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Abstract: Microbes hold immense potential, based on the fact that they are widely acknowledged
for their role in mitigating the detrimental impacts of chemical fertilizers and pesticides, which
were extensively employed during the Green Revolution era. The consequence of this extensive
use has been the degradation of agricultural land, soil health and fertility deterioration, and a de-
cline in crop quality. Despite the existence of environmentally friendly and sustainable alternatives,
microbial bioinoculants encounter numerous challenges in real-world agricultural settings. These
challenges include harsh environmental conditions like unfavorable soil pH, temperature extremes,
and nutrient imbalances, as well as stiff competition with native microbial species and host plant
specificity. Moreover, obstacles spanning from large-scale production to commercialization persist.
Therefore, substantial efforts are underway to identify superior solutions that can foster a sustainable
and eco-conscious agricultural system. In this context, attention has shifted towards the utilization
of cell-free microbial exudates as opposed to traditional microbial inoculants. Microbial exudates
refer to the diverse array of cellular metabolites secreted by microbial cells. These metabolites en-
close a wide range of chemical compounds, including sugars, organic acids, amino acids, peptides,
siderophores, volatiles, and more. The composition and function of these compounds in exudates
can vary considerably, depending on the specific microbial strains and prevailing environmental
conditions. Remarkably, they possess the capability to modulate and influence various plant physio-
logical processes, thereby inducing tolerance to both biotic and abiotic stresses. Furthermore, these
exudates facilitate plant growth and aid in the remediation of environmental pollutants such as
chemicals and heavy metals in agroecosystems. Much like live microbes, when applied, these exu-
dates actively participate in the phyllosphere and rhizosphere, engaging in continuous interactions
with plants and plant-associated microbes. Consequently, they play a pivotal role in reshaping the
microbiome. The biostimulant properties exhibited by these exudates position them as promising
biological components for fostering cleaner and more sustainable agricultural systems.
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1. Introduction

The ecology of the phytosphere is highly complex, where continuous interactions
between plants and microbes are evident. This interplay can either benefit each other
through various mechanisms, such as nutrient exchange, the induction of metabolic path-
ways/processes, and the secretion of various exudates or metabolites, or harm each other
through disease initiation, a reduction in plant growth, and the modification of the micro-
biome. Microbe–microbe interactions further shape the microbiome structure, including
both beneficial and harmful microbes. These multi-trophic interactions create a unique
chemical niche around the plant, determining the fate of phytospheric health and, ulti-
mately, maintaining ecological balance in agroecosystems. Unfortunately, the introduction
of xenobiotic compounds (organophosphates, aromatic hydrocarbons, heavy metals, and
phenols) into agroecosystems in the form of pesticides, herbicides, and fertilizers has
resulted in soil degradation and environmental deterioration.

Exploring and harnessing beneficial microbes is an emerging option forsolving this
problem. These beneficial microbes include plant-growth-promoting rhizobacteria (PGPRs),
plant-growth-promoting fungi (PGPFs), endophytes, biocontrol agents, mycorrhiza, algae,
etc. They play multifunctional roles in direct and indirect plant growth and development, as
well as promotion. Directly, they can interfere with other microbes through hyperparasitism,
predation, and ecological competition. Indirectly, they can secrete various biologically active
compounds such as sugars [1], enzymes, siderophores, 1-aminocyclopropane-1-carboxylate
(ACC) deaminase [2,3], volatile organic compounds (VOCs) [4], exopolysaccharides [5–7],
and phytohormones such as gibberellin, cytokinin, and abscisic acid [8–10]. These com-
pounds act as biostimulants, regulating or modifying physiological processes in plants
and mitigating stress conditions. Some of these compounds, like enzymes, can degrade
xenobiotic compounds such as organophosphate pesticides through hydrolyzation [11],
making them potential bioremediants. However, applying these beneficial microbes in
consortia poses challenges in their large-scale (field) application due to their specific nu-
tritional and environmental requirements for growth. Their high ecological specificity
and preference for specific host plants and soil physio-chemical niches make them less
suited for robust field application as they are well-adapted to their native environment.
In addition, delivering beneficial microbes in the proper formulation in situ is crucial for
building up their population, but a one-size-fits-all approach may not be suitable for all
microbial species/strains. Furthermore, biosafety concerns related to the use of living
micro-organisms may limit their direct field application.

A promising solution to address these challenges may arise from the rhizosphere,
where plants and microbes exist as interacting entities, producing an array of diverse
chemical compounds that play a crucial role in plant growth and development. Over
20,000 compounds produced by microbes can influence plants’ behavior, combat biotic and
abiotic stress, and promote normal growth and development. Such compounds, collectively
known as “biostimulants”, of microbial origin are included under the European Union (EU)
regulation 2019/1009 as fertilizing products, providing they function to stimulate plant
nutrition processes independent of products’ nutrient content and improve characteristics
such as nutrient use efficiency, tolerance to stress, quality traits, or nutrient availability in
soil, plants, or the rhizosphere [12]. In this context, microbial biostimulants consisting of
microbial exudates play a significant role and are composed of diverse molecules such as
sugars, organic acids, amino acids, peptides, siderophores, volatile compounds, etc. These
exudates can easily be extracted from microbial cultures and applied as cell-free exudates.
The CMC-7 (Component Material Categories, number 7) list includes microbes from only
four different genera, like Rhizobium sp., Mycorrhiza sp., Azotobacter sp., and Azospirillum sp.,
and a microbial plant biostimulant can consist of these micro-organisms or their consortia.
Such strict regulation could hinder and prohibit the use of novel beneficial microbes,
as well as the formulation of their products in the market. Nevertheless, the European
Biostimulant Industry Council (EBIC) has directed its focus to redefine its regulatory and
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safety requirement on the EU market and update the CMC-7 list in the new regulation [13]
to encourage the inclusion of other beneficial microbes.

Currently, cell-free microbial exudates show great potential in various fields of agricul-
ture, from stimulating plant growth and defense to the bioremediation of harmful pesticides
and heavy metals. Due to their low environmental impact, these exudates can be preferred
over fertilizers and pesticides, making them viable components for sustainable agricultural
systems. However, since the precise definition of microbial exudates remains uncertain,
this review aims to encompass and classify the diverse nature of compounds secreted
or exudated by microbes, which can be referred to as microbial exudates. The review
primarily focuses on the role of microbial exudates as biostimulants, and their function in
plant growth, health promotion, plant protection, and the alleviation of abiotic stress. Addi-
tionally, the strategies or mechanisms involved in the cell-free microbial exudate-mediated
remediation of heavy metals and the degradation of xenobiotic compounds are illustrated,
along with their impact on the plant microbiome.

2. Microbial Exudates and Their Composition

Microbes release a variety of exudates into the rhizosphere, where the term “exudates”
refers to compounds released through exudation, secretion, or both. These compounds are
diverse, with the majority being organic, inorganic, or chemical in nature. They include
metabolites like hormones, organic acids, amino acids, exopolysaccharides, siderophores,
hydrogen cyanide (HCN), and volatile organic compounds(VOCs) (Figure 1). Microbes
produce these compounds in response to various stimuli, such as competition for niche
species, nutrient deficiency, signals from plants, or as a response to environmental stress.
Research indicates that, during the evolutionary phase, plants have developed sensing
mechanisms to perceive a fraction of these compounds [14] to enhance their growth under
adverse conditions [15–17].
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Figure 1. Biochemical constituents of microbial exudates containing amino acids (aspertic acid, pro-
line, and betaine), exopolysaccharides (aldohexose, rhamnose, and xylose), siderophores (Pyochelin
and 2,3 dihydroxybenzoic acid),organic acids (malic acid, succinic acid, and oxalic acid), hormones
(auxin, cytokinin, and gibberellic acid), reducing agent (catechol), etc.
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2.1. Siderophores

Siderophores are low molecular weight organic compounds synthesized by numerous
bacterial and fungal species under iron (Fe)-deficient environments. They are structurally
and chemically diverse molecules with different iron-chelation capacities. Plants growing
under iron-stressed conditions utilize siderophores produced by rhizospheric microbes
surrounding the root zone to meet their iron demand. These siderophores have been
reported to enhance biochemical and physiological processes in plants under drought con-
ditions [18], saline soil [19], and heavy-metal-stressed soil [20]. Additionally, siderophores
possess certain ligands to bind with free iron (chelation) and other metal ions such as
molybednum (Mo+6), cobalt (Co+2), manganese (Mn+2), and nickel (Ni+2), and facili-
tate their transportation within the plant cell through membrane receptor molecules [21].
Siderophores are capable of oxidizing heavy metals such as lead (Pb+2), zinc (Zn+2), cad-
mium (Cd+2), uranium (U+6), plutonium (Pu+4), thorium (Th+4), and Ni+2, altering their
toxicity [22]. Consequently, they play a crucial role in bioremediation, enhancing plant
growth, and nutrient uptake [23]. Based on the ligands used for iron chelation, siderophores
are divided into four major families, namely, catecholate, hydroxamate, carboxylate, and
mixed-ligand siderophores.

