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High-resolution (1 km) Köppen-
Geiger maps for 1901–2099 based 
on constrained CMIP6 projections
Hylke E. Beck   1 ✉, Tim R. McVicar   2,3, Noemi Vergopolan   4,5, Alexis Berg6, 
Nicholas J. Lutsko7, Ambroise Dufour   1, Zhenzhong Zeng   8, Xin Jiang8,  
Albert I. J. M. van Dijk   9 & Diego G. Miralles   10

We introduce Version 2 of our widely used 1-km Köppen-Geiger climate classification maps for historical 
and future climate conditions. The historical maps (encompassing 1901–1930, 1931–1960, 1961–1990, 
and 1991–2020) are based on high-resolution, observation-based climatologies, while the future 
maps (encompassing 2041–2070 and 2071–2099) are based on downscaled and bias-corrected climate 
projections for seven shared socio-economic pathways (SSPs). We evaluated 67 climate models from 
the Coupled Model Intercomparison Project phase 6 (CMIP6) and kept a subset of 42 with the most 
plausible CO2-induced warming rates. We estimate that from 1901–1930 to 1991–2020, approximately 
5% of the global land surface (excluding Antarctica) transitioned to a different major Köppen-Geiger 
class. Furthermore, we project that from 1991–2020 to 2071–2099, 5% of the land surface will transition 
to a different major class under the low-emissions SSP1-2.6 scenario, 8% under the middle-of-the-road 
SSP2-4.5 scenario, and 13% under the high-emissions SSP5-8.5 scenario. The Köppen-Geiger maps, 
along with associated confidence estimates, underlying monthly air temperature and precipitation data, 
and sensitivity metrics for the CMIP6 models, can be accessed at www.gloh2o.org/koppen.

Background & Summary
The Köppen-Geiger classification remains1, to this day, one of the most well-known and widely used climate 
classification systems. Developed in the late 19th century by Russian-German climatologist Wladimir Köppen2,3, 
and later refined by meteorologist Rudolf Geiger4,5, this classification divides global land climates into five major 
classes and 30 sub-classes, based on threshold values and seasonality of monthly air temperature and precipita-
tion (Table 1). Drawing on his observation as a botanist that climatic conditions are a major driver of the global 
vegetation distribution, Köppen designed his classification to align with the major ecosystem types worldwide, 
with regions within the same class sharing broadly similar vegetation characteristics. As such, this classification 
system is useful for many ecological and ecohydrological applications and studies that depend on differences in 
climatic regimes, including climate change impact assessments6–13. More broadly, the Köppen-Geiger classifica-
tion offers a way to aggregate complex land climate information into a meaningful indicator from both ecolog-
ical and societal perspectives, and when coupled with climate change projections provides a useful schema to 
characterize the impacts on land surface condition in a comprehensive yet straightforward manner14–19.

Here, we introduce Version 2 of the 1-km Köppen-Geiger maps for historical and future climate condi-
tions, with Version 1 published in 201818 being widely used (e.g., cited 3075 times as of August 3, 2023, accord-
ing to Google Scholar). The historical maps are derived from combinations of different high-resolution, 
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observation-based climatologies for both V1 and V2, while in V2 the future maps are based on downscaled 
and bias-corrected climate projections from the Coupled Model Intercomparison Project phase 6 (CMIP6)20. 
V1 considered just one “worst case” future emissions scenario (Representative Concentration Pathway – RCP 
– 8.5)21 from CMIP5 and only one ensemble member (or variant) for each climate model. In contrast, V2 con-
siders a broader range of seven future socio-economic scenarios (Shared Socio-economic Pathways – SSPs; 
SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5)22–24 and multiple ensemble members 
to reduce the uncertainty associated with internal climate variability25,26. Additionally, the new version covers six 
approximately 30-year periods (1901–1930, 1931–1960, 1961–1990, 1991–2020, 2041–2070, and 2071–2099), 
while V1 covered just two periods of different lengths (1980–2016 and 2071–2100). Figure 1 presents the newly 
derived Köppen-Geiger map for 1991–2020 and regional maps for the Alps (Europe) and the central Rocky 
Mountains (North America), illustrating the high level of detail. The classification accuracy, defined as the per-
centage of correctly classified classes using observations from meteorological stations worldwide as reference, 
ranged from 79.2% to 86.4% (Table 2).

Recent studies found that a large number of CMIP6 climate models exhibit unrealistic CO2-induced warm-
ing rates27–30. To identify and exclude these models, we conducted a comprehensive assessment of CMIP6 cli-
mate models (see section “Constraining CMIP6 projections”). We evaluated 67 models based on: (i) historical 
air temperature trends (1980–2014)27; (ii) transient climate response (TCR)31; and (iii) equilibrium climate sen-
sitivity (ECS)32 (Table 3 and Fig. 2). We found that 49 (73%) of the models fell outside the ‘likely’ range for at 
least one of these three sensitivity metrics. We discarded the 25 least realistic models and used the remaining 
subset of 42 models to derive the Köppen-Geiger maps and associated confidence maps. This approach ensured 
we maintained a statistically meaningful sample size for calculating averages and confidence levels for the dif-
ferent future socio-economic scenarios. By using this subset, the projected changes and uncertainties in annual 

Letter symbol

1st 2nd 3rd Description Criteriona

A

Tropical Not (B) & Tcold ≥ 18

f  - Rainforest Pdry ≥ 60

m  - Monsoon Not (Af) & Pdry ≥ 100-MAP/25

w  - Savannah Not (Af) & Pdry < 100-MAP/25

B

Arid MAP < 10×Pthreshold

W  - Desert MAP < 5×Pthreshold

S  - Steppe MAP ≥ 5 × Pthreshold

h   - Hot MAT ≥ 18

k   - Cold MAT < 18

C

Temperate Not (B) & Thot > 10 & 0 < Tcold < 18

s  - Dry summer Psdry < 40 & Psdry < Pwwet/3

w  - Dry winter Pwdry < Pswet/10

f  - Without dry season Not (Cs) or (Cw)

a   - Hot summer Thot ≥ 22

b   - Warm summer Not (a) & Tmon10 ≥ 4

c   - Cold summer Not (a or b) & 1 ≤ Tmon10 < 4

D

Cold Not (B) & Thot > 10 & Tcold ≤ 0

s  - Dry summer Psdry < 40 & Psdry < Pwwet/3

w  - Dry winter Pwdry < Pswet/10

f  - Without dry season Not (Ds) or (Dw)

