformation for each of the remaining cell types adapted
from the core technique developed by S3norm (Xiang et al., 2020), in order to normalize each
histone PTM track in each of these remaining cell types, with respect to the corresponding histone
PTM track in IMR-90.

First, we computed peaks in both, the reference as well as the target cell type. Peaks were
defined as the 25 base pair bins corresponding to FDR-adjusted 𝑝-values less than 0.05 (Benjamini
and Hochberg, 1995). For histone PTM tracks that were obtained from Avocado imputations (due
to lack of availability of experimental data), peaks were defined to be the 1000 bins containing the
smallest Avocado imputed 𝑝-values (based on suggestions from the authors of Avocado (Schreiber
et al., 2020b)). All the remaining bins were defined to be background, for both, the reference as
well as the target cell types.

We then computed the list of peaks that were common to both the reference and the target cell
types. These were termed, common peaks. Similarly, we defined common background as the list of
bins that were assigned to be background in both, the reference as well as the target cell types.

The S3norm method was designed to work with count data, which is always ≥ 1. However, the
histone PTM tracks, which are represented as − log10(𝑝-values), are not guaranteed to always be ≥
1, hence, we transformed all the histone PTM tracks by adding 1 to the − log10(𝑝-values), in both thereference as well as the target cell types.

Additionally, since the histone PTM tracks obtained from imputations performed by Avocado
were not guaranteed to be distributed similar to experimental − log10(𝑝-values), we scaled all the
histone PTM tracks (both experimental as well as Avocado imputations) by dividing them by the
minimumobserved value in commonpeaks and commonbackground, in order to bring experimental
data and Avocado imputations onto a similar footing. In particular, before applying the S3norm
normalization, we transformed− log10(𝑝-values) in common peaks and common background for boththe reference as well as the target cell type as following:

TransformedCommonPeaks𝑖,reference = 1 + CommonPeaks𝑖,reference
min𝑖(CommonPeaks𝑖,reference) (1)

TransformedCommonPeaks𝑖,target = 1 + CommonPeaks𝑖,target
min𝑖(CommonPeaks𝑖,target) (2)
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TransformedCommonBackground𝑖,reference = max( 1 + CommonBackground𝑖,reference
min𝑖(CommonBackground𝑖,reference)

, 0) (3)
TransformedCommonBackground𝑖,target = max( 1 + CommonBackground𝑖,target

min𝑖(CommonBackground𝑖,target)
, 0) (4)

The normalization procedure of S3norm then wishes to find two positive parameters, 𝛼 and 𝛽 that
are to be learned from the data such that both the following equations are satisfied:

mean(TransformedCommonPeaksreference) = mean(𝛼 × TransformedCommonPeaks𝛽 target)
(5)

mean(TransformedCommonBackgroundreference) = mean(𝛼 × TransformedCommonBackground𝛽target)(6)
Specifically, 𝛼 is a scale factor that shifts the transformed − log10(𝑝-values) of the target data set inlog scale, and 𝛽 is a power transformation parameter that rotates the transformed − log10(𝑝-values)of the target data set in log scale (Figure 2–figure supplement 2). There is one and only one set of
values for 𝛼 and 𝛽 that can simultaneously satisfy both the above equations for common peaks and
the common background (Xiang et al., 2020).

The values of 𝛼 and 𝛽 were estimated by the Powell minimizationmethod implemented in scipy
(Fletcher and Powell, 1963; Virtanen et al., 2020). The resulting normalized − log10(𝑝-values) wereused for all downstream analyses (Figure 2–figure supplement 3).
Training endogenous gene expression models
We trained convolutional neural network and ridge regression models, each, to predict gene ex-
pression using histone PTM tracks. Input features for each gene were centered at its TSS. We used
an input context size of 10, 000 base pairs for all analyses subsequent to Figure 3. For all analyses
we obtained predictions from our models by averaging predictions ensembled across 100 compu-
tational replicates.

