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ABSTRACT
BACKGROUND: Exercise has shown promise as a treatment for cocaine use disorder; however, the mechanism
underlying its efficacy has remained elusive.
METHODS: We used a rat model of relapse (cue-induced reinstatement) and exercise (wheel running, 2 hours/day)
coupled with RNA sequencing to establish transcriptional profiles associated with the protective effects of exercise
(during early withdrawal [days 1–7] or throughout withdrawal [days 1–14]) versus noneffective exercise (during late
withdrawal [days 8–14]) against cocaine-seeking and sedentary conditions.
RESULTS: As expected, cue-induced cocaine seeking was highest in the sedentary and late-withdrawal exercise
groups; both groups also showed upregulation of a Grin1-associated transcript and enrichment of Drd1-Nmdar1
complex and glutamate receptor complex terms. Surprisingly, these glutamate markers were also enriched in the
early- and throughout-withdrawal exercise groups, despite lower levels of cocaine seeking. However, a closer
examination of the Grin1-associated transcript revealed a robust loss of transcripts spanning exons 9 and 10 in
the sedentary condition relative to saline controls that was normalized by early- and throughout-withdrawal
exercise, but not late-withdrawal exercise, indicating that these exercise conditions may normalize RNA mis-
splicing induced by cocaine seeking. Our findings also revealed novel mechanisms by which exercise initiated
during early withdrawal may modulate glutamatergic signaling in dorsomedial prefrontal cortex (e.g., via transcripts
associated with non-NMDA glutamate receptors or those affecting signaling downstream of NMDA receptors),
along with mechanisms outside of glutamatergic signaling such as circadian rhythm regulation and neuronal survival.
CONCLUSIONS: These findings provide a rich resource for future studies aimed at manipulating these molecular
networks to better understand how exercise decreases cocaine seeking.

https://doi.org/10.1016/j.bpsgos.2023.01.007
More than 5.1 million individuals in the United States over the
age of 12 reported using cocaine in 2020 and 1.3 million met
the criteria for cocaine use disorder (CUD) (1). As the supply of
cocaine continues to grow, the number of users and in-
dividuals with CUD is projected to increase (2–4). New treat-
ments are critically needed, especially because there is no U.S.
Food and Drug Administration–approved treatment for CUD
and current strategies result in w50% relapse (5). Exercise has
shown promise as a nonpharmacological intervention for
substance use disorders in human and animal studies. In
humans, clinical trials of exercise have revealed beneficial
health and anticraving effects (6–12), with recent findings
showing that drug craving is immediately and persistently
attenuated following an acute bout of aerobic exercise in in-
dividuals undergoing inpatient treatment for polysubstance
use disorder (8). Exercise has also been shown to alleviate
depression, reduce measures of anxiety, and enhance cogni-
tion (6,13–15), factors known to contribute to drug craving
(16,17). Similarly, animal studies show that exercise, such as
ª 2023 THE AUTHORS. Published by Elsevier Inc on behalf of the
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voluntary running in a wheel, markedly decreases drug use and
drug seeking and, when available during withdrawal following
drug self-administration, prevents the incubation of drug
craving, a phenomenon that occurs in both humans and ani-
mals and is believed to reflect an enhanced vulnerability to
relapse (18–30). This antirelapse effect of exercise has been
observed for multiple addictive drugs, including cocaine
(31–34).

Despite these encouraging findings, the efficacy of exercise
in humans has been variable, and while lack of power and
compliance issues undoubtedly contribute to the variability
(33–43), preclinical results similarly demonstrate that certain
exercise regimens are not effective (18,19,28). For example, we
showed that exercise (wheel running) during early withdrawal
(days 1–7) or throughout withdrawal (days 1–14) prevents the
development of high levels of cocaine seeking and persistently
protects against cocaine seeking as assessed on withdrawal
day 15. In contrast, exercise during late withdrawal (days 8–14)
was not effective at reducing cocaine-seeking response on
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withdrawal day 15, suggesting that the timing of exercise
during withdrawal is more important than the amount or
recency of exercise [exercise 2 hours/day (19); exercise 1–6
hours/day (21); exercise 1–24 hours/day (22); see (44,45) for
reviews]. It also suggests that effects in humans could be
prolonged by initiating exercise during early withdrawal rather
than after detoxification, as it typically occurs. A better un-
derstanding of the molecular mechanisms that underlie these
differential effects of exercise would also help guide the
development of exercise in humans with CUD because such
information will help define the exercise conditions necessary
for achieving an antirelapse effect.