a   - Hot summer Thot ≥ 22

b   - Warm summer Not (a) & Tmon10 ≥ 4

c   - Cold summer Not (a, b, or d)

d   - Very cold winter Not (a or b) & Tcold < −38

E

Polar Not (B) & Thot ≤ 10

T  - Tundra Thot > 0

F  - Frost Thot ≤ 0

Table 1.  Overview of the Köppen-Geiger climate classes including the defining criteria. Adapted from Peel  
et al.39. aVariable definitions: MAT = mean annual air temperature (°C); Tcold = the air temperature of the coldest 
month (°C); Thot = the air temperature of the warmest month (°C); T mon10 = the number of months with air 
temperature > 10 °C (unitless); MAP = mean annual precipitation (mm y−1); Pdry = precipitation in the driest 
month (mm month−1); Psdry = precipitation in the driest month in summer (mm month−1); Pwdry = precipitation 
in the driest month in winter (mm month−1); Pswet = precipitation in the wettest month in summer (mm 
month−1); Pwwet = precipitation in the wettest month in winter (mm month−1); Pthreshold = 2×MAT if > 70% 
of precipitation falls in winter, Pthreshold = 2×MAT + 28 if > 70% of precipitation falls in summer, otherwise 
Pthreshold = 2×MAT + 14. Summer (winter) is the six-month period that is warmer (colder) between April–
September and October–March.
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monthly minimum and maximum air temperature and mean precipitation — the three climate variables used to 
distinguish between the five major Köppen-Geiger classes (Table 1) — are substantially reduced across the entire 
globe compared to using all models (Figs. 3–6). This result emphasizes the importance of careful model selection 
to guide critical climate-related decisions and investments30.

The updated Köppen-Geiger maps provide a comprehensive assessment of the spatio-temporal distribution 
of climate classes across the global land surface from 1901 to 2099 (Figs. 1, 7). Based on the revised maps, we 
estimate that from 1901–1930 to 1991–2020, approximately 5% of the global land surface (excluding Antarctica) 
transitioned to a different major Köppen-Geiger class. From 1991–2020 to 2071–2099, 5% of the land surface 
is projected to transition to a different major class under the low-emissions SSP1-2.6 scenario, 8% under the 

d      1991–2020

a                                   1901–1930 b                                1991–2020 c                     2071–2099 (SSP2-4.5)

Af DsaBWh DwaCwa ETCsa DfaCfa

Am DsbBWk DwbCwb EFCsb DfbCfb

Aw Dsc

Dsd

BSh Dwc

Dwd

Cwc Dfc

Dfd

Cfc

BSk

Csc

e                                    1901–1930 f                                  1991–2020 g                        2071–2099 (SSP2-4.5)

Fig. 1  Köppen-Geiger classification for the European Alps (a–c), the global land surface (d), and the central 
Rocky Mountains (e–g) for 1901–1930 (a,e), 1991–2020 (b,d,f), and 2071–2099 (c,g) under the SSP2-4.5 
scenario. In panels a–c the white areas are the Mediterranean Sea, with all seas and oceans being white in panel d.

https://doi.org/10.1038/s41597-023-02549-6


4Scientific Data |          (2023) 10:724  | https://doi.org/10.1038/s41597-023-02549-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

middle-of-the-road SSP2-4.5 scenario, and 13% under the high-emissions SSP5-8.5 scenario. Under SSP2-4.5, 
the global land surface area (excluding Antarctica) with favorable climatic conditions for tropical, arid, tem-
perate, cold, and polar vegetation is expected to undergo net changes of + 8%, + 4%, −3%, −2%, and −33%, 
respectively, from 1991–2020 to 2071–2099. Furthermore, we estimate that 2.6 million km2 (roughly the area of 
Argentina, the world’s eighth largest country) of the global land surface will transition from polar (E) to cold (D) 
between 1991–2020 and 2071–2099 under scenario SSP2-4.5, while 2.4 million km2 will transition from cold (D) 
to temperate (C), 1.1 million km2 will transition from cold (D) to arid (B), and 2.8 million km2 will transition 
from temperate (C) to tropical (A).

Our results align reasonably well with previous assessments8,12,17,33–35, with differences being expected as we 
considered a wider range of socio-economic scenarios, a larger number of climate models, and multiple ensem-
ble members from each model. In addition, we excluded less realistic models and produced our maps at a higher 
resolution (1 km). It should be noted that changes in biomes may not necessarily occur in concert with changes 
in Köppen-Geiger classes due to other factors affecting vegetation not included in the classification such as local 
geography, soil type, increased CO2 concentrations, nutrient availability, wildfires, invasive species disruptions, 
human interventions (including deforestation, urbanization, and agriculture), as well as the inherent transition 
times of ecosystems36–38.

Methods
Köppen-Geiger climate classification.  Table 1 presents the Köppen-Geiger climate classification used 
herein, which is identical to that used in Version 118 as well as several other studies39,40. This classification largely 
reflects Köppen’s seminal publication from 19363, with three key modifications. Firstly, temperate (C) and cold 
(D) climates are distinguished using a 0 °C threshold, as opposed to Köppen’s 3 °C, as per Russell’s (1931)41 rec-
ommendation. Secondly, arid (B) subclimates, W (desert), and S (steppe) are identified based on whether 70% of 
the precipitation falls in summer or winter. Thirdly, the subclimates s (dry summer) and w (dry winter) within 
the C and D climates are made mutually exclusive by classifying a summer as dry (s) if more precipitation falls 
in winter, and a winter as dry (w) if the opposite is true. The tropical (A), temperate (C), cold (D), and polar  
(E) climates are by definition mutually exclusive but can overlap with the arid (B) class. To resolve this, the B 
climate type is prioritized over all others.