2.1.1. Catecholate Siderophores

These siderophores contain mono- or dihydroxybenzoic acid moieties engaged in the
chelation of ferric iron via hydroxyl groups, forming a hexadentate octahedral siderophore–
Fe3+complex when secreted. Various beneficial plant-associated bacterial species produce
this type of siderophore, such as 2,3-dihydroxybenzoylglycine (Bacillus subtilis) [24], spir-
ilobactin (Azospirillum brasilense), 2,3-dihydroxybenzoic acid (Azospirillumlipoferum) [25],
aminocholine, nitrocholine, protochelin (Azotobacter vinelandii) [26], Agrobactin (Rhizobium
radiobactor) [27], and 2,3-dihydroxybenzoic acid conjugated to threonine (Rhizobium
leguminosarum) [28]. For example, the catecholate siderophore produced by Bacillus subtilis
is reported to enhance seed germination and plant growth in Coriandrum sativum [29]. Un-
der drought conditions, catecholate is reported to enhance soybean seed germination [30].

2.1.2. Hydroxamate Siderophores

These siderophores are mostly derivatives of hydroxamic acids, with hexadentate
ligands involved in the chelation of ferric (Fe3+) ions via a carbonyl group. They are
produced by bacterial and fungal species and form stable and strong hexadentate octa-
hedral complexes with Fe3+. Examples include Vicibactin (Rhizobium leguminosarum bv.
viciae), Ferrichrome (Ustilago ferrigona), Desferridoxamine B (Streptomyces griseus), and fer-
ribactin (Pseudomonas fluorescens). Hydroxamate produced by Bacillus subtilis MF497446 and
Pseudomonas korensis MG209738 significantly increased polyphenol oxidase, catalase, and
peroxidase activities in maize, along with boosting the plant chlorophyll and carotenoid
content, leading to improved crop yield [31].

2.1.3. Carboxylate and Mixed-Type Siderophores

Carboxylate siderophores are derivatives of citric acids, containing hydroxyl and
carboxyl groups as proton donors for iron acquisition. They are produced by bacteria like
Sinorhizobium meliloti (Rhizobactin) [32] and fungi like Rhizopus microspores (Rhizoferrin)
and other mucorals [33]. Mixed-ligand siderophores encompass several functional groups
for chelating iron, such as salicylic derivatives (pyovedine and pyochelin produced by
Pseudomonas sp.) and hydroxymate and phenol catechol functional groups. Pyoverdine-
like and Pyochelin-like siderophores produced by Pantoea eucalypti M91 under alkaline
conditions were reported to promote morphological and biochemical changes in the lotus
plant and induce improved photosynthesis and iron translocation [34].
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2.2. Exopolysaccharides (EPSs)

Exopolysaccharides (EPSs) are extracellular sugar molecules produced by various mi-
crobes, including bacteria, cyanobacteria, marine microalgae, and marine micro-organisms [35].
They are secreted out of the cells and accumulate on the external surface of the synthesizing
microbes. EPSs are composed of repeated units of the same or different types of sugar
molecules coupled with proteins, glycoproteins, acids (glucuronic acid, mannuronic acid,
or galacturonic acid), lipids (glycolipids), organic and inorganic compounds, metal ions,
and extracellular DNA. As approximately 40–95% of the extracellular polymeric substance
is composed of polysaccharides, EPSs are also used to designate compounds referred to as
extracellular polymeric substances. EPS synthesis occurs via ATP binding cassette (ABC)
transporter-dependent pathways, WZX/Wzy-dependent pathways, synthase-dependent
pathways, or extracellular synthesis involving single sucrose proteins [36]. The resulting
polysaccharides are modified by enzymatic reactions such as acylation, sulphation, methy-
lation, and acetylation [37], and they are finally exuded from the cell in the form of loose
slime or a capsule after being transported to the cell surface. EPSs are released into their
surroundings in response to physiological stresses, such as temperature [38], salinity [39], or
heavy metal pollution [40], to overcome extreme environmental fluctuations. The different
composition (carboxyl, hydroxyl functional groups, and non-carbohydrate substituents)
and structure of EPSs enable metal ion sequestration by biosorption through the interaction
between positively charged metal ions and negatively charged EPSs [41]. EPSs are reported
to act as a conductor and reservoir of water to plant roots under water stress [42], and they
can chelate free Na+ from the soil, making it unavailable to plants under salt stress. While a
comprehensive understanding of the direct impact of EPSs on plant physiology to improve
drought stress is not absolute, Naseem and Bano [43] suggested that diverse functional
groups of EPSs trigger different plant antioxidant mechanisms to alleviate drought stress.
The flocculating property of EPSs allows the aggregation of primary soil particles, enabling
the stabilization of the soil structure and the improvement of soil physical properties such
as porosity and bulk density [44]. Due to these characteristics, EPS-producing PGPRs,
when associated with plants, play a crucial role in alleviating abiotic stress and are widely
used for bioremediation.

For example, Atouei et al. [5] reported that EPSs secreted by Bacillus subtilis TP7 and
Marinobacter lipolyticus SM19 restricted the uptake of Na+ by wheat. The binding and
biofilm formation property of EPSs favor soil aggregation, stability, and the retention
of the water layer around root cells, improving cell adhesion in plants growing under
salt stress [45,46] and drought stress [47,48]. Cheng et al. [49] demonstrated the effect of
EPS-producing bacteria (Pseudomonas chlororaphis A20 and Bacillus proteolyticus A27) on
the cell count, polysaccharide content, and invertase activity in the soil. They reported
an increase in the cell biomass, polysaccharide content (by 158–174%), invertase activity
(153–198%), and the ratio of water-stable soil macroaggregates and water-stable macro-
aggregates in soil compared to the un-inoculated control, possibly due to the production of
specific EPSs (xylose, aldohexose, rhamnose, and glucose). Furthermore, EPSs have been
reported to slow down the evaporation process, increasing water availability in plants [50].
EPSs produced by the B. subtilis strain UD1022 reduced the hydraulic conductivity and
accumulative evaporation in treated soil by altering/modifying water’s physiochemical
properties (viscosity and surface tension), soil matrix structure, and pore space connectivity.
This provides more time for plants to make necessary metabolic adjustments during
drought stress. Benard et al. [51] reported a similar effect while working on the B. subtilis
strain NCIB 3610, where EPSs produced by the strain reduced evaporative drying and
water loss from the soil by reducing the soil hydraulic conductivity and capillary forces,
enabling the retention of a water layer below the dry soil.

2.3. Phytohormones

Phytohormones like auxin, gibberellin, cytokinin, and ethylene are exogenously pro-
duced by diverse microbes, including rhizospheric, epiphytic, symbiotic, and pathogenic



J. Xenobiot. 2023, 13 577

fungi and bacteria. These phytohormones act as mediators for communication between
plant hosts and microbes and serve as natural growth promoters for plants. Indole acetic
acid (IAA) belongs to indole derivatives and is produced by many rhizospheric and epi-
phytic bacteria, as well as methylobacteria. Its biosynthesis in micro-organisms is associated
with tryptophan metabolism and is formed via indole-3-pyruvic acid, indole-3-acetic alde-
hyde, and indole-3-acetamide formation. In plants, IAA binds to amino acids, sugars, or
proteins and is stored in an inactive form; it is released when required. Gibberellins, on the
other hand, are complex molecules of tetra-carbocyclic diterpenes consisting of isoprene
residues that form four rings (A, B, C, and D). The best-studied GAs are GA3, GA7, GA1,
and GA4, and several other gibberellins are characterized based on characteristic biological
activity. GAs in plants are required for stem elongation, cell division, the activation of
amylolytic enzymes, and membrane stabilization. Another phytohormone, cytokinin, is
produced by some microbes, such as rhizobacteria, streptomycetes, methylotrophic and
methanotrophic bacteria, and PGPR strains, and includes adenine derivatives. These
microbes synthesize zeatin, kinetin, iso-pentenyl-adenine, and some other cytokinin deriva-
tives. Cytokinin regulates a wide range of physiological responses in plants, such as the
activation of cellular RNA/protein synthesis, the inhibition of quiescence, the regulation of
chloroplast formation, and the stabilization of the photosynthetic apparatus under adverse
environmental stress. Additionally, certain bacteria and fungi can produce ethylene, which
is biosynthesized via methionine metabolism. Phytohormones produced by microbes thus
work as regulators for numerous physiological processes in both plants and microbes, can
serve as a nutrient source, and have antimicrobial properties, as well as have a direct influ-
ence on microbial communities. Microbial auxins are reported to enhance root growth and
root hair formation. Their capacity to sustain plant growth under abiotic stress or nutrient
deficiency can be attributed to their role in altering root development and architecture [52].
Furthermore, microbial cytokinin can boost the release of root exudates (amino acids) in its
rhizosphere, which may have a broader effect on rhizospheric microbiomes [53].