In our previous study (18), we started to isolate the molec-
ular changes associated with effective versus noneffective
exercise conditions, focusing on neuroadaptations in the dor-
somedial prefrontal cortex (dmPFC), which is known to be
critically involved in cocaine seeking and its incubation over
withdrawal (46–51). We focused on markers known to be
regulated by exercise and/or drug seeking, including genes
involved in brain-derived neurotrophic factor (Bdnf exons I, IV,
and IX and its receptor, Ntrk2), glutamate (AMPA type subunits
1, 2, and 3: Gria1, Gria2, and Gria3; NMDA type subunit 1:
Grin1; metabotropic glutamate receptors mGlu1, mGlu2, and
mGlu5: Grm1, Grm2, and Grm5), and dopamine signaling (D1

and D2 receptors: Drd1 and Drd2). mGlu1 and mGlu5 showed
the most promise as a potential mechanism underlying the
protective effect of exercise against cocaine seeking, given
that dmPFC gene expression levels (Grin1 and Grm5) were
positively associated with cocaine-seeking responses (or
responding during extinction/reinstatement testing). Site-
specific activation of mGlu5 receptors during early with-
drawal also mimicked the efficacy of exercise. However,
blockade of these receptors during early withdrawal did not
block the efficacy of exercise, indicating that while dmPFC
mGlu5 contribute to the incubation of cocaine seeking, they
are not necessary for the efficacy of exercise to reduce cocaine
seeking (18). Thus, the mechanism for the efficacy of exercise
in reducing cocaine seeking remains elusive.

The purpose of the present study was to use RNA
sequencing (RNA-seq) as an unbiased and hypothesis-
generating approach to explore transcriptional changes in
the dmPFC associated with cocaine seeking and the protec-
tive effects of exercise against cocaine seeking. Although
several studies have characterized transcriptional changes
associated with cocaine self-administration and/or cocaine
seeking, most of these studies have used short-access con-
ditions (1–2 hour/day access to the drug), which are best for
studying initial vulnerability to drug use [e.g., (52–56), but see
(57)]. Notably, to our knowledge, RNA-seq has not been used
to assess changes that occur in response to cue-induced
cocaine seeking following withdrawal from extended-access
drug self-administration (i.e., $6-hour/day access to the
drug), which is the gold standard for inducing addiction-like
features in animals, including enhanced drug seeking/vulner-
ability to relapse (58). We focused on changes in transcripts
rather than genes, given mounting evidence indicating that
RNA mis-splicing contributes to numerous human diseases
(e.g., Parkinson’s disease and dilated cardiomyopathy) (59),
with preliminary support for a role in substance use disorders
(e.g., alcohol use disorder) (60). Based on our previous findings
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in male rats showing that cocaine seeking is attenuated by
exercise during early withdrawal (days 1–7) or throughout
withdrawal (days 1–14) but not during late withdrawal (days
8–14) (18–19), we predicted that the protective effects of ex-
ercise against cocaine seeking would be revealed by isolating
transcriptional changes induced by early- and throughout-
withdrawal exercise versus late-withdrawal exercise and
sedentary conditions (relative to saline).

METHODS AND MATERIALS

Subjects

Adult male Sprague Dawley rats (Charles River) (N = 21)
weighing approximately 380 g at the start of the study were
used as subjects. These animals were representative subsets
of the sedentary (5 of 8), early (4 of 14), throughout (4 of 8), late
(4 of 10), and saline (5 of 10) groups we used in our previous
study on the impact of early- versus late-withdrawal–initiated
exercise on cocaine seeking and associated gene expression
changes (as assessed using quantitative polymerase chain
reaction) (19). All procedures were approved by the University
of Virginia Animal Care and Use Committee and were con-
ducted within the guidelines set by the National Institutes of
Health.

Behavioral Procedure

The procedures used for housing, lever pretraining, and surgical
implantation of jugular catheters; cocaine self-administration
during training and the extended-access period; exercise dur-
ing withdrawal; and cue-induced cocaine-seeking testing are
thoroughly described in our previous study (19) (Figure 1).
Briefly, rats were trained to self-administer cocaine (1.5 mg/kg/
infusion) under a fixed-ratio 1 schedule with a maximum of 20
infusions available per day and, once acquired (20 infusions on 2
consecutive days), were given extended (24 hours/day) access
to the drug using a discrete trial procedure (2 trials/hour, 1.5mg/
kg/infusion) for 10 days. Two additional fixed-ratio 1 sessions
were run to confirm patency before withdrawal. Then, rats were
housed in polycarbonate cageswithout (sedentary; n=5) orwith
2-hour/day access to a running wheel during early withdrawal
(days 1–7; n = 4), late withdrawal (days 8–14; n = 4), or
throughout withdrawal (days 1–14; n = 4). Saline controls un-
derwent the same procedures as those described for the
sedentary cocaine group (n = 4) except that they previously self-
administered saline instead of cocaine. Rats were returned to
their operant chambers on day 14 of withdrawal and then un-
derwent relapse testing on withdrawal day 15 using a within-
session extinction/cue-induced reinstatement procedure (i.e.,
aminimumof six 1-hour extinction sessionswherein responding
was without consequence followed by a 1-hour reinstatement
session in which each response was reinforced with cocaine-
associated cues, which included a stimulus light and the
sound of the pump).