To train convolutional neural network models, the normalized histone PTM tracks for each
gene were processed with successive convolutional blocks. Each convolutional block consisted
of a batch-normalization layer, rectified linear units (ReLU), a convolutional layer consisting of 32
convolutional kernels, each of width 5, followed by a dropout with 0.1 probability. Finally a pool-
ing layer was applied to gradually reduce the dimension of the features. After being processed
with 5 such convolutional blocks, the output was flattened and passed through a fully connected
layer consisting of 16 neurons and a ReLU activation. This was ultimately processed with a fully
connected layer with a single output and a linear activation (since this was a regression task). The
models were trained with a mean squared error loss using the Adam optimizer with a learning
rate of 0.001 for the first 50 epochs and 0.0005 for the remaining 50 epochs. Training convolutional
neural network models took about 1.5 hours on 1 NVIDIA A100 Tensor Core GPU.
Interrogating the features learned by CNNs
To see how different features affected predicted levels of expression, we systematically perturbed
each input feature and determined how much the perturbation affected predicted expression lev-
els. To be concrete, we denoted the epigenetic feature at position 𝑖 of gene 𝑔 in cell type𝐶𝑇 as𝐸𝐶𝑇 ,𝑔

𝑖 .
We then defined a perturbation function that added a scalar value of 𝜆0 = 2500 to the epigenetic
features within 3 bins of a focal position, say, 𝑗:

𝐹𝑗
(

𝐸𝐶𝑇 ,𝑔
1 ,… , 𝐸𝐶𝑇 ,𝑔

𝑊

)

∶=
(

𝐸𝐶𝑇 ,𝑔
1 ,… , 𝐸𝐶𝑇 ,𝑔

𝑗−3 + 𝜆0,… , 𝐸𝐶𝑇 ,𝑔
𝑗+3 + 𝜆0,… , 𝐸𝐶𝑇 ,𝑔

𝑊

)

,

recalling that 𝑊 is the number of bins of 25 base pairs considered by our models, which is set
to 401, corresponding to a 10,000 base pair input context length, for all analyses subsequent to
Figure 3. These perturbations corresponded to ∼ 150 base pairs which is roughly the length of DNA
wrapped around a nucleosome.
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To produce Figure 4, we applied the above perturbation functions, 𝐹1,… , 𝐹𝑊 to a histone PTM
track of interest, and the measured the fold-change in predicted expression. To account for dif-
ferences in the endogenous histone PTM tracks between genes, we averaged these fold-changes
across 500 randomly chosen genes.
In silicomodeling of dCas9-p300-based epigenome editing
Our model of how dCas9-p300 perturbs local histone PTMs has three separate components. We
describe each of these components in turn, and then present the full model below. Throughout,
we write 𝑗 for the position that the gRNA targets.

First, we modeled steric hindrance of dCas9 due to nucleosomes. We used MNase-seq signal
strength as a proxy for nucleosome occupancy. Letting 𝑚𝑗 be the MNase-seq read coverage at the
gRNA binding site, we modeled steric hindrance by scaling the acetylation activity of dCas9-p300
by a factor of exp (−5 × 𝑚𝑗

).
Second, we assumed that dCas9-p300 primarily alters the levels of H3K27ac only locally. As

such, we modeled the acetylation activity of dCas9-p300 at a particular locus as a Gaussian kernel
centered at the gRNA. Concretely, the acetylation activity at position 𝑖 is multiplied by a factor of
exp

(

−(𝑖 − 𝑗)2∕2𝜎2
), where 𝜎2 is a parameter of the model.

Finally, we assumed that dCas9-p300 can only acetylate histones where they currently are – it
cannot move histones or increase H3K27ac levels outside of histones. To model this mathemati-
cally, we multiplied the acetylation activity at site 𝑖 by the MNase read coverage, 𝑚𝑖. Therefore, ifthe MNase read coverage is 0 (i.e., there is no evidence of histones at that locus) then the amount
of H3K27ac added to that position is also 0.

Putting this all together, for a guide targeting at position 𝑗, the effect on H3K27ac levels at
position 𝑖 is proportional to

exp
(

−5𝑚𝑗
)

× exp
[

−(𝑖 − 𝑗)2

2𝜎2

]

× 𝑚𝑖

The constant of proportionality (i.e., how strong we expect dCas9-p300 to be overall) is treated as
another free parameter, which we denote by 𝜆.