2.4. Volatile Organic Compounds (VOCs)

Microbial VOCs are a group of compounds emitted by microbes, such as bacteria
and fungi, under diverse ecosystems. Chemically, microbial VOCs comprise heteroge-
neous molecular classes such as alcohols, ketones, thioalcohols, hydrocarbons, aldehydes,
thioesters, cyclohexane, phenols, and benzene derivatives [36,54–56]. These compounds
originate from catabolic backgrounds and encompass low-complexity, rather lipophilic
compounds [57–60]. They include inorganic molecules (CO, H2, CO2, N2, NH3, SO2,
SO3, H2S, O2, NO2

−, and HCN) or organic molecules that are small (<300 Da) C-based
molecules. Classification has also been performed based on their molecular features, such
as ring moieties, the number of C-atoms, and substituent groups [61]. Microbial VOCs
have immense functional potential, and, although their role in promoting plant growth is
underestimated, it was first reported by Ryu et al. [62]. Microbial VOCs have been utilized
to control pathogenic fungi in fruits and vegetables, and, although the exact molecular
and physiological mechanisms behind it are not elucidated, the underlying mechanism
includes the disruption of the fungal cell wall (by increasing membrane permeability via
lipid peroxidation) and membrane structure leading to intracellular lysate leakage, and
the induction of oxidative stress. For example, VOCs have been reported to increase cell
membrane fluidity, leading to conformational changes in membrane proteins, the leakage
of intracellular content and eventually, the death of the fungal cell [63].

2.5. Organic Acids and Amino Acids

Distinguishing between microbial exudates and plant root exudates is challenging in
an actual plant–microbe interacting set-up, as both are interrelated and collegial. Many
researchers use the term “exudates” for compounds released by roots and associated
microbes [64]. Exudates contain different types of compounds like organic acids (oxalic
acids, citric acids, malic acid, succinic acid, etc.), reducing agents (catechol, phenolic
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substances, etc.), and simple sugars [64] and amino acids (aspartic acid, etc.) [65]. These
compounds have different influences on the rhizospheric microbiome. Simple sugars act
as easily digestible food for microbes, attracting more microbes to the rhizosphere [66].
As a result, there is a higher formation and loss of mineral-associated organic matter
(MAOC) [65]. MAOC is the organic matter complexed with amorphous iron (Fe) and
aluminum (Al) oxides, mostly a byproduct of microbial biomass [64]. However, if the
exudate is rich in amino acids, there is a net accumulation of mineral-associated organic
matter (MAOM) [65]. On the other hand, when there is more mineralization of MAOC, it
also makes the reservoir of fixed nitrogen available for plants and microbes [67]. Amino
acid arginine was detected in the exudates of the biofilm of Pantoea sp. on the roots of
poplar, and its concentration was positively correlated with biofilm formation [68]. Oxalic
acid greatly contributes to the mineralization of MAOM and also positively regulates
the population of alkaline phosphatase gene-harboring microbes like Pseudomonas and
Bacillus, as well as the phosphorus concentration of rhizospheric soils [69]. Organic acids
and reducing agents serve as stronger agents carrying out the mineralization of MAOM,
which is complexed with reducible forms of ferric oxides. As a result, they release the ferric
or ferrous ions from the complex. Plant-growth-promoting microbes release carbon and
nitrogen from ferric complexes to make nutrients more available to plants and microbes,
and, to prevent further capturing of these nutrients by the ferric ions, the microbes further
chelate them by virtue of producing siderophores. Several reports also claim that this
chelating of iron creates iron-deficient conditions in the rhizospheric region of plants, which
activates the defense-related induced systemic resistance pathway in plants [70].

3. Identification and Characterization of Microbial Biostimulants

Microbial biostimulants are essential for promoting plant growth and stress resistance.
However, the emphasis has recently changed to employing cell-free microbial exudates
as biostimulants to tackle the problems of shelf life of microbial cells and spores. To find
secondary metabolites in microbial exudates, new methods have been devised [71]. The
challenging objective is to identify the precise components and compounds that, when
applied as biostimulants, have a positive influence on plant growth and stress resistance.
Biochemical profiling (co-cultivation and chemical epigenetic manipulation), molecular
identification (transcriptional regulation and promoter tools), biological assays (cultural
conditions), and other techniques can be used to determine the biochemical nature of
biostimulants in microbial exudates [72,73] (Table 1).

Before beginning these analyses, microbes are grown in liquid broth media, followed
by refrigerated centrifugation, collection of the supernatant, vigorous shaking, and sepa-
ration using a separating funnel. This procedure extracts microbial exudates using ethyl
acetate, ethanol, or methanol. In order to discover new secondary metabolites as biostim-
ulants, the resulting fraction is further separated and gathered for a biological assay and
biochemical investigation [74].

3.1. Biological Assays
3.1.1. In Vitro Study

Separate fractions can be dried and dissolved in sterilized distilled water or methanol.
A methylthiazolyldiphenyl-tetrazolium bromide (MTT)-based assay in microtitre plates can
be used to determine the optimal dose for increasing the germination percentage without
having any phytotoxic effects [75]. The fractions can be added to Murashige and Skoog
(MS) medium in a variety of concentrations, and observations of various plant seedling
parameters like germination rates, root growth, shoot development, fresh weight, and
dry weight can be made [76]. This approach is known as the multi-trait high-throughput
screening of plants (MTHTS). It is also possible to assess how the plants react to abiotic
challenges including salt, dehydration, and cold tolerance under the influence of the
fractions [77].
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3.1.2. In-Pot Assay

As foliar sprays for dipping roots prior to transplanting or for irrigating seedlings
placed in sterilized soil, the stated water and organic fractions can be utilized. The impact
on seedling biomass accumulation, root shape, shoot biomass index, yield, and nutritional
status can be evaluated [78,79]. The state of defense and phytohormonal signaling enzymes
and molecules can be evaluated at the transcriptome level under biotic and abiotic stress
conditions [80]. The impact of biostimulants on the methylation state of the plant genome
can also be investigated [81].

3.1.3. On-Field and Hydroponics Study

The specified doses of biostimulants can be evaluated through hydroponics and
field trials, followed by field crop phenotyping through drone imaging [82]. To assess
the effect on crops, integrating analysis with different omics approaches and advanced
statistical tools is needed [83]. The potential of microbial exudates can be identified and
chemically deciphered.

3.2. Biochemical Assay

Different analytical methods, including thin layer chromatography (TLC), gas chro-
matography coupled with mass spectrometry (GC-MS), liquid chromatography coupled
with mass spectrometry (LC-MS), high-performance liquid chromatography (HPLC), col-
umn chromatography (CC), and high-resolution mass spectrometry (HRMS), etc. can
be used to examine the fractions that have positive effects on plant growth and stress
resilience [74,84–86]. The dereplication of samples and analysis of microbial exudates
using advanced tools like high-performance liquid chromatography (UHPLC)-diode array
(DAD)-HRMS and databases like NIST, Global Natural Product Social (GNPS) Molecular
Networking platform, and Dictionary of Natural Products Database (DNPD) can help
identify novel secondary metabolites from microbes (Figure 2) [74,87].
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Figure 2. Isolation, purification, and characterization of microbial exudate and its application.
Pure culture of microbes, viz., plant-growth-promoting rhizobacteria (PGPRs) and plant-growth-
promoting fungi (PGPFs) were grown in suitable liquid culture media. Then, the cell-free microbial
culture filtrates can be characterized by advanced techniques like liquid chromatography–mass
spectrometry (LC-MS), gas chromatography–mass spectrometry (GC-MS), high-performance liquid
chromatography (HPLC), liquid chromatography–diode array detection (LC-DAD), nuclear magnetic
resonance(NMR) spectroscopy, high-resolution electrospray ionization mass spectrometry (HR-ESI-
MS), heteronuclear single quantum coherence (HSQC) spectroscopy, electronic circular dichroism
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(ECD), thin layer chromatography (TLC), high-resolution mass spectrometry (HRMS), electrospary
ionization mass spectrometry (ESI-MS), distortionless enhancement by polarization transfer (DEPT),
MTS assay, X-ray crystallography, etc. The culture filtrates containing siderophores, organic acids,
microbial enzymes, phenols, VOCs, EPS, etc. were isolated, identified, and further tested through
in vitro and in planta assay.

3.3. Molecular Identification

If the microbe’s entire genome sequence is available, or once it has been generated,
tools like the antiSMASH and KEGG pathway analyser can be used to undertake genome
annotation and secondary metabolite gene cluster analyses [88,89].This information can be
used to validate the gene function through gene silencing or editing techniques [90].

The molecular identification of genes associated with biostimulant production in
microbes is essential for their further exploitation. The medium can be modified to increase
the production of the desired metabolite once it has been identified as a biostimulant in
the microbial exudate. Alternatively, mutants can be generated to increase the metabolite’s
production. Genes responsible for metabolite synthesis can be engineered and introduced
into E. coli for low-cost commercial production, which is crucial for agricultural crop
productivity and stress resilience [91].

Table 1. Some techniques for detection and identification of microbial exudates.

Microbe Detection Techniques Compounds Detected Property of Compound Reference

Trichoderma harzianum

OSMAC, extraction with ethyl
acetate, LC-MS, GC-MS, X-ray
analysis, plant growth, antifungal
assay, cytotoxicity assay.