Tissue Preparation and RNA-Seq

The morning following the test session, anesthetized rats were
euthanized by rapid decapitation, and the dmPFC was
dissected from 2-mm-thick coronal brain slices based on Pax-
inos andWatson (61) coordinates (bregma 3.2mm). Brain tissue
pen Science October 2023; 3:734–745 www.sobp.org/GOS 735
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Figure 1. Summary of experimental events. Male rats were trained to self-administer cocaine. Following acquisition of cocaine self-administration (2
consecutive sessions wherein all 20 infusions available were obtained), rats were given 24 hour/day, extended access to cocaine (1.5 mg/kg/infusion) under a
discrete trial procedure for 10 sessions. Following the last cocaine self-administration session, rats were housed without (sedentary, n = 5) or with access to
wheel running (2 hours/day) during early (days 1–7; n = 4), late (days 8–14; n = 4), or throughout (days 1–14; n = 4) a 14-day withdrawal period. Additional rats
were given access to saline and housed without access to a wheel during withdrawal (n = 4). On day 15 of withdrawal, rats underwent extinction/reinstatement
testing. On the morning following this 1-day test session, tissue was collected from the dmPFC and RNA-seq was performed. This graphical illustration was
made using BioRender (https://biorender.com/). dmPFC, dorsomedial prefrontal cortex; RNA-seq, RNA sequencing.
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was rapidly frozen and stored at280 �Cuntil further processing.
To generate RNA-seq libraries, total RNA was isolated from
each sample using RNeasy Lipid Tissue Mini Kit (Qiagen), and 5
mgof total RNAwasprocessed for ribosomal RNA removal using
the Illumina Ribo-Zero Kit. RNA-seq libraries were prepared
using the IlluminaScriptSeq v.2RNA-seqLibrary PreparationKit
and purified using Beckman Coulter AMPure XP beads. The li-
brary quality and quantity were assessed by a 2100 Bioanalyzer
(Agilent) prior to sequencing by the University of Virginia Core
facility. Datasets were assessed for quality and consistency
using FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). Raw reads were then aligned to the rat rn6
genome using HiSAT2 specifying –rna-strandness FR (62).
SAMtools was used to convert the resulting sequence align-
ment/map files to binary alignment map format, and transcripts
were assembled and quantified with StringTie, using the
Ensembl Rattus_norvegicus_Rnor_6.0.85 annotations (63,64).
The resulting count tables were then used for identification of
differentially expressed transcripts. DESeq2 (version 1.30.1)
was used to normalize the raw counts and to perform differential
expression analysis (65). Gene set enrichment was performed
usingg:Profiler (66). TheRNA-seq analysiswas performedusing
the tidyverse (version 1.3.1) and dplyr (version 1.0.8) software
packages, and the term plots were made using ggplot2 (version
3.3.3). The network maps were made using Cytoscape (version
3.8.2). Volcano plots were created using the EnhancedVolcano
(version 1.8.0) R package (67), and the heatmap was produced
using the Pheatmap (version 1.0.12) R package (68).

Integrative Genomics Viewer

To visualize transcript changes relative to saline control ani-
mals, the merged RNA-seq datasets were loaded on the
Integrative Genomics Viewer (IGV) using the rat rn6 genome
(69). Differential normalized read counts for each condition
were generated by subtracting the merged saline reads. IGV
coverage tracks were visualized from bigwig files of paired
reads, which join the 2 mates of the paired-end reads, and
therefore span the entire range between the 2 mates. Exon
numbering was generated by IGV using the National Center for
Biotechnology Information RefSeq rat rn6 transcripts.

Data Analysis

We first confirmed that the effects of exercise in these subsets
of rats were similar to those observed previously in the larger
736 Biological Psychiatry: Global Open Science October 2023; 3:734–
sample of sedentary, early, throughout, and late groups (19).
Specifically, univariate analysis of variance was used to
examine group differences in cocaine seeking during extinc-
tion (total responses), and repeated measures analysis of
variance was used to examine group differences in cocaine
seeking during reinstatement relative to responses during the
last extinction session. Repeated measures analysis of vari-
ance was also used to verify that cocaine intake was similar
between each of the cocaine groups during the extended-
access phase and that levels of running were similar be-
tween each of the exercise groups during the 7-day exercise
period (first 7 days for throughout exercise). Post hoc com-
parisons were Tukey corrected and based on either one-tailed
(for predicted differences; e.g., higher cocaine seeking in
sedentary vs. early and throughout exercise) or two-tailed
(nonpredicted differences) distributions. The association be-
tween the efficacy of exercise to reduce cocaine-seeking re-
sponses and transcriptional changes (normalized counts) were
examined using Benjamini-Hochberg–corrected Pearson
correlations.
RESULTS

Behavioral Results

Extended-Access Cocaine Self-administration and
Exercise. As with the larger dataset (19), results from these
subsets of rats showed high levels of cocaine self-
administration during the 10-day extended-access period
with similar levels and patterns of intake between the groups
(Figure 2A, B) (group and group by session, ps . .05). Intake
was the highest in each of the groups during initial versus later
sessions (session, F9,117 = 3.22, p , .01; session 1 vs. 10, p ,

.05). Overall levels and patterns of running during withdrawal
were also similar between the 3 exercise groups (Figure 2C)
(group and group by session, ps . .05). Levels of running
progressively increased in each of the groups over the 7 ex-
ercise sessions (session, F6,54 = 5.18, p , .001; session 1 vs.
7, p , .01). Thus, prior to extinction/reinstatement testing,
levels and patterns of cocaine intake and exercise were similar
between the groups.