ENCODE has epigenetic data for the HEK293 cell line, but we performed our dCas9-p300 per-
turbations in the HEK293T cell line. As such, we used the HEK293 histone PTM as well as RNA-seq
data as a stand in for the HEK293T histone PTM and RNA-seq levels. This substitution is justified
as gene expression levels for HEK293 and HEK293T are highly concordant (Figure 3–figure supple-
ment 2). Indeed the Spearman’s rank correlation between expression levels for HEK293 and two
independent measurements of expression levels in HEK293T are 0.86 and 0.88, which are compa-
rable to the correlation between the two independent experiments in HEK293T (𝜌 = 0.92). That is,
the correlation across experiments within HEK293T cells is only slightly higher than the correlation
between HEK293 and and HEK293T, suggesting that cross-cell type differences between HEK293
and HEK293T are on the same order as the inherent experimental and biological noise within a
single cell type.
Experimental procedure
The details of dCas9-p300 epigenome editing, qPCR, CUT&RUN, and MNase-seq experiments are
provided in the Supplementary Material.
Data and Code Availability
The MNase-seq data for the HEK293T cell line is available at BioProject ID PRJNA892960 on SRA.
Code and data for training the gene expression models along with code for generating the figures
in the manuscript are available at https://github.com/songlab-cal/epigenome_editing_2023. The
data from the dCas9-p300 K562 Perturb-seq experiments is available at GSE255610 on SRA.
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Appendix
Experimental Methods
Identification and Selection of gRNA
All gRNAs were designed following the same in silico identification algorithm. Genomic sequences
were first identified using the UCSC Genome Browser andmanipulated in Benchling. CRISPOR was
used to separately identify all gRNA within a 500 bp window of each gene’s TSS. TSS coordinates
were determined using Phantom prediction, gene annotation, and DNase Hypersensitivity data as
visualized in the Genome Browser with the hg38 genome assembly. gRNA were selected from this
list to optimize for coverage, predicted specificity (CFD score >=80), and predicted on target activity
(Doench 16’ score) (Doench et al., 2016). When no gRNA were available in a region, predicted score
constraints were minimally relaxed to identify a gRNA.
Plasmid & Guide Cloning, Transfection, mRNA extraction, and qPCR
dCas9-p300 was cloned into a lentiviral plasmid backbone (Addgene# 83889) was a gift from Gers-
bach lab. gRNA were cloned using the molecular cloning pipeline described by the Zhang group.
These gRNA were cloned into an isogenic minimal guide expression backbone utilizing the Gecko
guide cloning strategy (Shalem et al., 2014). This minimal guide cloning plasmid was a gift from
Gersbach lab (Addgene#47108). Following sequence verification, gRNA tiling experiments were
completed.
Cell Culture
HEK293T (ATCC, CRL-11268) were purchased from ATCC and cultured using supplemented DMEM
(10%FBS (Millipore), 1% penicillin/streptomycin(Gibco)). These cells were initially expanded and cry-
opreserved in 0.5% (vol/vol) DMSO containing supplemented DMEM at a concentration of 2E6/ml
per vial. HEK293T cells were consistently passaged at 80% confluence using Trypsin/EDTA (Gibco)
dissociation and passaged at a 1:10 ratio. Cells were disregarded after their 10th passage.
gRNA Tiling qPCR Experiments
On day 0 healthy HEK293T cells (<passage 10) were lifted with Trypsin EDTA, centrifuged, resus-
pended, and counted with amanual hemocytometer using Trypan blue to assess health. Cells with
>95% viability were seeded into 24 well plates with a consistent cell number per well (1.5 × 105). 24
hours post plating, cells with confluence of between 70% and 90%with healthy phenotype were co-
transfectedwith individual gRNA and dCas9-p300 plasmidDNA (mass = 500 ng, 125ng, gRNA:375ng
dCas9-p300, using 1.5ul Lipofectamine 3000) according to the manufacturer’s protocol. All qPCR
experiments were conducted using 24 samples (2 biological samples per condition) measured in