Siderophores, (ferricrocin and
coprogen B), harzianic acid (HA)
and its derivatives, butenolides
and a novel metabolite,
5-hydroxy-2,
3-dimethyl-7-methoxychromone

Antifungal, anticancerous,
no cytotoxic effect [92]

Alcaligenes faecalis

Co-cultivation with fragments of
Sclerotium rolfsii, extraction by
ethyl acetate, HPLC, poisoned
food technique, in-plant assay of
defence and growth promotion.

Higher concentration of shikimic
acid and gallic acid in CFS during
co-cultivation. Higher
concentration of defence enzymes
in plants challenged and sprayed
with CFS of co-cultivated A.
faecalis.

Antifungal, plant growth
promoter, and plant
defense promoter

[72]

Actinomycetes
(Micromonospora sp.
UR56 and
Actinokinespora sp.
EG49)

Co-cultivation with Actinomycetes
or other non-actinomycete bacteria,
fungi, cell-derived components,
and/or algae.OSMAC.

1,6-Dicarboxylate Antibacterial [93]

Carbazoquinocin G Antimicrobial [94]

Malformin C Increase in cytotoxic
activity [95]

Trichoderma spp.

α,α-diphenyl-β-
picrylhydrazyl (DPPH) free radical
assay for total phenolic, ascorbic
acid, total antioxidant capacity,
anthocyanin characterization, fruit
protein analysis by bioinformatics
and Nano LC-ESI-Q-Orbitrap
MS/MS.

6-pentyl-α-pyrone (6PP),
harzianic acid (HA), and
hydrophobin 1 (HYTLO1)

Growth promotion of
strawberry, more synthesis
of proteins, activated
defense response in plants
after treatment with
specified compounds

[96]

Trichoderma
brevicompactum

Preparative TLC, NMR,
HR-ESI-MS, X-ray crystallography

Trichodermarins G–N,
trichodermol, trichodermin,
trichoderminol, trichodermarins A
and B, 2,4,12-trihydroxy
apotrichothecene

Antifungal and
antimicroalgal activities [97]

T. brevicompactum
TPU199

Fermentation with sodium halides,
LC-MS, NMR Trichobreols A–C Antifungal activity [98]

T. longibrachiatum

Extraction with ethyl acetate, silica
gel vaccum liquid chromatography,
HPLC, HR-ESI-MS, NMR, HSQC,
ECD spectra, microdilution.

Trichothecinol A,
8-deoxy-trichothecin,
trichothecinol B,
Trichodermene A

Antifungal activity [99]
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Table 1. Cont.

Microbe Detection Techniques Compounds Detected Property of Compound Reference

T. atroviride B7

Extraction with ethyl acetate, TLC,
HPLC, CC, preparative TLC,
semi-preparative HPLC, NMR.
HRMS, COSY, key HMBC and key
ROESY correlation of compounds,
MTS assay for cytotoxicity

Harzianols F–J,
3S-hydroxyharzianone,
harziandione, harzianol A

Potent antibacterial
activity and moderate
cytotoxicity

[100]

T. virens FKI-7573

Molecular identification, MS,
NMR, ECD, and chemical
degradation and comparison
with DNPD.

Trichothioneic acid Potent antioxidant
activity [101]

T. afroharzianum
Fes1712

Overexpression of talae1, insertion
of transformant plasmids (nested
PCR and vector-based strategy) of
E.coli into T. afroharzianum Fes1712
for secondary metabolite
production. Ethly acetate
extraction, CC, semi preparative
HPLC, HRMS, NMR, ECD,
bioactivity (96-well titer plate
microdilution).

(R,3E,5E)-1-(3,5-dihydroxy-2,4-
dimethylphenyl)-1-hydroxyhepta-
3,5-dien-2-one,
(R,3E,5E)-1-(3,5-dihydroxy-2,4-
dimethylphenyl)-1-methoxyhepta-
3,5-dien-2-one

Moderate antifungal
activity [91]

T. harzianum QTYC77

Ethyl acetate extraction, NMR,
HRMS, COSY spectra, HMBC
spectra, HMQC spectra, DEPT
spectra, UV spectra, CD spectra, IR
spectra, UHPLC-QTOF-MS

Azaphilones D and E Moderate antibacterial
activity [102]

T. harzianum D13

Ethyl acetate filtrate, ECDspectra,
spectrophotometer, The 1D (1H,
13C, and NOE) and 2D NMR
spectra [HMQC, (COSY), (HMBC),
and (NOESY)], ECD spectra,
ESI-MS, and HRESIMS, HPLC, CC,
96-well microtitre plate assay for
antifungal activity.

Nafuredin C, nafuredin A Moderate antifungal
activity [103]

T. asperellum IRAN
3062C and
T. longibrachiatum IRAN
3067C w

Co-cultivation, methanol/ethanol
extraction, reverse-phase HPLC,
ESI-MS, RNA-extraction-based
expression of tex1 peptaibol
synthetase gene.

Increased expression of tex1
peptaibol synthetase gene and
increased synthesis of Peptiabol
when co-cultivated with plant
pathogens

Antifungal activity [73]

Abbrebiation: OSMAC = one strain, many compounds; ECD = electronic circular dichroism; ROESY = rotat-
ing frame Overhauser enhancement spectroscopy; HMQC spectra = heteronuclear multiple quantum corre-
lation; DEPT = distortionlessenhancement by polarization transfer; NOESY = nuclear Overhauser effect spec-
troscopy; LC-MS = liquid chromatography–mass spectrometry; GC-MS = gas chromatography–mass spectrometry;
HPLC = high-performance liquid chromatography;LC-DAD = liquid chromatography–diode array detection;
NMR = nuclear magnetic resonancespectroscopy; HR-ESI-MS = high-resolution electrospray ionization mass
spectrometry;HSQC = heteronuclear single quantum coherence spectroscopy; ECD = electronic circular dichroism;
TLC = thin layer chromatography, HRMS = high-resolution mass spectrometry; HSQC = heteronuclear single
quantum correlation NMR spectroscopy;UHPLC-QTOF-MS = ultra-high-performance liquid chromatography–
quadrupole time-of-flight–mass spectrometry.

4. Microbial Exudates as Biostimulants

Biostimulants encompass natural, synthetic, or formulated products of biological ori-
gin that can modify or regulate plant physiological processes, ultimately improving plant
health and growth. The majority of biostimulants are of microbial origin and consist of
secretions, extracts, or exudates from various microbes, including bacteria (endosymbiotic
and plant-growth-promoting bacteria), fungi (mycorrhizal or non-mycorrhizal fungi), and
algae. Endophytic microbes produce metabolites with diverse biological activities, such as
alkaloids, polypeptides, polyketides, and terpenoids, which hold significant importance in
various fields, particularly agriculture. Antimicrobial compounds and phytohormones re-
leased by endophytes play a crucial role in enhancing biotic stress tolerance and promoting
plant development and growth. These microbial exudates function through direct and indi-
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rect mechanisms, facilitating plant growth promotion and regulating plant defense against
biotic and abiotic stress [104,105]. While the exact mechanisms are not entirely understood,
some researchers have illustrated different modes of action for these compounds. Certain
microbial compounds act as signaling molecules, regulating defense gene expression, and
phytohormone, phenol, or secondary metabolite synthesis in plants [106,107], and enhanc-
ing the production of enzymes or proteins essential for stress management [108,109]. The
effectiveness of these compounds is influenced by factors like the nature of plant–microbe in-
teractions, environmental conditions, and the type or concentration of compounds [17,110].
Currently, many microbes and their secreted compounds are well-characterized [111,112]
and utilized for commercial biostimulant formulations.

4.1. Microbial Exudates in Promoting Plant Growth and Health

Microbial exudates can promote and stimulate crop growth and development through
various mechanisms, such as the solubilization of insoluble minerals, production of or-
ganic acids, antimicrobial metabolites/lytic enzymes, or regulation of growth-regulating
genes (Table 2). These mechanisms can alter plant morphology, leading to increased root
and shoot length, higher chlorophyll content, an expanded leaf area, extended flowering
periods, and improved yields [113–115]. For instance, certain plant-growth-promoting
microbes (PGPMs) enhance the nutrient utilization of associated plants by secreting organic
acids and enzymes in the soil, facilitating the solubilization of potassium and inorganic
phosphates. They also promote phosphorus mineralization through enzymes like phytases
and acid phosphatases [116–118]. Additionally, ACC-deaminase produced by specific
bacteria elevates stress hormone levels like jasmonic acid and salicylic acid, inducing plant
defense by regulating key signaling pathways [119–122]. Some bacteria producing HCN
increase the sequestration of metals and make phosphorus more available to their plant
host [123]. Moreover, hormones produced by PGPMs increase root biomass, reduce stomata
density and dimensions, and activate auxin-responsive genes, enhancing plant growth
and development [114,124]. Notably, IAA produced by beneficial microbes stimulates
lateral root formation and root surface area expansion, leading to improved nutrient uptake
and plant growth [125,126]. Additionally, fungal siderophores secreted by species like
Aspergillus niger, Trichoderma harzianum, and Penicillium citrinum promote shoot and root
length in chickpeas [127]. Microbial cellular exudates also contain signature molecules
that induce plant growth and defense; certain bacteria and algal species demonstrate these
effects [128]. For instance, cell exudates of Bacillus pumilus and Pseudomonas pseudolcaligenes
stimulate rice growth and yield [129]. Algal extracts, rich in osmolytes (proline and glycine
betaine) and plant hormones (auxin, gibberellins, cytokinin, indole butyric acid, polyamine,
and trans-zeatin), exert beneficial effects by activating plant growth and defending against
biotic and abiotic stress.