Historical Köppen-Geiger maps.  Historical Köppen-Geiger classification maps for 1901–1930, 
1931–1960, 1961–1990, and 1991–2020 were derived from seven high-resolution, topographically-corrected, 
observation-based climatic datasets: three for near-surface air temperature and four for precipitation. We used 
multiple datasets due to the inherent uncertainty in determining the most accurate one42,43. Moreover, using mul-
tiple datasets typically enhances accuracy by reducing the impacts of errors in individual datasets and enables the 
quantification of uncertainty from the spread across these datasets44,45. The air temperature climatic datasets used 
were: (i) WorldClim V246 (covering 1970–2000); (ii) Climatologies at High resolution for the Earth’s Land Surface 
Areas (CHELSA) V1.247 (1979–2013); and (iii) CHELSA V2.147 (1981–2010). The precipitation climatic datasets 
used were: (i) WorldClim V246 (1970–2000); (ii) CHELSA V1.2 (1979–2013); (iii) CHELSA V2.147 (1981–2010); 
and (iv) Climate Hazards Group’s Precipitation Climatology (CHPclim) V148 (1980–2009). All these datasets 
have a 0.01° resolution, except CHPclim V1, which has a 0.05° resolution. To ensure consistency with the other 
datasets, CHPclim V1 was resampled to 0.01° using bilinear interpolation.

The climatic datasets differ in their temporal coverage (e.g., CHPclim covers 1980–2009, whereas WorldClim 
V2 covers 1970–2000). However, we require climatic data for the four selected historical periods (1901–1930, 
1931–1960, 1961–1990, and 1991–2020). To adjust the temporal coverage of the climatic datasets, we calcu-
lated monthly climate change offsets (for air temperature) or factors (for precipitation) between the historical 
period in question and the temporal coverage of the climatic dataset. To compute the air temperature offsets, 
we used Climatic Research Unit (CRU) Time Series (TS) V4.0749 air temperature data, which has a monthly 
0.5° resolution covering 1901–2022. To compute the precipitation factors, we used the Global Precipitation 
Climatology Centre (GPCC) Full Data Reanalysis (FDR) V202250,51, which has a monthly 0.25° resolution cov-
ering 1891–2020. We downscaled these offsets and factors to a 0.01° resolution using bilinear interpolation and 
then adjusted the climatic datasets for each month, either by adding the offsets (for air temperature) or multiply-
ing by the derived factors (for precipitation).

We subsequently generated Köppen-Geiger maps at 0.01° resolution for each historical period and com-
bination of adjusted air temperature and precipitation climatic datasets. Next, we created for each historical 
period a final Köppen-Geiger map from the ensemble of 12 (4×3) maps by selecting the mode for each grid-cell 
(i.e., the most common class). A corresponding confidence map was also generated by dividing the frequency 

Period
Number of 
observations

Classification accuracy Mean confidence level

30 sub-
classes (%)

Five major 
classes (%)

Correctly 
classified (%)

Incorrectly 
classified (%)

1901–1930 3783 86.2 94.2 94.7 78.8

1931–1960 7667 86.4 94.7 94.1 75.2

1961–1990 16417 81.5 92.4 93.5 77.3

1991–2020 19643 79.2 91.7 93.4 78.7

Table 2.  Classification accuracy of the Köppen-Geiger maps and mean confidence level of the correctly and 
incorrectly classified stations, respectively.
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Model
Number of  
ensemble members

Mean trend (1980–2014; 
°C decade−1)

Trend standard deviation 
(1980–2014; °C decade−1)

Transient Climate  
Response (TCR; °C)

Equilibrium Climate 
Sensitivity (ECS; °C)

Included in  
‘Model Subset’?