Timing of Exercise During Withdrawal on Cue-
Induced Cocaine Seeking. Also consistent with the
larger dataset (19), cocaine seeking (or responding during
745 www.sobp.org/GOS
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Figure 2. Timing of exercise during withdrawal on
cue-induced cocaine-seeking response. (A) Mean
(6SEM) number of infusions for each of the 10
extended-access sessions, (B) cocaine intake aver-
aged across the extended-access period (mg/kg),
(C) distance run for the first 7 exercise sessions (km),
and (D) total number of responses made on the lever
formerly associated with cocaine during extinction
and (E) during the last extinction session vs. the
reinstatement session for male rats in the sedentary
(n = 5), early (n = 4), throughout (n = 4), or late (n = 4)
exercise conditions. 1 indicates significantly
different from session 10 (B), session 7 (C), and the
last extinction session (E). * indicates significantly
decreased vs. sedentary and late. ^ indicates
significantly increased vs. sedentary. Thru,
throughout.
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extinction/reinstatement testing) in these subsets of rats was
affected by the timing of exercise during withdrawal. For
extinction, responses were significantly lower in early and
throughout (Figure 2D) (group, F3,17 = 20.30, p , .001) than in
both sedentary and late (ps , 0.01) and significantly higher in
late than in sedentary (p , .01) conditions. Similarly, rein-
statement of cocaine seeking in response to cocaine-
associated cues was markedly attenuated in early and
throughout versus sedentary and late (Figure 2E) (group by
session, F3,13 = 10.43, p , .001) conditions. Specifically, while
no group differences were observed during the last extinction
session (p . .05), a significant group effect was observed
within the reinstatement session (F3,13 = 11.27, p , .001), and
post hoc comparisons revealed significantly lower responses
in early and throughout than in sedentary and late (p , 0.05)
conditions. Further analysis within each group revealed
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significantly higher responses during the reinstatement session
than during the last extinction session for sedentary and late
conditions (p , .05), but not for early and throughout condi-
tions (p . .05). Thus, as with the larger dataset (19), results
from these subsets of rats show that exercise initiated during
early withdrawal, but not late withdrawal, reduces cocaine-
seeking response.
Molecular Results

Transcriptional Changes Associated With Cue-
Induced Cocaine Seeking. The analysis of transcrip-
tional changes in the dmPFC of sedentary versus saline con-
trols revealed 29 upregulated and 37 downregulated
transcripts based on adjusted p = .1 and log2(fold change) .
1.3 (Figure 3A). Consistent with our previous findings (18,70),
GOBP: 
Regulation of 

biological 
quality

GOBP: 
Regulation of 

neurotransmitter 
levels

GOCC: 
Presynaptic active 
zone cytoplasmic 

component

0 0 0 5 1 0 1 5 2 0

1 1.5 2
-log10padj

0 0.5 1 1.5 2
-log10padj

pregulated Downregulated

the dorsomedial prefrontal cortex. (A) Volcano plot depicting the differentially
edentary group (n = 5) relative to the saline group (n = 5), with statistically
lots depicting the enriched GO and CORUM terms using the differentially up-
the same shade of red represent terms gathered from the same database.
O biological process; GOCC, GO cellular component; padj, adjusted p.

pen Science October 2023; 3:734–745 www.sobp.org/GOS 737

http://www.sobp.org/GOS


Exercise-Induced Protection Against Cocaine Seeking
Biological
Psychiatry:
GOS
one of the upregulated transcripts was Grin1 (ENSR-
NOT00000044246), which encodes the NR1 subunit of the
NMDA receptor. Analysis of the upregulated transcript list
using Gene Ontology (GO) and CORUM, the comprehensive
resource of mammalian protein complexes (which was manu-
ally created using reliable experimental evidence and utilizes
the specific genes that contribute to the formation of specific
quaternary protein structures) (71) revealed an enrichment of
terms related to glutamate receptors, including glutamate re-
ceptor complex and Drd1-Nmdar1 complex, and macromole-
cule localization and organic substrate transport (Figure 3B).
Interestingly, the downregulated transcript list revealed terms
linked to the regulation of neurotransmission and the presyn-
aptic active zone cytoplasmic component. Thus, cue-induced
cocaine seeking appears to be associated with genes related
to increased glutamate/NMDA receptor signaling and
decreased regulation of presynaptic neurotransmission.
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Transcriptional Changes Associated With the Pro-
tective Effects of Exercise Against Cocaine See-
king. A similar strategy was used to investigate
transcriptional changes associated with cue-induced cocaine
seeking (vs. saline) in the dmPFC of rats that had previously
exercised during early, throughout, or late withdrawal
(Figure 4A). Surprisingly, despite the similarity between early
and throughout exercise with regard to cocaine seeking, only 5
upregulated and 8 downregulated gene-associated transcripts
overlapped between the groups, and of these, only 2 upre-
gulated transcripts and 6 downregulated transcripts were
specific to early and throughout (Figure 4B; Table 1). Notably,
the Grin1 transcript was one of the three overlapping upre-
gulated transcripts common to each of the exercise groups.
We also investigated transcripts that were similarly upregu-
lated or downregulated in early and throughout, but not late,
relative to sedentary. This analysis produced results similar to
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Table 1. Gene-Associated Transcripts That Were Similarly
Up- or Downregulated in the Early and Throughout, but
Not Late, Exercise Groups Relative to Saline Controls