Table 2. Microbial exudates in plant growth promotion and amelioration of biotic stress.

Microbes Microbial Exudates Mode of Action References

Azotobacter chroococcum Exopolysaccharide Plant growth promotion in Faba bean [130]

Bacillus gibsonii (PM11),
B. xiamenensis (PM14) Exopolysaccharide

Enhanced nutrient availability and plant growth of
Linum usitatissimum by minimizing metal-induced
stressed conditions

[131]

Acinetobacter calcoaceticus
(9EU-LRNA-72),
Penicillium sp. (EU-FTF-6)

Metabolites containing glycine
betaine, proline, sugars, etc.

Increase in chlorophyll synthesis and decrease in
lipid peroxidation [132]

Trichoderma harzianum (M 10) Harzianic acid (siderophore) Induce expression of resistant genes (CC-NBS-LRR)
in tomato [133]

Bacillus amyloliquefaciens (FZB42) Bacillomycin D (lipopeptide)

Degradation of mycotoxin production and disintegration
of plasma membrane of Fusarium graminearum (head blight
pathogen of wheat) through the production of reactive
oxygen species (ROS)

[134]
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Table 2. Cont.

Microbes Microbial Exudates Mode of Action References

Aureobasidium pullulans

VOCs (ethanol,
2-methylpropan-1-ol,
3-methylbutan-1-ol, and
2-phenylethanol)

Increases intracellular reactive oxygen species (ROS)
accumulation, lipid peroxidation, and content leakage,
thereby inhibiting Botrytis cinerea growth

[135]

A. pullulans VOCs Triggers lipid peroxidation and electrolyte leakage in
B. cinerea and Alternaria alternate [135]

B. subtilis (BS2) Metabolites Defense enzyme production such as peroxidase (PO),
polyphenol oxidase (PPO), chitinase, and phenylalanine [136]

Pseudomonas furukawaii,
P. plecoglossicida, P. alcaligenes,
P. oleovarans, Leclercia
adecarboxylata, Citrobacter youngae,
Enterobacter cloacae

Hydroxymate and catecholate

Antagonistic activities against different phytopathogens
like Rhizoctonia solani, Phythium sp., Fusarium oxysporum in
Phaseolus vulgaris, Helianthus sp., Triticum astivum,
Oryza sativa

[137]

Microalgae Polysaccharides Phytostimulant property in tomato [138]

Arthospira platensis Polyamines Regulation of gene expression and protein synthesis for the
modulation of signal transduction [139]

Pseudomonas putida (CRN-09),
Bacillus subtilis (CRN-16) Metabolites

Production of PO, PPO, beta 1,3-glucanse, chitinase,
and phenylalanine ammonia lyase (PAL) against
Macrophomina phaseolina

[140]

B. subtilis VOCs (2,3-butanedione;
3-methylbutyric acid)

Antifungal activity (inhibited hyphal growth) against
Mucor circinelloides; Fusarium arcuatisporum; A. iridiaustralis;
Colletotrichum fioriniae; and reduced decay of
wolfberry fruits

[141]

Pseudomonas fluorescens (G20-18) Bacterial cytokinin Activates plant resistance against pathogenic P. syringae [142,143]

P. fluorescens(C7R12) Pyoverdine siderophore Enhanced root and shoot ratio in Pisum sativum by
promoting plant iron nutrition [144]

Bacillus licheniformis (DS3) Hydroxymate
Biological agents against several fungal pathogens like
Aspergillus niger, Alternaria solani, Fusarium solani, and
Fusarium oxysporium in Vigna mungo

[145]

Ascophyllum nodosum Complex polysaccharides
(fucans and alginates)

The combination treatment of chitosan and A. nodosum
liquid sea weed extract (containing complex
polysaccharide) reduced the level of mycotoxins
deoxynivalenol and sambucinol produced by Fusarium
graminearum in wheat grains by inducing defense genes
and enzymes.

[146]

4.2. Microbial Exudates in Alleviating Biotic and Abiotic Stress

In addition to promoting plant health, microbial exudates induce or stimulate the
plant defense system against diverse biotic and abiotic stresses through modifications in
physiological, biochemical, and biological properties (Table 3).

Table 3. Microbial exudates mediated mitigation of abiotic stress.

Microbes Microbial Exudates Mode of Action References

Pseudomonas anguilliseptica
(SAW24) Exopolysaccharide Enhances biofilm stability under salinity stress and,

thus, protecting the plant root system [147]

Azotobacter sp. (AztRMD2) Exopolysaccharide Augment soil aggregate stability in rice under
drought stress condition [148]

Bacillus endophyticus (J13),
B. tequilensis (J12)

Exopolysaccharide,
IAA, cytokinin Alleviation of osmotic stress in Arabidopsis [149]

Bacillus gibsonii (PM11),
B. xiamenensis (PM14) Exopolysaccharide Enhanced nutrient availability and plant growth of

Linum usitatissimum by minimizing metal stress [131]

Leclercia adecarboxylata (MO1) Metabolites Salinity stress tolerance in soybean via
auxin biosynthesis [150]
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Table 3. Cont.

Microbes Microbial Exudates Mode of Action References

Dermacoccus barathri (MT2.1T),
D. profundi (MT2.2T),
and D. nishinomiyaensis
(DSM20448T)

Hydroxamate and
catechol-type siderophores

Increased tomato seedling and plant growth under
saline condition [151]

Streptomyces acidiscabies (E13) Desferridoxine E
Desferridoxine B Coelichelin

Nickel stress tolerance in cowpea through nickle
sequesteration [152]

B. subtilis Endophytic siderophore Enhanced growth and survivability of wheat under
drought condition [153]

Pseudomonas citronellolis strain
(SLP6) Hydroxymate siderophore

Significantly enhanced chlorophyll content,
antioxidant enzyme production, and plant growth in
Helianthus annus under salinity stress condition

[154]

Halomonas sp. Exo1exopolysaccharide

In presence of arsenic, Exo1 EPSs favor metal ion
sequestration by biosorption due to the negative
charge matrix of the EPS and alleviated heavy metal
stress in rice

[155]

Pseudomonas pseudoalcaligenes
VOCs (dimethyl disulfide,
2,3-butanediol, and
2-pentylfuran)

Drought tolerance in maize plants by reducing
electrolyte leakage and malondialdehyde content,
and increasing proline and phytohormone content

[156]

Halobacillus sp.(ADN1),
Halomonas sp.(MAN5),and
Halobacillus sp. (MAN6)

Exopolysaccharide

Retention of indole acetic acid and phosphate
solubilization capacity under salinity and heavy
metal stress (Cd, Ni, Hg, and Ag) to enhance root
growth in Sesuvium portulacastrum

[157]

Arthrobacter
globiformis(MSRC52), Bacillus
licheniformis(MSRC76),
B. megaterium (MSRC23)

Siderophore and IAA Tolerance to salinity and high-temperature stress in
olive trees [158]

B. velezensis D3 ACC-deaminase, EPS and
siderophore

Improved the growth and physiology of maize
under drought stress throughout [159]

B. Cereus ACC-deaminase and EPS Mitigation of heat stress in Solanum lycopersicum and
improvement of physiological and biochemical traits [160]