ACCESS-CM2 10 0.279 0.030 1.97 5.51 Yes

ACCESS-ESM1-5 20 0.258 0.045 2.04 4.91 Yes

AWI-CM-1-1-MR 5 0.239 — 2.05 3.14 Yes

AWI-ESM-1-1-LR 1 0.273 — 2.03 — Yes

BCC-CSM2-MR 3 0.249 — 1.58 3.58 Yes

BCC-ESM1 3 0.276 — 1.74 3.52 Yes

CAMS-CSM1-0 3 0.160 — 1.83 2.31 Yes

CAS-ESM2-0 4 0.252 — 2.23 3.67 No

CESM2 11 0.274 0.034 2.30 5.86 No

CESM2-FV2 4 0.268 — 2.03 6.66 Yes

CESM2-WACCM 3 0.313 — 2.01 5.57 Yes

CESM2-WACCM-FV2 3 0.285 — 2.08 5.60 Yes

CIESM 3 0.261 — 2.41 6.26 No

CMCC-CM2-HR4 1 0.208 — — — Yes

CMCC-CM2-SR5 11 0.239 0.053 2.20 3.50 Yes

CMCC-ESM2 1 0.222 — 1.99 3.53 Yes

CNRM-CM6-1 20 0.212 0.037 2.25 4.68 Yes

CNRM-CM6-1-HR 1 0.211 — 2.49 4.10 Yes

CNRM-ESM2-1 11 0.189 0.059 1.86 4.87 Yes

CanESM5 20 0.381 0.037 2.70 5.79 No

CanESM5-1 20 0.357 0.039 2.38 4.98 No

CanESM5-CanOE 3 0.358 — 2.63 — No

E3SM-1-0 5 0.322 — 3.07 5.67 No

E3SM-1-1 1 0.309 — — — No

E3SM-1-1-ECA 1 0.295 — — — No

E3SM-2-0 5 0.248 — 2.50 4.12 No

EC-Earth3 20 0.261 0.070 2.66 4.21 No

EC-Earth3-AerChem 3 0.310 — 2.15 3.89 Yes

EC-Earth3-CC 10 0.279 0.068 2.71 4.19 No

EC-Earth3-Veg 9 0.269 — 2.70 4.43 No

EC-Earth3-Veg-LR 3 0.260 — 2.45 4.37 No

FGOALS-f3-L 3 0.231 — 1.93 3.17 Yes

FGOALS-g3 6 0.199 — 1.40 2.84 Yes

FIO-ESM-2-0 3 0.249 — 2.21 4.71 No

GFDL-CM4 1 0.286 — 2.09 4.36 Yes

GFDL-ESM4 3 0.239 — 1.49 2.86 Yes

GISS-E2-1-G 20 0.212 0.027 1.77 2.68 Yes

GISS-E2-1-G-CC 1 0.235 — — — Yes

GISS-E2-1-H 20 0.254 0.042 1.96 3.12 Yes

GISS-E2-2-G 11 0.169 0.034 1.73 2.23 Yes

GISS-E2-2-H 5 0.220 — 1.87 — Yes

HadGEM3-GC31-LL 5 0.326 — 2.44 5.65 No

HadGEM3-GC31-MM 4 0.279 — 2.66 5.30 No

IITM-ESM 1 0.154 — 1.68 2.37 Yes

INM-CM4-8 1 0.212 — 1.33 1.89 Yes

INM-CM5-0 10 0.210 0.028 1.39 2.05 Yes

IPSL-CM5A2-INCA 1 0.265 — 2.00 4.09 Yes

IPSL-CM6A-LR 20 0.250 0.044 2.36 4.90 No

IPSL-CM6A-LR-INCA 1 0.247 — — — No

KACE-1-0-G 3 0.284 — 2.56 5.55 No

KIOST-ESM 1 0.271 — — 4.63 No

MCM-UA-1-0 2 0.256 — 1.94 — Yes

MIROC-ES2H 3 0.187 — — — Yes

MIROC-ES2L 20 0.201 0.027 1.52 2.55 Yes

MIROC6 20 0.177 0.028 1.58 2.53 Yes

MPI-ESM-1-2-HAM 3 0.223 — 1.71 3.15 Yes

Continued
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of occurrence of the most common class by the ensemble size and expressing the result as a percentage. For 
example, if the most common class for a particular grid-cell is Csa, and it was assigned nine times out of 12, the 
resulting confidence level would be 100×9/12 = 75%. This confidence level indicates the degree of trust we place 
in our final climate classification. Confidence levels are generally lower near the borders between climate classes.

Constraining CMIP6 projections.  Several climate models included in CMIP6 have unrealistically hot pro-
jections27,29,30, which is largely due to the representation of clouds and their response to increased CO2 concentra-
tions52,53. To identify and exclude these models, we calculated three metrics to evaluate their sensitivity to changes 
in atmospheric CO2 concentrations: (i) the global-mean historical air temperature trend for 1980–201427; (ii) the 

Model
Number of  
ensemble members

Mean trend (1980–2014; 
°C decade−1)

Trend standard deviation 
(1980–2014; °C decade−1)

Transient Climate  
Response (TCR; °C)

Equilibrium Climate 
Sensitivity (ECS; °C)

Included in  
‘Model Subset’?

MPI-ESM1-2-HR 10 0.206 0.036 1.67 3.30 Yes

MPI-ESM1-2-LR 20 0.203 0.026 1.86 3.06 Yes

MRI-ESM2-0 12 0.214 0.027 1.67 3.45 Yes

NESM3 5 0.302 — 2.58 4.61 No

NorCPM1 20 0.190 0.026 1.61 3.38 Yes

NorESM2-LM 3 0.189 — 1.54 2.89 Yes

NorESM2-MM 3 0.167 — 1.25 2.78 Yes

SAM0-UNICON 1 0.276 — 2.13 4.28 Yes

TaiESM1 2 0.283 — 2.29 4.65 No

UKESM1-0-LL 19 0.340 0.042 2.86 5.54 No

UKESM1-1-LL 1 0.285 — 2.60 5.36 No

Table 3.  The 67 CMIP6 models considered along with the corresponding number of ensemble members (or 
variants) used (up to 20 to conserve disk space), the global-mean air temperature trend for 1980–2014 (mean 
across ensemble members), the trend standard deviation (across ensemble members), the transient climate 
response (TCR; mean across ensemble members), the equilibrium climate sensitivity (ECS; mean across 
ensemble members), and whether the model was included in the final Model Subset (see section “Constraining 
CMIP6 projections”). The trend standard deviation – used to estimate the uncertainty resulting from internal 
variability – is only provided for models with ≥10 ensemble members. The TCR values are only provided 
for models with data for both the 1pctCO2 and piControl experiments, while the ECS values are only 
provided for models with data for both the abrupt-4xCO2 and piControl experiments.

Fig. 2  TCR and ECS values and global-mean air temperature trends for all CMIP6 models with the required 
data to compute all three statistics (n = 56). The yellow dotted line represents the best estimate historical trend 
with the yellow shaded area representing the likely range (68% confidence limit; see section “Constraining 
CMIP6 projections”). The gray dotted line represents the best estimate TCR from IPCC AR628 with the gray 
shaded area indicating the likely range (66% confidence limit) also from IPCC AR6. Each circular marker 
represents a model. Models without sufficient data to calculate TCR or ECS values are not shown (n = 11).  
See Table 3 for historical trend, TCR, and ECS values (if available) for all models (n = 67).
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transient climate response (TCR), which estimates the global-mean warming around the time when CO2 dou-
bles31; and (iii) the equilibrium climate sensitivity (ECS), which estimates the eventual steady-state global-mean 
warming at double CO2

32,54. Although the Köppen-Geiger classification incorporates both air temperature and 
precipitation, we only focused on sensitivity metrics related to air temperature for two main reasons. First, there 
is no discernible historical trend in precipitation observations, as the global mean greenhouse gas effect on pre-
cipitation has been offset by the global mean aerosol effect55,56. Second, historical temperature observations are 
more robust and widespread than precipitation observations46,57.

Simulated historical global-mean air temperature trends.  We calculated trends in global-mean near-surface air 
temperature for 1980–2014 for each CMIP6 model using data from the historical experiment20, down-
loaded from the Earth System Grid Federation (ESGF) platform (https://esgf-node.llnl.gov; Table 3 and Fig. 2). 
During this period, the impact of aerosol forcing was relatively small, and the warming was primarily driven by 
changes in greenhouse gas forcing27,58. The end of this period, 2014, corresponds to the end of the historical 
experiment. For each model, we averaged all available ensemble members, up to 20, to conserve disk space. This 
reduces the impact of internal climate variability, that is, the inherently unpredictable variation in climate not 
resulting from changes in greenhouse gas concentrations but from the chaotic nature of the system25,26. Internal 
variability can be a confounding factor when comparing observed and simulated air temperature trends, as it 
can cause differences between the two that are not due to changes in anthropogenic forcing25,26.