Gene Transcript

Upregulated

Pitpna ENSRNOT00000090554

Prmt6 ENSRNOT00000023079

Downregulated

Cp ENSRNOT00000082627

Dgke ENSRNOT00000076587

Flnb ENSRNOT00000066546

Grsf1 ENSRNOT00000086571

Orc5 ENSRNOT00000015426

Xpnpep1 ENSRNOT00000033148
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those obtained from the analysis relative to saline with only 5
upregulated and 4 downregulated gene-related transcripts
unique to early and throughout exercise (Table 2).

To further assess similarities and differences in transcrip-
tional profiles between the sedentary and exercise groups, we
performed a GO, Kyoto Encyclopedia of Genes and Genomes
(KEGG), CORUM, transcription factor database (TRANSFAC),
and WikiPathways analysis on the differentially upregulated
and downregulated gene-associated transcripts in each exer-
cise group relative to saline (Figure 4C–E). To our surprise, this
analysis revealed that there were 2 shared terms common for
each of the exercise groups, glutamate receptor complex and
Drd1-Nmdar1 complex. It is notable that these 2 terms were
also found in the sedentary versus saline comparison
(Figure 4C), suggesting that the efficacy of exercise is not
mediated via normalization of glutamate/NMDA receptor levels
in the dmPFC (but see IGV analysis below). Another notable
finding from this analysis is that throughout exercise was
uniquely associated with an upregulation of transcripts related
to the transcription factor AP-2 (Figure 4D), which plays an
important role in synaptic vesicle endocytosis and NMDA-
stimulated AMPA receptor endocytosis (72,73). Finally, given
Table 2. Gene-Associated Transcripts That Were Similarly
Up- or Downregulated in the Early and Throughout, but
Not Late, Exercise Groups Relative to Sedentary Controls

Gene Transcript

Upregulated

Ctbp2 ENSRNOT00000023574

Ten1 ENSRNOT00000086382

Elvol1 ENSRNOT00000092972

Mipep ENSRNOT00000018845

Ndufa12 ENSRNOT00000089442

Downregulated

Ten1 ENSRNOT00000083022

Ggnbp2 ENSRNOT00000085728

Ybx3 ENSRNOT00000007427

AABR07030184.3 ENSRNOT00000080772

Biological Psychiatry: Global O
the relative lack of overlapping transcripts and enrichment
terms between the early and throughout exercise groups, it is
likely that different mechanisms underlie the protective effects
of exercise during early versus throughout withdrawal.

Given our previous work and work from others indicating a
role for Grin1/NR1 in cocaine seeking and the efficacy of exer-
cise in reducing cocaine seeking (18,70,74), Grin1 transcription
was visualized using IGV. This analysis revealed that the
normalized mapped read densities for the sedentary and exer-
cise conditions varied significantly by exon (Figure 4F). For
example, there was a robust loss of transcripts spanning exons
9 and 10 in the sedentary group relative to saline that was either
countered or normalized with early and throughout, but not late
exercise. Given that these effects mirror effects on cocaine
seeking, it is possible that early and throughout exercise may
normalize the RNA mis-splicing induced by cocaine seeking.
Additionally, while throughout exercise normalized expression
in these exon regions, early exercise led to an elevation of
transcripts from these exon regions, indicating that, as sug-
gested above, themechanisms bywhich early- and throughout-
withdrawal exercise exert their efficacy are different.
Transcriptional Changes Associated With the Pro-
tective Effects of Exercise Throughout Withdrawal
Against Cocaine Seeking. Given the relative lack of
overlapping transcriptional profiles between the early and
throughout exercise groups, we focused on characterizing the
transcriptional profile associated with the protective effects of
exercise throughout withdrawal cocaine seeking (relative to
sedentary). We also compared effects with those observed in
late (relative to sedentary) as a negative control for throughout
exercise because the last exercise session was the day before
the cue-induced cocaine-seeking test for both groups, yet only
throughout exercise decreased cocaine seeking. This analysis
revealed 28 upregulated gene-associated transcripts unique to
throughout exercise (Figure 5A; Table 3) and further analysis of
this transcript list using GO, KEGG, and CORUM revealed
enrichment of terms related to neuron projection, cell cortex,
growth hormone synthesis, secretion, and action; circadian
entrainment; gonadotropin-releasing hormone, cortisol, renin,
and aldosterone secretion; and neurotransmitter synapses,
including serotonergic, dopaminergic, cholinergic, and gluta-
matergic synapses (Figure 5B). We also confirmed that tran-
scriptional changes for 4 of the gene-associated transcripts
unique to throughout exercise (Adcy10, Septin6, Plcb2, and
Ank2) corresponded to the efficacy of exercise to reduce
cocaine seeking such that higher expression levels (normalized
counts) were predictive of significantly lower drug seeking
(Figure 5C) (p , .05). It is notable that 3 of these transcripts are
involved in neuron projection (Ank2, Septin6, and Adcy10).