the 96-well format. Additionally, these experiments individually test 11 uniquely targeting gRNA
and utilized a non-targeting gRNA as a negative control for downstream analysis. Total cell mRNA
was extracted using the Qiagen RNeasy kit and protocol. Reverse transcription was then carried
out using iScript Advanced reverse transcriptase (Biorad) 750ng of total RNA in a 10 ul reaction.
From there, cDNA was diluted to 10ng/ul based on the initial total RNA input. Then qPCR reac-
tions were assembled in technical duplicate and consisted of the following: 45ng (original mass) of
reverse transcribed and diluted cDNA, Luna qPCR Mastermix (NEB), forward primer and reverse
primer. The appropriate primer set was used to target (a) the gene intended for transcriptional
modulation and (b) GAPDH a ubiquitously expressed gene used to normalize input cDNA mass.
MNase-seq
MNase sample processing was completed similarly to the previously methods (Cui and Zhao, 2012)
with modifications. HEK293T cells were grown in parallel for > 3 passages. 3 biological replicates
were processed together tominimize variance. Crosslinking was carried out on 20E7 HEK293T cells
with 1% formaldehyde incubated for 10 minutes at 37C prior to Glycine quenching. Next, lysis and
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washing occurred followed by nuclei isolation via 600g centrifugation. An initial optimization was
performed on 2E6 purified nuclei using MNase amounts between 0.1-64 units of enzyme. RNase
treatment as well as Proteinase K treatment and removal of crosslinks were performed as previ-
ously described (McKnight et al., 2021). QIAquick PCR purification, sample DNA were visualized
with the use of a 2% agarose gel and Tape station (Agilent). The mono nucleosomal band 150 bp
was cut from the gel and purified using the QIAquick Gel purification. Heat was not used when
melting gel to preserve AT rich regions. Following mono nucleosomal band purification samples
were quantified and size verified using a Tape Station (Agilent). Illumina libraries were produced
using theNEBNext Ultra II DNA library preparation kit with NEBNext Dual IndexMultiplex Oligos for
Illumina using 1 𝜇𝑔 of purified DNA as input and SPRI bead size selection after adapter ligation prior
to index addition. Color balanced unique i5 and i7 indices were used for each biological replicate to
reduce confounds associatedwith index hopping. Prepared library concentrations and purity were
determined on a tape station. Following verification, the 3 biological replicates were admixed with
the same mass and sent to Azenta for sequencing on a single lane on the HISeq 3000/4000 plat-
form with expected yield of 350 million paired end 150 bp length reads. This sequencing scheme
was expected to yield a coverage of ∼10x for each biological replicate sample.
H3K27ac CUT&RUN qPCR
H3K27ac CUT&RUN qPCR CUT&RUN was completed using the CUTANA™ ChIC/CUT&RUN Kit by
Epicypher (Catalog #: 14-1048). H3K27ac was bound using the Anti-Histone H3 (acetyl K27) anti-
body (Catalog#: ab4729) sold by Abcam. E. Coli spike-in DNA and Rabbit IgG (components of kit#
: 14-1048) were used for qPCR input normalization and negative control respectively. All experi-
ments were performed in duplicate with 3 independent experiments. Briefly, p300 and individual
gRNA were co-transfected into HEK293T cells, after 72 hours cells were detached, and CUT&RUN
was completed with identical cell number were used for each sample. qPCRwas completed in tech-
nical duplicate using a primer set designed for amplification near the targeted promoter (CXCR4 or
TGFBR1). qPCR reactions were also completed using a previously described primer set for quantifi-
cation of the e.Coli gene uida. The ddT relative qPCR methods was used to analyze data, where
uida Ct was used to normalized input and fold over rabbit IgG was calculated for each sample.
Computational Methods
Analysis of Perturb-seq Data
Weanalyzed single-cell RNA sequencing (scRNA-seq) data generated on the 10XGenomics platform
as described previously (Goell et al., 2024), corresponding to 𝐺 genes and 𝑟 guide RNAs (gRNAs)
across 𝐶 cells using the following steps:
Quality Control