Observed historical global-mean air temperature trend.  We estimated the observed historical global-mean 
near-surface air temperature trend for 1980–2014 using gridded anomalies from the Hadley Centre/Climatic 
Research Unit Temperature (HadCRUT) analysis V5.0.1.059 (monthly 0.5° resolution). Unlike the CRU TS 

Fig. 3  Mean change across the land surface in 2071–2099 (relative to 1991–2020) for different socio-economic 
scenarios (SSP1-1.9 to SSP5-8.5) based on ‘All Models’ (all CMIP6 models with sufficient data; n ≤ 67) and 
‘Model Subset’ (screened model subset without less realistic models; n ≤ 42). Each circular marker represents a 
model. The number of models varies depending on the socio-economic scenario. The box shows the quartiles of 
the distribution, the whiskers indicate the 5th and 95th percentiles, while the black horizontal line in the box is 
the median.
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dataset, which only covers the land surface, the HadCRUT dataset is based on both weather station and sea 
surface temperature data and covers the entire globe. HadCRUT includes data from 1850 to the present, and 
any missing data earlier in the record was filled with the global mean. The HadCRUT dataset comprises 200 
ensemble members sampling the uncertainty arising from: (i) basic measurement uncertainty; (ii) correction for 
changes in instrumentation and measurement practices; and (iii) the estimation of gridded fields from a sparse 
distribution of observations. We calculated the global-mean trend for 1980–2014 for each ensemble member. 
The mean trend across the ensemble (termed μobs) was 0.1851 °C decade−1 and the standard deviation across 
the ensemble was 0.0038 °C decade−1 (hereafter referred to as the structural uncertainty or σstruct). The use of sea 
surface temperature data rather than near-surface air temperature data over oceans in HadCRUT results in an 
underestimation of the actual trend, due to the delayed response of the oceans to global warming60. This under-
estimation (hereafter referred to as the blending bias or εblend) was previously estimated at 0.014 °C decade−1 27.

We used near-surface air temperature data from the CMIP6 historical experiment to quantify the uncer-
tainty resulting from internal climate variability. For all CMIP6 models with ≥10 ensemble members, we cal-
culated trends in global-mean air temperature for 1980–2014 for each ensemble member (each representing a 
different realization of the internal variability). We used up to 20 ensemble members, to conserve disk space. We 
then calculated the standard deviation of the trends across the ensemble members for each model, providing an 
estimate of the uncertainty associated with internal variability based on a single model. In total, there were 22 
models with ≥10 ensemble members, and the mean uncertainty resulting from internal variability across these 
models (termed σinternal) was 0.0391 °C decade−1 (standard deviation 0.0129 °C decade−1; Table 3). This estimate 
aligns closely with a previously reported value of 0.038 °C decade−1 27. The likely global-mean air temperature 
trend range (68% confidence interval) was subsequently determined at 0.130–0.241 °C decade−1 according to:

T ( ) 2 , (1)range obs blend struct
2

internal
2μ ε σ σ= + ± +

where Trange is the likely global-mean air temperature trend range, μobs is the observed ensemble-mean 
global-mean air temperature trend, εblend is the blending bias, σstruct is the structural uncertainty, and  
σinternal is the uncertainty due to internal variability (all in °C decade−1). The term σ σ+ 2struct

2
internal
2  represents 

the combined uncertainty arising from both the observations and internal variability. The uncertainty associated 
with internal variability is doubled since both the observations and simulations represent different realizations 
of the internal variability. For models with multiple ensemble members, Trange may be somewhat conservative, as 
the uncertainty due to internal variability is averaged out to a certain degree.

Fig. 4  (a) Best estimate annual monthly minimum air temperature change in 2071–2099 (with respect to 1991–
2020) under the SSP2-4.5 scenario (calculated as the mean across the Model Subset) with purple indicating a 
greater change. (b) Uncertainty corresponding to the best estimates (calculated as the standard deviation across 
the Model Subset) with dark blue indicating more uncertainty. (c) Difference in best estimate between Model 
Subset and All Models. Indicates how the model subsetting affects the best estimate with dark blue denoting 
greater changes. (d) Ratio of Model Subset uncertainty to All Models uncertainty. Indicates how the model 
subsetting affects the uncertainty with green denoting reduced uncertainty.
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Transient climate response (TCR).  The TCR quantifies the change in global-mean near-surface air temperature 
in the year when CO2 concentrations have doubled after continuously increasing by 1% every year31,61,62 (Table 3 
and Fig. 2). The TCR represents the initial warming that occurs after a rapid increase in CO2 concentration before 
the climate system has fully adjusted. It was estimated for each CMIP6 model following Intergovernmental Panel 
on Climate Change (IPCC)’s Fifth Assessment Report (AR5)63 by calculating the global-mean near-surface air 
temperature difference between the 1% CO2 increase experiment (1pctCO220) and the pre-industrial control 
run (piControl20) averaged over a 20-year period centered on year 70, at which CO2 concentrations have 
doubled. To minimize the impact of internal climate variability on our TCR estimates26, we calculated the mean 
TCR across all available ensemble members, up to 20, to conserve disk space. These ensemble members are the 
same as used in section “Observed historical global-mean air temperature trend”. We could not estimate the 
TCR for some models due to a lack of data for the 1pctCO2 or piControl experiments. The likely TCR range 
(66% confidence interval) was determined to be 1.4–2.2 °C in the IPCC Sixth Assessment Report (AR6)28 based 
on multiple lines of evidence from paleoclimate, historical air temperature observations, and ocean heat content.

Equilibrium climate sensitivity (ECS).  The ECS quantifies the long-term global-mean near-surface air temper-
ature change after CO2 concentrations have doubled and the climate system has reached a state of equilibrium 
where the temperature has stabilized32,54,61 (Table 3 and Fig. 2). The ECS was estimated for the CMIP6 models 
following Gregory et al.32 from the regression of global annual mean top of the atmosphere net downward radia-
tive flux anomaly (N; W m−2) against global annual mean near-surface air temperature anomaly (ΔT; K; Table 3  
and Fig. 2). N and ΔT were calculated from the difference between the abrupt 4×CO2 experiment (abrupt-
4xCO220) and the pre-industrial control run (piControl20). The ΔT at the intersection of the regression line 
with N = 0 W m−2 represents the change in air temperature when the climate system has reached equilibrium. 
This ΔT is divided by two to obtain the air temperature response per doubling of CO2 concentration, as per 
the definition of the ECS. While Gregory et al.32 used years 1–150 years for the regression, we used only years 
21–150 to obtain ECS estimates which are slightly higher, but in better agreement with slab ocean models and 
long simulations (≥800 years)64. Just as we did for the TCR, we calculated, for each model, the mean ECS 
across all available ensemble members (up to 20), to minimize the impact of internal climate variability on our 
estimates. The likely ECS range (66% confidence interval) was determined to be 2.5–4.0 °C in the IPCC Sixth 
Assessment Report (AR6)28, which is similar to the range of 2.6–4.1 °C reported in a recent review54.