The same analysis revealed 37 downregulated gene-
associated transcripts unique to throughout exercise
(Figure 6A; Table 4) as well as an enrichment of terms related
to cytoplasm, the Trpc1-Stim1-Orai1 complex, and several
transcription factors, including ZF5, E2F, and PLAG1
(Figure 6B). Interestingly, while E2F has been implicated in
neuronal migration, it also has been shown to be a positive
regulator of neuronal apoptosis (75,76). The normalized tran-
script counts of several of the transcripts unique to throughout
pen Science October 2023; 3:734–745 www.sobp.org/GOS 739
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Figure 5. Transcriptional upregulation associated with the protective effects of exercise throughout withdrawal against cocaine seeking. (A) Venn diagram
depicting the shared significantly upregulated transcripts between the throughout (n = 4) vs. sedentary (n = 5) and late (n = 4) vs. sedentary (n = 5) comparisons
[adjusted p , .1, log2(fold change) , 1.3]. (B) Network map depicting the enriched GO, KEGG, and CORUM terms using the 28 uniquely upregulated tran-
scripts in the throughout vs. sedentary comparison. Terms are in red ovals and genes are in blue circles. Lines connect the genes that contributed to each of
the enriched terms. Red stars denote transcripts that had significant behavioral correlations. (C) The normalized counts of Adcy10, Septin6, Plcb2, and Ank2
were negatively associated with cocaine-seeking response as indicated by a significant correlation (*). *p , .05. GnRH, gonadotropin-releasing hormone; GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; thru, throughout.
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exercise also corresponded to the efficacy of exercise. Spe-
cifically, reinstatement responses were positively associated
with normalized transcript counts for Exoc3, Ggnbp2, Syt3,
Trmt10a, Ldb1, Pfkb3, RGD1564855, and Nfxl1 (ps , .05)
(Figure 6C). These transcripts all intersected with at least one
of the aforementioned enrichment terms. Thus, throughout
exercise may serve to reduce cocaine seeking by promoting
neuronal synapses and hormone secretion and preventing
neuronal apoptosis.
DISCUSSION

The current study used RNA-seq to identify the transcriptional
changes in the dmPFC associated with cue-induced cocaine
seeking and its modulation by exercise. As expected (18,19),
the sedentary group demonstrated high levels of cocaine-
740 Biological Psychiatry: Global Open Science October 2023; 3:734–
seeking response, which may be associated with increased
glutamate signaling as indicated by the upregulation of a
Grin1-associated transcript and an enrichment of Drd1-
Nmdar1 complex and glutamate receptor complex terms. To
our surprise, each of the exercise groups also showed an
upregulation of the same Grin1-associated transcript and an
enrichment of the same glutamate receptor–related terms (i.e.,
Drd1-Nmdar1 complex and glutamate receptor complex).
While on the surface, these findings suggest that the protective
effects of exercise against cocaine seeking are not mediated
through normalization of glutamatergic signaling, particularly
via gene-associated Grin1 transcripts, a closer examination
revealed a robust loss of transcripts spanning exons 9 and 10
in sedentary controls (relative to saline) that was normalized
with early and throughout exercise, but not late exercise,
suggesting that exercise initiated during early withdrawal
745 www.sobp.org/GOS
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Table 3. Upregulated Gene-Associated Transcripts Induced
by Exercise During Throughout, but Not Late, Withdrawal
(Relative to Sedentary Controls)

Upregulated Gene Transcript

AABR07063152.1 ENSRNOT00000089442

Adcy10 ENSRNOT00000082677

Agtpbp1 ENSRNOT00000091370

Ank2 ENSRNOT00000084756

Arid5a ENSRNOT00000089673

Brpf3 ENSRNOT00000092566

Cacna1d ENSRNOT00000047737

Ctbp2 ENSRNOT00000023574

Dhrs7b ENSRNOT00000066250

Dlg3 ENSRNOT00000088114

Elovl1 ENSRNOT00000092972

Epha8 ENSRNOT00000017559

Exoc2 ENSRNOT00000090706

Gba2 ENSRNOT00000022002

Itpr2 ENSRNOT00000040255

Kcnip1 ENSRNOT00000079031

LOC103689920 ENSRNOT00000090459

Lonrf3 ENSRNOT00000017550

Mipep ENSRNOT00000018845

Nckap5l ENSRNOT00000081434

Plcb2 ENSRNOT00000078037

Plekhg5 ENSRNOT00000082586

Ppp1r18 ENSRNOT00000082999

Septin6 ENSRNOT00000067942

Ten1 ENSRNOT00000086382

Thop1 ENSRNOT00000082486

Usp19 ENSRNOT00000074772

Wbp11l1 ENSRNOT00000082235
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normalizes cocaine cue-induced RNA mis-splicing of Grin1. It
is also notable that, despite similar protection against cocaine
seeking by early and throughout exercise, there was minimal
overlap between these groups in their transcriptional profiles.
Each of these findings are discussed further below.