• Cells were retained if the total gene count in a cell was between 1,000 and 10,000, ensuring
adequate complexity and excluding potential empty droplets or doublets.

• Cells with mitochondrial gene content exceeding 10%were excluded to avoid including dying
or stressed cells.

Normalization
To normalize the expression data, the following was applied to each gene’s raw count in each cell:

Normalized Expression = Raw CountTotal Counts per Cell + 1

Computing Perturb-seq Gene Expression
For each gene 𝑔, targeted by a set of gRNAs denoted as 𝑟𝑔 , we determined the impact of each
specific gRNA 𝑟𝑖𝑔 on its gene expression by performing the following steps:
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• Expression Thresholding: Only cells with non-zero expression of gene 𝑔 were selected for
further analysis.

• gRNA-specific Selection: From these cells, only those expressing the specific gRNA 𝑟𝑖𝑔 andnone other from 𝑟𝑔 were retained.• Pseudobulk Quantification: For these cells, we computed the pseudobulk mean (𝜇) and
standard deviation (𝜎) of the expression levels of gene 𝑔.

Computing Perturb-seq fold-change
To establish the baseline expression of gene 𝑔, we considered cells not targeted by any gRNAs
𝑟𝑖𝑔 . The pseudobulk mean (𝜇control cells) and standard deviation (𝜎control cells) of gene 𝑔’s expression in
these cells were calculated. The fold-change for gene 𝑔 due to gRNA 𝑟𝑖𝑔 was then quantified as:

fold-change =
𝜇

𝜇control cells

Plotting Perturb-seq fold change against model predictions
In order to prepare Figure 6–figure supplement 4, we performed the following steps:

• genes were included if there were at least two distinct 25 bp bins within 250 base pairs of the
TSS with a gRNA targeting that gene and having a distinct expression fold-change.

• gRNAs were included if the number of cells expressing 𝑟𝑖𝑔 was ≥ 2.
• For each bin, the average Perturb-seq fold-change 𝜇 and the average predicted fold-change
𝜇predicted were calculated as:
𝜇bin =

∑ fold-change
number of fold-change observations in the bin across gRNAs targeting the same 25 bp bin

𝜇predicted, bin =
∑predicted fold-change

number of models used to make a prediction for the fold-change within this bin
• Ranks were assigned to 𝜇bin and 𝜇predicted, bin for comparison.
• These ranks were then plotted against each other to evaluate the correlation between ob-
served Perturb-seq fold-change and the model predicted fold-change.
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Cell Type polyA Plus RNA-seq H3K36me3 H3K27me3 H3K27ac H3K4me1 H3K4me3 H3K9me3

IMR-90 T T T T T T T
H1-hESC T T T T T T T
trophoblast cell T T T T T T T
neural stem progenitor cell T T T T T T T
K562 T T T T T T T
heart left ventricle T T T T T T T
adrenal gland T T T T T T T
endocrine pancreas T T T T T T T
peripheral blood mononuclear cell T T T T T T T
amnion T T T T T T T
myoepithelial cell of mammary gland T T T A T T T
chorion T T T T T T A
HEK293 T T A T T T T

Appendix Table 1. ChIP-seq − log10(p-values) were obtained from the ENCODE Imputation Challenge wherethe ground truth data were available (corresponding to entries labeled T in the table). Avocado imputationswere downloaded from the ENCODE data portal , where ground truth data were not available (correspondingto entries labeled A in the table).

Gene HEK293 (SRR3997504) TPM HEK293T (SRR13341848) TPM HEK293T (SRR15013784) TPM Maximum fold-change in dCas9-p300 data Cross-cell type Spearman
PRSS12 12.710 8.448 6.910 2.380 0.896
CXCR4 11.974 2.826 8.216 5.365 0.852
TGFBR1 0.725 3.254 8.029 3.675 0.689
C2CD4B 0.306 0.000 0.000 591.312 0.726
CD79A 0.280 0.207 0.127 127.094 0.364
SOX11 0.051 0.131 0.209 14.245 0.846
MYO1G 0.000 0.016 0.000 37.948 0.621
CYP17A1 0.000 0.000 0.000 6,549.110 0.397

Appendix Table 2. Endogenous gene expression of genes for which we generated dCas9-p300 epigenomeediting data indicates that genes for which high fold-change was obtained are more likely to have lowendogenous gene expression in HEK293T. Cross-cell type Spearman provides a metric to assess how accurateour CNN model predictions are, on any given gene, across the 13 cell types.
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Supplementary Figure and Table Captions