4.2.1. Microbial Exudate as Plant Protectants

Microbial exudates contain several active compounds, such as hormones, exopolysac-
charides, and volatiles, capable of inducing plant defense against various pathogens
(Table 3). These compounds serve as elicitors of plant defense responses and activate differ-
ent signaling pathways, such as salicylic acid, jasmonic acid, and ethylene (Figure 3). Hor-
monal signals target transcription factors (TFs) to regulate various genes and activate mul-
tiple plant metabolic pathways [161]. The priming effect of microbial exudates on the plant
basal immune system confers broad-spectrum resistance against pathogens, effectively in-
hibiting biotrophic phytopathogens, including plant viruses, as well as hemibiotrophic and
necrotrophic pathogens, such as Fusarium sp., Sclerotinia sp., Rhizoctonia sp., Alternaria sp.,
Pythium sp., and Phytophthora sp. [162–168]. Certain toxins, enzymes, or proteins secreted
by microbes such as bacteria, virus, fungi, or microsporidia have pesticidal properties and
are used to destroy and prevent the growth of pests. Certain secondary metabolites and
protease (Serine protease 1) released by Bacillus firmus (I-1582) arereported to be effective
against various plant parasitic nematodes [169,170]. Similarly, Brevibacillus laterosporus
(UNISS 18) is reported to secrete certain enzymes like chitinase (chiA, chiD), bacillolysin
(Bl18), collagenase-like protease (prtC), and insecticidal toxin (mtx) capable of targeting
wide range of Dipterans, Coleopterans, Lepidopterans, and nematodes [171–173]. She-
hata et al. [174] reported the presence of seven bioactive compounds [(hexadecanoic acid
methyl ester (7.6%), phenol, 6-octadecenoic acid methyl ester (26%), pentadecane (4.1%),
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2-methyldecane (1.3%), and Dotriacontane (2.5%)] in the concentrated cell-free supernatant
of lactic acid bacteria (LABs) is active against Fusarium sp. VOCs produced by P. fluorescens
ZX, mainly organic acids and sulfur compounds, significantly inhibiting the conidial ger-
mination and mycelial growth of Penicillium italicum, and reducing blue mold decay on
postharvest citrus [175,176].
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Figure 3. Induction of biotic stress tolerance through microbial exudates. Application of microbial
biostimulants, viz., exopolysaccharides, siderophores, and volatile compounds directly and indirectly
protect the plants from diverse pest and pathogen attack. Directly, they hamper the activity of the
pathogen through restricted spore germination, damage of cell membrane, inhibition of pathogenicity
factors, competition for nutrients, and reduced pathogenic fitness that, in turn, affect the pathogenic-
ity and survivability of pathogens. Microbial biostimulants can induce the plant defense system
through modulation of signal transduction pathways, generation of reactive oxygen species (ROS),
transcriptional regulation of resistant genes, elicitation of PR protein synthesis, as well as production
of secondary metabolites, etc.; thus, providing overall protection for the plant.

Exopolysaccharides produced by Lactobacillus planetarium elicit defense gene expres-
sion in tomatoes, increasing the catalytic activity of intracellular defense enzymes, such as
PAL, PO, and polyphenoloxidase, and regulating the generation of reactive oxygen species
(ROS) through catalase, superoxide dismutase, and hydrogen peroxide production [177].
The exogenous application of exopolysaccharides from Pseudomonas fluorescence LPK2 and
Sinorhizobium fredii KCC5 induces the synthesis of chitinase and β-1, 3-glucanase in plant
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hosts, suppressing Fusarium wilt caused by F. udum and F. oxysporum [178]. Phenazine-1-
carboxylic acid production by P. fluorescence LBUM223 negatively regulates the txtA gene
(virulence and pathogenicity gene) expression of Streptomyces sp. and thaxtomin A pro-
duction, resulting in the inhibition of Streptomyces spin potato infection [179]. Along with
exopolysaccharides, siderophores, and microbial VOCs, microbial hormones and metabo-
lites have the potential to enhance plant defense. The exogenous application of a metabolic
cocktail (consisting of IAA, Indole-3-ethanol, SA, and indole-3-lactic acid) released from the
microbial culture of Azospirillum brasilense strain V5 and V6 increases the expression level
of defense genes like pathogenesis-related (PR) proteins and oxidative-stress-responsive
genes in maize plants, enhancing plant growth [180,181]. Further, organic acids such as
propionic, caproic, butyric, acetic, formic, and n-valeric acid produced by LAB strains
are reported to have broad-spectrum activity against Fusarium sp. [182–184]. Similarly,
the metabolic extract consisting of small, secreted cysteine proteins (SSCPs) produced by
Trichoderma virens enhances the symbiotic relationship between plants and microbes and
elicits the plant’s defense response to pathogens and parasites [185].

Under the European Green Deal policy, the ‘From Farm to Fork’ strategy aims to
reduce the use of pesticides by 50% till 2030 to narrow down chemical interventions in
agriculture. To address the policy’s target of a climate-friendly approach, this strategy will
encourage the adoption of alternative pest and disease management practices and pave the
way for microbial-based active compounds and products. Such microbes can be explored
for use as plant protection products (PPPs).

4.2.2. Alleviation of Abiotic Stress

The potential of microbial biostimulants to reprogram plant defense systems against
abiotic stresses like heavy metal toxicity, osmotic stress, and heat stress is still not fully
recognized. However, the remarkable ability of microbial biostimulants, such as exopolysac-
charides, siderophores, and other compounds, to enhance abiotic stress tolerance in plants
makes them a suitable choice for mitigating the adverse effects of climate change on crop
physiology (Figure 4). Extracellular polymeric substances (EPSs) of microbe origin, in-
cluding polysaccharides, glycoproteins, lipopolysaccharides, and peptides, can chelate,
precipitate, and adsorb heavy metals by altering their mobilization (Table 3). For instance,
microbial exopolymeric substances containing alginic, glucuronic acid, galacturonic acid,
and uronic acid extracted from Pseudomonas aeruginosa and Pseudomonas putida influence
the chromium bioavailability, solubility, and transport or sorption behavior in subsurface
systems [186,187]. Under drought stress, EPSs secreted by Bacillus amyloliquefaciens FZB42
are reported to protect plants by enhancing the biofilm stability in Arabidopsis thaliana [7].
Additionally, EPSs can reduce Cr (VI) (highly toxic to all living organisms) to Cr (III),
which has a lower solubility, less toxicity, and high sorptive characteristics [188,189]. This
conversion can be an effective method for alleviating subsurface Cr (VI) contamination.
Apart from EPSs, microbial siderophores (ferric iron chelating compounds) can detoxify
heavy metals such as Cr3+, Al3+, Cu2+, Eu3+, and Pb2+ [23,190,191]. Siderophores released
by Azotobacter chroococcum help in alleviating heavy metal stress in maize [192]. Similarly,
siderophores secreted by Agrobacterium radiobacter were effective in removing 54% of arsenic
from polluted sites [193]. Under salinity stress, the P. citronellolis strain SLP6 H is reported
to enhance the chlorophyll content, production of antioxidant enzymes, and plant growth
in Helianthus annuus by producing the Hydroxamate siderophore [154]. The application of
siderophore-producing microbe B. aryabhattai MS3 in rice boosted crop production by 60%
and 43% under non-saline and saline (200mM NaCl) conditions, respectively [19].
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Figure 4. Alleviation of abiotic stress through microbial biostimulants like EPSs, phytohormones,
siderophores, volatiles, etc. conferred through photosynthetic regulation, antioxidant production,
phytohormone synthesis, upregulation of stress-related genes, elimination of heavy metals, and
biofilm formation around root surface that leads to the morphological modification of plant to sustain
various abiotic stresses.

In this context, the exploration and utilization of plant-growth-promoting rhizobacte-
ria (PGPRs) present a promising avenue. Some PGPRs alleviate drought stress in plants by
producing certain VOCs, 1-aminocyclopropane-1-carboxylate (ACC) dismutase, EPSs, phy-
tohormones, antioxidants, etc. The ACC-deaminase enzyme produced by PGPR strains can
degrade ACC produced during environmental stress conditions, thereby reducing ethylene
levels in the soil and improving plant health during drought [194]. Exopolysaccharides
secreted by PGPR can mitigate heat stress in plants by promoting biofilm formation and
encapsulating root nodules, improving the water retention capacity in plant roots. This, in
turn, results in modifications in root surfaces and regulates osmolytes and stress-responsive
genes [195–197], leading to the increased production of heat shock proteins [198].

Plants colonized with rhizobacteria can uptake proline produced by their bacterial
partners with minimal or no modification [199]. This proline is taken up into the mitochon-
dria using amino acid transporters and functions as an osmoprotectant, alleviating stress by
preventing lipid peroxidation under metal stress, reducing ROS-mediated cell death, and
efflux of K+ under salt stress. Proline can also act as a chemical chaperone to stabilize pro-
teins [200], and it increases the leaf water potential during drought stress. Glycine betaine
(GB) is synthesized by B. subtilis from its precursor glycine betaine choline by GbsB, GbsA,
and GbsB enzymes [201]. Under high osmolarity, the uptake of glycine betaine choline is
facilitated by five ABC transport uptake systems: OpuA, OpuB, OpuC, OpuD, and OpuE.
GB plays a key role in maintaining photosynthetic efficiency by protecting Rubisco and
Rubisco oxidase under stress conditions [202]. Additionally, under salt stress, GB can
increase the accumulation of K+ ions or reduce Na+ ions in shoots [203,204]. Glomalin, a
glycoprotein produced by Glomus sp., has been reported to have soil aggregating properties
that improve the soil composition and provide drought tolerance [205]. In such a way,
microbe-encoded complex compounds contribute to the amelioration of abiotic stress.