As expected, cue-induced cocaine seeking was high
following extended-access cocaine self-administration and
protracted withdrawal and appears to be associated with
increased glutamate signaling in the dmPFC based on our
findings showing upregulation of the Grin-1 associated tran-
script and an enrichment of terms related to Drd1-Nmdar1
complex and glutamate receptor complex. These findings are
consistent with findings in both humans and animals showing
a strong association between drug craving/seeking and
dmPFC hyperactivity (46–51) as well as work from our group
(18,70) and others [e.g., (77–80)], supporting the involvement of
NMDA receptors in particular. Thus, targeting overactive glu-
tamatergic signaling in the dmPFC, particularly via NMDA re-
ceptors, could serve as a potential intervention for drug
craving. Drug side effects would need to be considered when
selecting an NMDA receptor antagonist for treatment, but it
may be possible given that high doses of methadone, a full m
opioid agonist that also acts as an NMDA receptor antagonist,
Biological Psychiatry: Global O
are commonly prescribed for use in humans. High doses of
methadone have also been shown to significantly reduce
cocaine use in patients undergoing methadone maintenance
treatment (81).

Surprisingly, a Grin1-associated transcript was upregulated
in all the exercise groups along with the sedentary controls.
While it is possible that this change was induced by extended-
access cocaine self-administration independent of cue-
induced cocaine seeking (77), given that NR1 has previously
been associated with levels of cocaine seeking in rats (18,70)
and vulnerability to substance use disorders in humans (82,83),
a more likely possibility is that exercise that effectively reduces
cocaine seeking/craving does so by normalizing signaling
downstream of NR1/NMDA receptor signaling or, as sug-
gested by the IGV analysis, by normalizing mis-splicing at
Grin1. For example, our findings showing the loss of tran-
scripts spanning exons 9 and 10 in the sedentary condition
and normalization by early and throughout, but not late, ex-
ercise is potentially significant, considering that these exon
regions are largely extracellular and include the first 5 amino
acids of the ligated ion channel L-glutamate and glycine
binding site. Therefore, splicing out these exons (and loss of
the first 5 amino acids) could change the fidelity of NMDA
receptor signaling (84). Notably, alternative splicing of 3 other
Grin1 exons (5,21,22) has been shown to affect the pharma-
cological properties and intracellular binding partners of NMDA
receptors (85). This highlights an area for future research that
may provide insight on the mechanisms underlying CUD,
because these splicing effects are often overlooked in RNA-
seq studies and possibly missed by quantitative polymerase
chain reaction, depending on the primers selected. It is also
notable that the rigor of these findings is demonstrated by the
fact that our RNA-seq results with Grin1 in the sedentary
condition are consistent with previous gene expression find-
ings from our group (18,70) and others (77) as well as findings
in humans with substance use disorders (82).

Also, to our surprise, despite similar effects with regard to
cocaine seeking, there were few transcriptomic similarities
between the early and throughout exercise conditions. Of the
146 transcripts that were differentially expressed in the early
and throughout exercise groups (relative to saline), only 8 were
shared between the two conditions. The functional classifica-
tion analysis of the differentially expressed transcripts also
revealed only 2 overlapping enrichment terms between the
early and throughout exercise groups (i.e., Drd1-Nmdar1
complex and glutamate receptor complex), and both terms
overlapped with the sedentary and late exercise groups.
Together, these findings suggest that the mechanisms un-
derlying the protective effects of exercise against cocaine
seeking are different for exercise during early versus
throughout withdrawal; however, recency of exercise and
methodological limitations, such as the homogeneous ana-
lyses of messenger RNA transcripts from a heterogeneous
brain region with different cell- and projection-specific func-
tions, may also have contributed to the differences observed.
Thus, future research investigating the molecular changes
induced by exercise during early, late, and throughout with-
drawal (prior to reinstatement testing) or using techniques,
such as single-cell RNA-seq, are necessary to examine these
possibilities.
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Figure 6. Transcriptional downregulation associated with the protective effects of exercise throughout withdrawal against cocaine seeking. (A) Venn di-
agram depicting the shared significantly downregulated transcripts between the throughout (n = 4) vs. sedentary (n = 5) and late (n = 4) vs. sedentary (n = 5)
comparisons [adjusted p , .1, log2(fold change) , 1.3]. (B) Network map depicting the enriched GO, TF, and CORUM terms using the 37 uniquely upregulated
transcripts in the throughout vs. cocaine sedentary comparison. Terms are in red ovals and genes are in green circles. Lines connect the genes that
contributed to each of the enriched terms. Red stars denote genes that had significant behavioral correlations. (C) The normalized counts of Ggnbp2, Syt3,
Exoc3, Pfkb3, Tm10a, Ldb1, RGD156485, and Nfxl1 were negatively associated with cocaine-seeking response as indicated by a significant correlation (*). *p
, .05. GO, Gene Ontology; TF, transcription factor; thru, throughout.
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Our findings also reveal novel potential mechanisms by
which exercise mediates its protective effects against cocaine
seeking. Specifically, exercise initiated during early withdrawal
was associated with the downregulation of transcripts asso-
ciated with presynaptic active zone cytoplasmic component
and regulation of neurotransmitter release. Additionally, the
comparison that isolated transcriptional changes specific to
exercise throughout withdrawal (relative to sedentary controls)
revealed an upregulation of terms associated with neuro-
transmitter synapses, including glutamatergic synapses. One
of the transcript intersections for the glutamatergic synapse
enrichment term was Plcb2, which is a phosphodiesterase that
catalyzes the hydrolysis of phosphatidylinositol 4,5-
bisphosphate to the second messenger inositol 1,4,5-
triphosphate (IP3). Interestingly, IP3 is downstream of mGlu5
(86), which we showed previously to be necessary for the in-
cubation of cocaine seeking but not for the efficacy of exercise
to decrease cocaine seeking (18). Thus, one possibility that we
plan to address in future studies is that exercise exerts its ef-
ficacy downstream of mGlu5 via interactions with IP3.