Figure 2–figure supplement 1. Metagene plots for different cell types for uncorrected ChIP-seq
data across gene expression quantiles. Blue is the highest and red is the lowest gene expression
quantile. ∗ represents data from HEK293 and (A) represents Avocado imputed data.
Figure 2–figure supplement 2. S3norm-based approach for correcting ChIP-seq − log10(p-values).On the left panel, the p-values of a target cell type’s ChIP-seq data, which are to be corrected are
plotted on the Y-axis. While the ChIP-seq data for the reference cell type, chosen to be IMR-90, is
shown on the X-axis. After correction with this devised procedure, the resulting corrected p-values
are shown on the Y-axis of the right panel.
Figure 2–figure supplement 3. Metagene plots for different cell types for batch effect corrected
ChIP-seq data across gene expression quantiles. Blue is the highest and red is the lowest gene
expression quantile. ∗ represents data from HEK293 instead and (A) represents Avocado imputed
data.
Figure 3–figure supplement 1. Spearman correlation distribution across all cell types, for each
cell type. Each panel corresponds to a different assay where the epigenetic data for that assay in
chromosome 17 (which is part of the test dataset) is considered.
Figure 3–figure supplement 2. Endogenous RNA-seq expression levels of HEK293 and HEK293T
cell lines are highly concordant. Spearman correlations between TPMvalues fromRNA-seqdatasets
of two biological replicates of the HEK293T cell line (with SRA accessions shown in parentheses) are
on par with Spearman correlation with RNA-seq TPM values for the HEK293 cell line.
Figure 4–figure supplement 1. Features learned by gene expression models for H3K9me3 in
K562. Each point on the X-axis corresponds to in silico perturbation of H3K9me3 at that position
and the Y-axis measures the predicted fold-change in gene expression, averaged across a set of
100 trained models. The fold-changes were averaged across 500 randomly chosen genes. This is
a zoomed-in version of the subplot in Figure Figure 4 corresponding to H3K9me3 in K562.
Figure 5–figure supplement 1. Transfection efficiency is shared across experiments. This figure
shows consistent transfection efficiency across multiple gene targets. Histograms show the distri-
bution of fluorescent signal intensity, indicating the percentage of cells (right) successfully trans-
fected with the reporter construct containing mCherry-p300. We selected 2 gRNAs (gRNA1 and
gRNA2) for 2 gene targets (CYP17A1 and SOX11) and a scramble gRNA to measure the transfection
efficiency. An average transfection efficiency of 17% was achieved across the different samples
with no transfection in the untreated cells.
Figure 6–source data 1. Raw qPCR data. Each row has an individual measurement which includes
pertinent information used to generate in silico and compare with model predictions. Columns
include corresponding guide information regarding gRNA position and coordinates as well as gene
information such as orientation and coordinates.
Figure 6–source data 2. Raw CUT&RUN qPCR data. This table includes measurements with corre-
sponding sgRNA used and there distance with respect to the TSS. Gene information and amplicon
centerpoint distance to the TSS.
Figure 6–source data 3. Primer sequences, sources, assay use, and corresponding direction.
CUT&RUN primers have their corresponding genomic coordinates reported corresponding to the
regions they amplify.
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Figure 6–figure supplement 1. H3K27ac levels elevation is similar across quantified regions fol-
lowing gRNA dCas9-p300 targeting. Each colored line corresponds to a gRNA targeting proximal
to CXCR4 and TGFBR1 in HEK293T cells. The X-axis represents the distance between gRNA and the
CUT&RUNamplicon. The Y-axis representsH3K27ac fold enrichment estimated throughCUT&RUN.
Figure 6–figure supplement 2. Gene-wise predicted vs experimental gene expression TPM ranks.
Each dot corresponds to a cell type and the title of each plot shows the Spearman correlation and
the corresponding p-values. Rank 1 corresponds to the highest numerical value.
Figure 6–figure supplement 3. Gene-wise predicted vs experimental fold-change ranks. Each
dot corresponds to a gRNA targeting a locus near the TSS of the gene (each gRNA corresponds to
atleast three replicates and hence the fold-change shown here is the experimental mean). Rank 1
corresponds to the highest numerical value.
Figure 6–figure supplement 4. Predicted vs experimental fold-change ranks. Each dot corre-
sponds to a gRNA targeting a locus near the TSS of the gene. Rank 1 corresponds to the highest
numerical value.
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