Model assessment.  We found that only 28 (42%) of the 67 CMIP6 models had historical air temperature trends 
within the likely range, 33 (55%) of the 60 models which provided data from 1pctCO2 simulations had TCR 
values within the likely range (1.4–2.2 °C), and 21 (37%) of the 57 models which provided data from abrupt-
4xCO2 simulations had ECS values within the likely range (2.5–4.0 °C; Table 3 and Fig. 2). Just 18 (27%) of the 
67 models had all available metrics within the likely range. Notwithstanding some differences related to the 

Fig. 5  Same as Fig. 4 but for annual monthly maximum air temperature.
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specific methods selected to estimate TCR65 and ECS64, these results accord with previous climate model sen-
sitivity assessments61,62,64. These findings emphasize that uncritically using the full ensemble of models can be 
misleading and should not guide important real-world decisions30.

To derive the future Köppen-Geiger maps, we excluded models based solely on historical air temperature 
trends and TCR estimates. The TCR is more relevant to this study than the ECS, as it represents the expected 
amount of climate change in the coming decades. Moreover, Huusko et al.66 showed that under the SSP2-4.5 
scenario, the TCR is a better predictor of regional warming throughout the 21st century. From the 60 models 

Fig. 6  Same as Fig. 4 but for mean precipitation.
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with both historical air temperature trends and TCR estimates, we excluded the 21 with both estimates outside 
the likely range. From the 7 models without TCR estimates, we excluded the 4 with historical air temperature 
trends outside the likely range. The remaining subset of 42 models is herein denoted as the ‘Model Subset’, and 
the full complement of 67 models as ‘All Models’ (Table 3). Since only a few models had projections for all seven 
socio-economic scenarios, we opted for relatively conservative exclusion criteria, ensuring a statistically mean-
ingful sample of models were used for each scenario to calculate averages and confidence levels. For SSP1-1.9, 
this resulted in 10 models; for SSP1-2.6, 29 models; for SSP2-4.5, 29 models; for SSP3-7.0, 30 models; for SSP4-
3.4, 6 models; for SSP4-6.0, 6 models; and for SSP5-8.5, 29 models.

The impact of excluding less realistic models.  Figure 3 presents projected global-mean changes in three climate 
indices at the end of the 21st century using the Model Subset and All Models for all seven socio-economic sce-
narios. The three climate indices (mean precipitation, annual monthly minimum air temperature, and annual 
monthly maximum air temperature) are used in the Köppen-Geiger classification to distinguish between the five 
major classes (A–E; Table 1). For all socio-economic scenarios and indices, the magnitude of the median change 
(i.e., the best estimate) and the interquartile range (i.e., the uncertainty) across the models is less for Model 
Subset than for All Models. This once again highlights the importance of excluding less realistic models to avoid 
exaggerated climate change projections and reduce uncertainty27,29,30. Even though the Model Subset selection 
did not involve assessing precipitation trends, the magnitude of the best estimate change and uncertainty were 
also reduced for mean precipitation when compared to All Models (Fig. 3a). This is attributed to the influence of 
air temperature on evaporation and the water-holding capacity of the atmosphere, which subsequently influence 
the processes governing precipitation frequency and intensity67–69. It should be noted that for scenarios with a 
limited number of models, such as SSP1-1.9, SSP4-3.4, and SSP4-6.0, the reduction in uncertainty might be 
somewhat overestimated. This is because measures of dispersion, like the interquartile range, derived from small 
samples tend to underestimate the true dispersion of the population70.

Figures 4–6 present global maps of projected changes in the three climate indices at the end of the 21st 
century based on the Model Subset and All Models. We only present results for the middle-of-the-road SSP2-
4.5 scenario71. Annual monthly minimum and maximum air temperature are projected to increase across the 
entire globe, particularly minimum air temperature at higher latitudes (Figs. 4a, 5a). Worldwide, the projected 
change and the uncertainty in annual monthly minimum and maximum air temperature are substantially lower 
using the Model Subset than using All Models (Figs. 4c,d, 5c,d). Mean precipitation is projected to decrease over 
Central America, the Mediterranean, Southern Africa and Australia, and increase elsewhere over land (Fig. 6a). 
The projected change in mean precipitation is generally of lesser magnitude using the Model Subset than using 
All Models (Fig. 6c), consistent with the results for air temperature indices (Figs. 4c, 5c)67,69. The uncertainty in 
mean precipitation projections is less for the Model Subset than for All Models over most of the globe, except for 
Australia and parts of the US, northern Europe, Africa, and the Middle East (Fig. 6d).

Future Köppen-Geiger maps.  We generated Köppen-Geiger maps at 0.01° resolution for the 2041–2070 
and 2071–2099 periods and for seven socio-economic scenarios: SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-
3.4, SSP4-6.0, and SSP5-8.522,23. The maps were produced using monthly near-surface air temperature and precip-
itation projections from CMIP620 downloaded from the ESGF platform (https://esgf-node.llnl.gov). We only used 
the models included in Model Subset (see section “Constraining CMIP6 projections”). The historical data from 
1850–2014 were combined with scenario data from 2015–2100. We averaged over all available ensemble members 
(up to 20) to reduce the uncertainty associated with internal climate variability25,26. For models with more than 
20 ensemble members, we sorted the ensemble members in their “natural” order (i.e., multi-digit numbers were 
treated as if they were a single character) and selected the first 20.

We used the so-called delta-change approach72,73 to increase the spatial resolution (or downscale) the climate 
model data, enabling the generation of the high-resolution future Köppen-Geiger maps. This simple yet effective 
approach superimposes the climate change signal, derived from the models, onto the high-resolution climatic 
maps. We implemented the approach in four steps. Firstly, we derived monthly reference air temperature and 
precipitation climatologies (0.01° resolution) for 1991–2020 by averaging the ensemble of temporally-adjusted, 
high-resolution climatic maps (see section “Historical Köppen-Geiger maps”). Secondly, for each scenario, cli-
mate model, future period, and month, we calculated climate change offsets (for air temperature) or factors  
(for precipitation) between 1991–2020 and the future period. These offsets or factors were then resampled from 
the native model resolution to 0.01° using bilinear interpolation. Thirdly, we derived downscaled future monthly 
air temperature and precipitation climatologies, by adding the offsets (for air temperature) or multiplying by the 
factors (for precipitation). Fourthly, and finally, we generated future Köppen-Geiger maps (0.01° resolution) 
from the downscaled future monthly air temperature and precipitation climatologies.