The efficacy of exercise to reduce cocaine seeking was also
associated with terms associated with circadian rhythms and
neuronal survival. There is a large body of literature showing
that circadian rhythms play a critical role in substance use
742 Biological Psychiatry: Global Open Science October 2023; 3:734–
disorder, including drug seeking/craving (87). Specifically,
findings in rats show that circadian genes mutations enhance
ethanol consumption and that melatonin treatment reduces
motivation for cocaine and drug seeking (88,89). One inter-
esting transcript in this regard is Adcy10, which contributed to
the enrichment of the circadian entrainment term, was upre-
gulated by throughout exercise (relative to sedentary controls),
and was positively correlated with behavior. The down-
regulation of E2F-related transcripts, which contributed to the
neuronal survival term, is also of interest, considering that it
was also correlated with behavior; it has also been shown to
prevent morphine- and heroin-induced apoptosis in cerebellar
neurons (90–92). Our RNA-seq findings thus shed light on the
potential pivotal role that circadian entrainment and neuronal
survival may play in preventing cocaine-seeking response, but,
as with the glutamatergic findings, we will need to provide
functional confirmation in future studies.

In conclusion, these findings reveal possible glutamatergic
mechanisms and other novel candidate mechanisms that may
underlie cocaine seeking and the efficacy of exercise to reduce
cocaine seeking. We plan to use these findings to guide our
future studies, which will focus on determining the functional
consequences of these molecular changes. Future studies
also are needed to address mechanistic differences between
745 www.sobp.org/GOS
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Table 4. Downregulated Gene-Associated Transcripts
Induced by Exercise During Throughout, but Not Late,
Withdrawal (Relative to Sedentary Controls)

Downregulated Gene Transcript

AABR07013729.1 ENSRNOT00000080332

AABR07030184.9 ENSRNOT00000080772

AABR07046765.1 ENSRNOT00000071767

AABR07064415.1 ENSRNOT00000082472

Ank2 ENSRNOT00000015386

Clk2 ENSRNOT00000085817

Coro7 ENSRNOT00000006067

Exoc3 ENSRNOT00000020251

Fdps ENSRNOT00000080185

Fhod3 ENSRNOT00000041961

Ggnbp2 ENSRNOT00000085728

Igf1 ENSRNOT00000081822

Itsn1 ENSRNOT00000047843

Ksr2 ENSRNOT00000071074

Las1l ENSRNOT00000016042

Ldb1 ENSRNOT00000040904

LOC100911361 ENSRNOT00000076198

LOC103689920 ENSRNOT00000084136

Mdm2 ENSRNOT00000066767

Mlf2 ENSRNOT00000088622

Nebl ENSRNOT00000068553

Nfxl1 ENSRNOT00000077080

Pfkfb3 ENSRNOT00000051067

RGD1307947 ENSRNOT00000036141

RGD1564855 ENSRNOT00000079980

Rpl9 ENSRNOT00000076914

Stim1 ENSRNOT00000088370

Syt3 ENSRNOT00000077427

Tbck ENSRNOT00000083937

Ten1 ENSRNOT00000083022

Trmt10a ENSRNOT00000014694

Wdfy1 ENSRNOT00000063834

Dync2il ENSRNOT00000006144

Wnk1 ENSRNOT00000013355

Xpnpep1 ENSRNOT00000033148

Ybx3 ENSRNOT00000007427

Zfp799 ENSRNOT00000087294
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early- versus throughout-withdrawal exercise because their
protective effects against cocaine seeking are likely mediated
via different mechanisms. Finally, these findings suggest RNA
mis-splicing as a potential mechanism underlying cocaine
seeking and highlight a need for further research on its role in
CUD.
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