5. Microbial Exudates as Environmental Protectors

Xenobiotic compounds are manmade or chemical compounds introduced into the en-
vironment through industries, fossil fuel spills, mining activities, and agriculture, releasing
excessive amounts of fertilizers, pesticides, and herbicides. These xenobiotics exhibit long-



J. Xenobiot. 2023, 13 588

term persistence and slow degradation, leading to deleterious effects on the environment,
soil, plants, and living organisms. Once they enter the food chain, they bioaccumulate,
exerting carcinogenic, mutagenic, and toxic effects on organisms at higher trophic levels.
Moreover, they alter the physio-chemical properties of the soil, microbial activity, and
diversity, leading to ecotoxicological effects [206]. In plants, xenobiotics interfere with
morphological and physiological characteristics, such as plant growth, seed germination,
and changes in gene regulation and expression. They can also deregulate signaling path-
ways by interfering with signal receptors like G-Protein-coupled receptors and receptor
tyrosine kinase [207]. Pesticides, fertilizers, and herbicides are major xenobiotic pollutants
in agricultural systems, and they can bind with free metal ions in the soil to form complexes,
reducing the bioavailability of essential nutrients for plants [208].

The hazardous impact of xenobiotics necessitates immediate degradation methods. Al-
though physical and chemical degradation methods like adsorption, electrolysis, filtration,
coagulation, ozonation, and chemical precipitation are available, their stringent, compli-
cated, and high-cost methodologies, as well as toxic by-products, are major drawbacks
for their application in xenobiotic degradation [209,210]. Alternatively, microbial-assisted
degradation has emerged as the most appropriate, cost-effective, and environmentally
friendly method over the past few decades. Xenobiotic-degrading fungi and bacteria have
the metabolic ability to transform organic pollutants into less harmful compounds. They
secrete a wide range of enzymes that enable them to utilize xenobiotics as their carbon
and energy source. Several genes, enzymes, and degradation pathways are involved in
biodegradation. Some primary microbial enzymes involved in biodegradation include
laccase, cellulase, phytase, lipase, oxygenases, cytochrome P450s (mono-oxygenases), lignin
peroxidase, esterase, and versatile peroxidases [206,211]. The main mechanisms for mi-
crobial xenobiotic degradation include reduction, oxidation, and hydrolysis [212,213].
Various multi-omics-approach studies on microbes have revealed specific genes encod-
ing xenobiotic degradative enzymes, metabolites, and metabolic pathways of xenobiotic
degradation. They have also elucidated differentially expressed catabolic genes under xeno-
biotic stress. For instance, functional metagenomics studies on Koribacter, Acidomicrobium,
Bradyrhizobium, and Burkholderia revealed the abundance of phosphodiesterase-encoding
genes, potentially capable of degrading organophosphorus compounds. These genera of
bacteria were found in soil contaminated with pesticides [214]. Similarly, a transcriptomic
study of DDT-resistant Trichoderma hamatum FBL 587 reported the upregulation of about
1706 genes involved in DDT degradation. Various DDT-metabolizing enzymes like epoxide
hydrolases, glycosyl and glutathione-transferases, and FAD-dependent mono-oxygenases
were also upregulated [215]. The degradation mechanism of the organophosphorus pes-
ticide phoxim by Bacillus amyloliquefaciens YP6 was illustrated through transcriptome
analysis, revealing the upregulation of oxidase, NADPH-cytochrome P450 reductase, and
hydrolase genes for the oxidation, dealkylation, and hydrolysis of phoxim [216]. Microbial
enzymes and their mechanisms involved in xenobiotic degradation, with special reference
to pesticides, have been illustrated in Table 4.

Table 4. Microbial exudate in degradation of xenobiotic compounds.

Xenobiotic Microbe Enzyme Mechanism of Degradation References

Atrazine Bjerkandera adusta

Laccases, tyrosimases,
manganese peroxidases
(MnPs), manganese-
independent peroxidases
(MiPs), and lignin peroxidases

De-alkylation of atrazine
resulting in removal efficiency
of upto 92%.

[217]

Chlorpyrifos Cladosporium cladosporioides
Chlorpyrifos hydrolase, pectin
methylesterase (PME), and
polygalacturonase (PG)

Responsible for pectin
degradation by catalyzing the
demethoxylation of the
homogalacturonan chain of
pectin to release methanol and
acidic pectin

[218]
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Table 4. Cont.

Xenobiotic Microbe Enzyme Mechanism of Degradation References

Atrazine Monocrotophos,
DDT Fusarium spp. N-acetyltransferae and

N-malonyltransferase

Detoxification and
degradation of
aromatic amines

[219]

Aromatic compounds,
aliphatic hydrocarbons,
PAHs

Trichoderma harzianum,
Aspergillus fumigatus,
Cunninghamella elegans,
Aspergillus niger, Penicillium sp.,
Cunninghamella elegans,
Aspergillus ochraceus, Trametes
versicolor, Penicillium sp. RMA1
and RMA2, and Aspergillus sp.
RFC-1

Lactase, lignin peroxidases
(LiPs), MnPs, epoxide
hydrolases cytochrome P450
monoxygenase, dioxygenases,
protease, and lipase

By peripheral degradation
pathways, organic pollutants
are gradually transformed,
and many intermediate
products are formed

[220]

Lignin, polychlorinated
biphenyls (PCBs),
petroleum hydrocarbons,
PAHs, trinitroluenes,
industrial dye effluents,
herbicides, and pesticides

Trametes versicolor, Phanerochaete
chrysosporium, Rigidoporous
lignosus, and Pleurotus ostreatus

Lignin peroxidase, versatile
peroxidase, laccase, and
manganese peroxidise

Formation of semi-quinone
intermediate during the
oxidation of lignin-derived
hyroquinone by laccase. It
cleaves C-C bonds and
oxidizes benzyl alcohols to
aldehydes or ketones.

[221,222]

Organophosphorus
pesticide- Profenfos and
Quinalphos

Kosakonia oryzae strain VITPSCQ3 Organophosphorous
hydrolase and phosphatase

Hydrolytic cleavage of P–S
bond in phosphorodithioate
and phosphorothioate and
P–O bond in
phosphate-containing
pesticides

[223]

Fipronil (Phenyl-pyrazole
insecticide)

Aspergillus glaucus, Bacillus frmus,
B. thuringiensis, Bacillus sp.,
Paracoccus sp., Streptomyces rochei,
and Stenotrophomonas
acidaminiphila

Ligninolytic enzyme MnPs,
the cytochrome P450 enzyme,
and esterase

Oxidation, reduction, and
hydrolysis [224]

6. Impact of Microbial Exudates on the Plant Microbiome

Microbial exudates enclose an array of molecules, including sugars, organic acids,
hormones, secondary metabolites, polymers (mucilage), proteins, peptides, volatiles, and
more [225]. While their effect on plant growth and stress tolerance is well-known, their
impact on the wider plant microbiome remains abstruse. The production and release of ex-
udates may not be essential for microbial growth and development, but they play a crucial
role in shaping the microbial communities that coexist with them [226]. Although these
exudates may not be required for the producers’ growth, they reduce niche competition
within the microbial population, leading to a shift in microbial populations and promoting
the proliferation of beneficial microbiota. Exogenously applied microbial exudates create
a distinct chemical niche that favors the colonization of beneficial microbes in the phyllo-
plane and rhizosphere, while deterring harmful microbes, thereby altering the microbial
composition [227].

It can be presumed that chemically similar compounds are secreted by a group of
microbes and their relatives that belong to the same taxonomic clade. Sometimes, these
chemical exudates have either beneficial or harmful effects on other microbial populations.
They may be used as metabolic substrates and growth regulators, or act as toxic, antagonis-
tic compounds, and signaling molecules, ultimately altering the microenvironment and
influencing the population of surrounding organisms. The composition and functioning of
microbial exudates play a key role in shaping the plant microbiome (Figure 5).
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Figure 5. Effect of different components of cell-free microbial exudates on plant and its associated
microbiome. Different components of cell-free microbial exudates, viz., amino acids, peptides, sugars,
saccharides, exopolysaccharides, etc. lead to physiological and biological changes in the plant, as
well as microbiome composition of the rhizosphere, through the encouragement of some specific
beneficial microbes and reduction in the number of harmful microbes.

6.1. Microbial Exudates as Food for Other Microbes

Most microbial exudates consist of a substantial amount of carbon-containing com-
pounds such as sugars, organic acids, and amino acids. These molecules are often utilized
as the preferred carbon source by some microbes. For instance, beneficial rhizospheric
bacteria prefer sugars and polymers like chitin, chitosan, glucan, glucosamine, etc., which
they metabolize into organic acids like acetic acid, citric acid, formic acid, glycolic acid,
lactic acid, malonic acid, oxalic acid, succinic acid, and more [228]. The substrate compo-
sition determines the fate of the microbial community composition. For example, chitin
and chitosan, components of microbial exudates, modulate the Actinobacterial and Ox-
alobacteraceal community structure in the rhizosphere [229]. The amendment of chitin and
chitosan increases the activity of chitinase enzymes, leading to the degradation into lower
oligomers like N-acetylglucosamine, which is further catabolized into ammonia and other
volatiles [230,231]. In this way, complex-sugar-based microbial exudates enhance the rela-
tive abundance of plant-growth-promoting rhizobacteria (e.g., Bacillus sp., Pseudomonas sp.,
and Streptomyces sp.) and other rhizospheric microbiota involved in the N-cycle, sugar
degradation, and organic acid production.