For each scenario, we derived a final Köppen-Geiger map from the ensemble of maps (representing different 
climate models) by selecting the mode (the most common class) for each grid-cell. Similar to the historical maps, 
we also generated corresponding confidence maps. The confidence level was quantified by dividing the fre-
quency of occurrence of the most common class by the ensemble size and expressing the result as a percentage.

Data Records
The historical and future Köppen-Geiger classification maps, associated confidence maps, and underpinning 
monthly near-surface air temperature and precipitation climatologies can all be downloaded from figshare1 
and www.gloh2o.org/koppen. The data are available at four spatial resolutions: 0.01°, 0.1°, 0.5°, and 1°; which 
correspond to approximately 1 km, 11 km, 56 km, and 111 km at the equator, respectively. The Köppen-Geiger 
maps were resampled from 0.01° to the coarser resolutions by majority resampling, while the confidence maps 
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and climatologies were resampled by averaging. The future maps and climatologies are available for seven 
socio-economic scenarios (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5). For con-
venience, the data are organized into six ZIP archives:

	 1.	 koppen_geiger_tif.zip (90 MB): This is the only archive needed for the vast majority of users. 
It contains GeoTIFF files with Köppen-Geiger maps in different resolutions for various periods and 
socio-economic scenarios. For instance, the file 2071_2099/ssp585/koppen_geiger_0p01.
tif contains the Köppen-Geiger map for the period 2071–2099 under scenario SSP5-8.5 at a resolution 
of 0.01°. GeoTIFF files can be easily viewed using commonly used Geographic Information System (GIS) 
software, such as QGIS and ArcGIS. The archive also includes a legend file, legend.txt, which links 
the numeric values in the maps to the Köppen-Geiger climate symbols and provides the color scheme we 
adopted from Peel et al.39 for displaying the maps.

	 2.	 koppen_geiger_nc.zip (761 MB): This archive contains the same Köppen-Geiger maps as the 
preceding archive, except in NetCDF format, under the variable kg_class. The confidence maps are 
also included, under the variable kg_confidence. Similar to the previous archive, the maps are provided 
for different periods and scenarios, and at various resolutions. For instance, the variable kg_class in 
the file 2041_2070/ssp245/koppen_geiger_0p5.nc provides the Köppen-Geiger map for the 
period 2041–2070 under scenario SSP2-4.5 at a resolution of 0.5°. The archive also contains the previously 
described legend.txt file.

	 3.	 climate_data_0p01.zip (69 GB): This archive contains NetCDF files with temperature clima-
tologies (under the variable air_temperature in °C) and precipitation climatologies (under the 
variable precipitation in mm month−1) at a resolution of 0.01°. The variables have dimensions of 
18000×36000×12. Both the mean and the standard deviation across the model ensemble are included; 
the mean serves as our best estimate, while the standard deviation represents the associated uncertainty. 
Similar to the preceding archives, the climatologies are provided for various periods and scenarios. For in-
stance, the variable precipitation in the file 1991_2020/ensemble_mean_0p01.nc provides 
the ensemble-mean precipitation climatology for the period 1991–2020 at a resolution of 0.01°.

	 4.	 climate_data_0p1.zip (1.3 GB): This archive is identical to the previous one, but provides the data 
at a coarser resolution of 0.1°.

	 5.	 climate_data_0p5.zip (83 MB): This archive is identical to the previous one, but provides the data 
at a further coarsened resolution of 0.5°.

	 6.	 climate_data_1p0.zip (25 MB): This archive is identical to the previous one, but provides the data 
at the coarsest resolution of 1°.

Technical Validation
Station data.  The new 0.01° historical Köppen-Geiger maps were validated using observations from 170 699 
meteorological stations worldwide from the following ten sources: (i) the Global Historical Climatology Network-
Daily (GHCN-D) dataset74 (ftp.ncdc.noaa.gov/pub/data/ghcn/daily/; 122 728 stations), (ii) the Global Summary 
Of the Day (GSOD) dataset (https://data.noaa.gov; 25 571 stations), (iii) the Latin American Climate Assessment 
& Dataset (LACA&D) dataset (http://lacad.ciifen.org; 231 stations), (iv) the Chile Climate Data Library (www.
climatedatalibrary.cl; 716 stations), (v) the FLUXNET2015 dataset75 (https://fluxnet.org; 206 stations), and 
national datasets for (vi) Bolivia (57 stations), (vii) Brazil (12 410 stations), (viii) Mexico (5398 stations), (ix) Peru  
(255 stations), and (x) Iran (3127 stations).

To eliminate long sequences of erroneous zero precipitation often present in GSOD time series76,77, we 
applied a central moving mean with a one-year window. We only assigned a value if at least half a year’s worth of 
values were present and retained only those observations with a non-zero coincident moving mean. Similarly, 
to eliminate long sequences of erroneous non-zero precipitation in GSOD time series, we calculated a central 
moving minimum with a one-year window. A value was only assigned if at least half a year’s worth of data was 
present, and we only retained observations with a coincident moving minimum of zero.

For each historical period and station, we calculated monthly mean air temperature and precipitation time 
series (discarding months with < 20 daily values), and subsequently monthly climatologies by averaging the 
monthly means (if ≥10 values were present). For each historical period, we only discarded stations without 
climatic averages for all twelve months.

Classification accuracy.  Table 2 presents the classification accuracy (defined as the percentage of correct 
classifications) of the historical Köppen-Geiger maps, calculated using observations from meteorological stations. 
The number of stations grew from 3783 in the earliest historical period (1901–1930) to 19 643 in the latest one 
(1991–2020), reflecting the substantial expansion of weather monitoring networks during the 20th century78. 
The classification accuracy ranged from 79.2% to 86.4% for the 30-sub classes, similar to the accuracy of 80.0% 
reported by Beck et al.18. Interestingly, the accuracy for 1991–2020 was slightly lower than that for 1901–1930 
(79.2% versus 86.2%). This difference can likely be attributed to the manifestation of climate change in recent dec-
ades, which makes pinpointing a single class more challenging. Furthermore, recent decades have seen a higher 
proportion of stations in less developed areas, where the data quality might not be as high. As expected, the clas-
sification accuracy was higher for the five major classes than for the 30 sub-classes, ranging from 91.7% to 94.7%.

Our validation may slightly overestimate the true accuracy of the maps for two reasons. First, some of the 
station data used for validation was also used to produce the high-resolution, topographically-corrected cli-
matologies and the GPCC FDR and CRU TS datasets (see section “Historical Köppen-Geiger maps”). This was 
unavoidable due to a lack of freely available, independent station data. Second, the majority of stations used 
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for validation are situated in populated, relatively flat, mid-latitude areas, characterized by frontal weather. 
Observations from these areas tend to be quite accurate. In contrast, tropical, mountainous, and high-latitude 
regions are more influenced by convective weather, orographic precipitation, and snowfall, respectively. These 
regions are underrepresented in the validation data, and their observations are often less accurate46,79–81.

The value of the confidence maps associated with the Köppen-Geiger maps was assessed by comparing the 
mean confidence levels for incorrectly and correctly classified stations for each historical period. For 1991–2020, 
the mean confidence level was 93.4% for correctly classified stations and 78.7% for incorrectly classified stations 
(Table 2). The mean confidence level was thus lower for the incorrectly classified stations, suggesting that the 
confidence maps provide a useful indication of the classification accuracy. The mean confidence levels were 
similar for the other historical periods.

Usage Notes
The newly derived Köppen-Geiger maps provide a unique, high-resolution view of the evolution of climate 
classes across the global land surface from 1901 to 2099 for seven socio-economic scenarios (Fig. 1). We 
conducted a comprehensive assessment of CMIP6 climate models and excluded models with less realistic 
CO2-induced warming rates (Figs. 2, 3). The encouraging classification accuracy results suggest that our maps 
are reliable (Table 2). However, there are six important caveats when using the maps:

	 1.	 It should not be assumed that future changes in the Köppen-Geiger classification will directly result in 
a change in a specific biome. Changes are likely to occur gradually through the process of succession, in 
which plants and animals colonize and modify an ecosystem over time38. Moreover, the Köppen-Geiger 
classification depends solely on climate. Other important factors include local geography, soil type, rising 
CO2 concentrations, grazing pressure, wildfires, invasive species disruptions, and human interventions 
such as deforestation, urbanization, and agriculture36,37. Hence, the future Köppen-Geiger classification 
should first and foremost be interpreted from a climate perspective.

	 2.	 The confidence levels associated with the historical Köppen-Geiger maps only take into account the 
uncertainty in the high-resolution, station-based climatologies used to create them (see section “Historical 
Köppen-Geiger maps”). They do not consider the uncertainty in the CRU TS49 and GPCC FDR50,51 datasets 
that were used to adjust the maps to cover a different time span. Hence, the confidence intervals in the 
historical maps may be overestimated, particularly in the early 20th century, when the uncertainty in the 
CRU TS and GPCC FDR datasets is likely to be higher. This is an unavoidable limitation, as the CRU TS 
and GPCC FDR datasets do not quantify the uncertainty arising from both interpolation and measurement 
errors.

	 3.	 Many of the CMIP6 climate models used to create the future Köppen-Geiger maps have a relatively coarse 
spatial resolution (1° or approximately 100 km; see section “Future Köppen-Geiger maps”). This coarse res-
olution limits their ability to accurately capture small-scale processes and represent complex or heteroge-
neous regions, such as coastlines, islands, and mountainous areas82. In these regions, the confidence levels 
might be overly optimistic, and the Köppen-Geiger maps should be interpreted with more caution. For 
instance, many models are unable to simulate the amplified warming resulting from the positive feedback 
of snow and ice melt in mountainous regions83. Consequently, our Köppen-Geiger maps might underesti-
mate potential changes in these areas.

	 4.	 The confidence levels of the future Köppen-Geiger maps represent the uncertainty stemming from differ-
ences among the climate models for a specific socio-economic scenario, rather than the overall uncertainty 
including both model and scenario uncertainty84 (see section “Future Köppen-Geiger maps”). This overall 
uncertainty would be higher and the corresponding confidence levels lower, particularly at the end of the 
21st century when scenario uncertainty begins to dominate model uncertainty85. Calculating the overall 
uncertainty is not straightforward, as this would require assigning probabilities to the different scenarios. 
Note that the model uncertainty also includes some uncertainty due to internal variability25,26, although 
the latter has been greatly reduced herein due to the use of multiple ensemble members for several of the 
models (Table 3).

	 5.	 Our approach to select a subset of climate models with realistic CO2-induced warming rates (referred to 
as ‘Model Subset’) for generating the future Köppen-Geiger maps is not without limitations (see section 
“Constraining CMIP6 projections”). Firstly, while the ‘likely’ climate sensitivity ranges we used for model 
selection reflect the prevailing scientific consensus28,54, they remain a subject of ongoing debate86,87, and 
future refinements to these ranges are expected. Secondly, to ensure we had an adequate number of models 
for each socio-economic scenario, we included models with either the historical near-surface air tempera-
ture trend or the TCR outside the likely range. As a result, Model Subset might still slightly overestimate fu-
ture warming. Thirdly, and lastly, we neither excluded nor downweighted models from the same genealogy, 
that is, different versions or variants of models with a common origin. Consequently, the biases or errors 
associated with these similar models may be overrepresented in Model Subset88–90.

	 6.	 Global-mean warming changes for 2071–2099 (with respect to 1850–1900, also known as the ‘pre-indus-
trial’ period) are projected to be 1.51 °C for SSP1-1.9, 1.97 °C for SSP1-2.6, 2.75 °C for SSP2-4.5, 3.59 °C for 
SSP3-7.0, 2.33 °C for SSP4-3.4, 2.98 °C for SSP4-6.0, and 4.21 °C for SSP5-8.5 based on the Model Subset 
(which excludes less realistic models). These warming levels were calculated by summing the change for 
1991–2020 (with respect to 1850–1900) from HadCRUT59 and the mean change for 2071–2099 (with 
respect to 1991–2020) from the climate models. Hence, only for “sustainability” scenarios SSP1-1.9 and 
SSP1-2.691 does warming stay below the 2 °C threshold set by the Paris Agreement, which was signed in 
2015 by 200 countries92.
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Code availability
The new Köppen-Geiger classifications have been produced using Python version 3.10. The code can be accessed 
at https://github.com/hylken/Koppen-Geiger_maps and is licensed under the GNU General Public License v3.0.
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