Organic acids are another significant component of microbial exudates involved in
restructuring the microbial community. They are associated with the mineralization process,
and specific groups of microbes are engaged in different stages of the mineralization
cycle. The exogenous application of organic acids supports the colonization of specific
microbial groups and decreases species richness by lowering diversity indices, resulting
in continuous changes in the microbiological community structure. For example, lactic
acid favors the proliferation of members of the family Bacillaceae and Micrococcaceae,
supporting biodegradation and enhancing soil fertility, leading to rapid changes in the
microbiota composition. However, once the lactic acid is degraded, the previous microbial
species return to the niche, while specific members of certain distinctive families like
Pseudomonadaceae and Rhizobiaceae remain constantly present. Similar phenomena are
also evident in citric acid, which favors the growth of members of the Clostridiaceae family,
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along with the presence of Pseudomonadaceae family members. Likewise, oxalic acid
induces long-term changes in the bacterial community composition, with the dominance of
members of Burkholderiaceae accompanied by plant-growth-promoting rhizobacteria [232].
In this way, the microbial community changes with a change in the chemical composition
of microbial exudates.

Peptides and amino acids present in microbial exudates can also serve as nutritional
sources of both carbon and nitrogen for the plant-associated microbiome. These molecules
are generated through the proteolysis of complex proteinaceous compounds in the environ-
ment or as cellular efflux from microbial cells. Phylospheric and rhizospheric microbes can
use these amino acids as organic nitrogen for their growth and proliferation. For instance,
the exogenous application of L-α-amino-acid-based biostimulants containing biologically
active free amino acids enhances the population of Actinobacteria in the rhizospheric soil
of lettuce (Lactuca sativa L.) and also promotes the population of entomopathogenic fungi
(Beauveria sp. and Metarhizium sp.) to suppress fungi and nematode infestation [233]. Simi-
larly, the application of glutamic acid also modulates the core microbiome in the strawberry
and tomato rhizosphere through an increase in the population of Streptomyces sp. [234].
Besides amino acids, protein hydrolysates can also reshape the plant microbiome [235],
as their foliar application in lettuce promotes the colonization of epiphytic bacteria like
Enterobacter sp., Pantoea sp., etc. [236]. In this way, peptides and amino acids can alter the
microbial population structure in the rhizosphere and phyllosphere.

6.2. Microbial Exudates as Signaling Molecules for Other Microbes

Besides sugars and organic acids, the cell-free microbial exudates contain many small
chemical compounds that act as intra- and inter-kingdom signaling molecules in microbial
populations. They also influence interactions between plants and micro-organisms in the
phyllosphere and rhizosphere. These compounds represent chemically and functionally
diverse molecules, such as acyl homoserine lactones, amino acids, polymers, hormones,
antimicrobials, etc.

Among them, N-acyl-homoserine lactones (N-AHLs) act as signal molecules that
trigger quorum sensing (QS) mechanisms in plant-associated microbes, including beneficial
and pathogenic species. QS is crucial for cellular communication within microbial groups or
between groups, necessary for biofilm formation and gene activation for microbial function.
The exogenous application of N-AHLs can change the alpha and beta diversity of the rhizo-
spheric microbial population, as evident in Panax ginseng, with the dominance of beneficial
species of Pseudomonas [237], thus playing a key role in shaping the soil microbiome.

Likewise, hormones are another crucial chemical compound found in cell-free mi-
crobial exudates, produced abundantly in the cultural filtrates of many plant-associated
microbes. They act as ‘messengers’ or signaling compounds involved in many biologi-
cal processes of plants, as well as microbes present in the phyllosphere and rhizosphere.
Apart from supporting cellular and physiological processes in plants, they act as signaling
compounds [238] and a nutrient source, influencing microbial community composition
directly. For example, microbial IAA serves as a signaling molecule for biofilm formation
through lipopolysaccharide (LPS) and extracellular polysaccharide (EPS) production in
bacteria [239]. It also serves as a protectant against unfavorable conditions like heat, cold,
osmotic, and oxidative stress [240], participates in microbial gene regulation in beneficial
rhizobacteria like Rhizobium etli [241] and Azospirillum brasilense [242], induces antibiotic
production in Streptomyces sp. [243], and acts as a substrate for microbial growth promo-
tion [244] and chemotaxis in the population [245]. In this way, microbial hormones can also
contribute to microbial diversity in the phyllosphere and rhizosphere.

6.3. Microbial Exudates Promote Niche Adaptation

The microbial ecology of the plant rhizosphere is very complex and is presented in
terms of the diversity and composition of microbial taxa within it. Within a plant rhizo-
spheric ecology, different microbial groups form small niches for their specific properties
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and metabolic activities [246]. The exudates of microbes, as well as plant origin, can
greatly influence niche formation. Within a niche, strong competition, coexistence, and
co-dependence among microbial species can lead to changes in the microbial community
composition. Interestingly, the structure of niches can be determined through niche differ-
entiation, niche competition, and the creation of new niches [247]. In niche differentiation,
different microbial species can coexist in a niche due to their differential substrate prefer-
ences. In contrast, niche competition occurs when different microbial species have the same
substrate preference, leading to the competitive exclusion of some species. Sometimes, a
new niche is created only when end products or metabolites of one strain are released into
the rhizosphere and used by another cross-feeding species, creating a new metabolic niche.
The same phenomenon is frequently evident in the plant rhizosphere and phyllosphere
when cell-free microbial exudates are applied exogenously. The nutritional enrichment of
Flaveria robusta with sucrose + amino acids and sucrose alone enhances microbial diversity
in its phyllosphere zone and niche partitioning between two bacteria, namely, Pantoea sp.
and Pseudomonas sp., through cross-feeding interactions [248]. This co-dependent evolution
of microbes shapes the plant microbiome. On the other hand, competition for nutrients and
ecological niches is another phenomenon that drives microbial diversity. The exogenous
application of microbial exudates also promotes microbial competition. Interestingly, some
chemicals favor desirable soil microbial species to consume them as growth substrates and
also deter other species, thus modulating the core microbiome of the rhizosphere. Further,
siderophores and organic acids present in microbial exudates are another class of molecules
that strengthen microbial competition and promote the selection of specific microbial
species through the chelation of cations like Fe3+, Ca2+, Na2+, K2+, etc. They also help in
the release of phosphates from insoluble phosphate compounds to make them available
for the plant and associated microbes [249], thus changing their lifestyle (co-dependence).
These molecules can also influence the evolution of microbial species, their selection by
plants, and adaptation for root colonization. These ecological and evolutionary processes
can strongly shape rhizospheric microbiota.

7. Limitations and Constraints

The utilization of microbial biostimulants in crop production is comparatively a new
approach and is still lagging due to a lack of awareness regarding their potential. The
strategy has gained prominence only in the past decades. The diverse nature and chemical
composition of microbial active compounds have widened their utilization in various
fields. However, several constraints need to be addressed before we commercialize any
of the microbial exudates as biostimulants or bio-agents. The genetic basis of interaction
between these biostimulants and plants is not fully explored, and the actual mechanism
and mode of action of these biostimulants remain unclear. The diversity in microbial
strains and their bioactive compounds makes it difficult to compare the effect of their
application and evaluate the results. The relation between microbial biostimulants and
how they alter or modify plant physiology is complex, and the lack of research illustrating
the role and relevance of these molecules involved in the biostimulation process or their
molecular mechanism involved in the bio-stimulatory action is a drawback for further
research. The application of these metabolites has shown positive results in plant growth
and development, protection against phytopathogenic microbes and abiotic stress, or
mitigation of metal toxicity, especially in the invitro condition. However, replicating the
same results at the field level is a bottleneck due to difficulties in producing suitable
formulations for modern agriculture and also due to the failure of some exudates to be
effective at a large scale. For instance, the field application of 3-pentanol and 2-butanol
(VOCs) showed limited control over P. syringae [250]. Another constraint in the utilization
of microbial biostimulants is that their effectiveness can be influenced by several factors,
such as microbial strain, agricultural soil types, plant species, and concentration of the
compounds. Their antagonistic effects cannot be neglected. Even though the European
Regulation (EU) 2019/1009 includes micro-organisms under the fertilizer legislation, the
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rules and regulations regarding the categorization of biostimulants are vague, making the
registration of any microbial product as a biostimulant difficult and complicated. Although
microbial exudates hold a promising role in crop production, these constraints affect the
development of microbial exudates as a potential biostimulant.

8. Conclusions and Prospects

The interaction between plant systems and microbes dates back to ancient times,
resulting in an intricate relationship that can be beneficial, detrimental, or neutral. While
numerous microbes are phytopathogenic, a good share of beneficial microbes interacts
with the plant, positively influencing crop development. Microbes produce a diverse
array of bioactive compounds/metabolites, allowing them to form an intricate relationship
with the plant system. Various metabolites and exudates are released in the process,
which can alter or modify plant physiology to improve its growth, development, and
resilience against biotic and abiotic stress. Exudates secreted or released by microbes, such
as phytohormones, exopolysaccharides, and VOCs, are mainly secondary metabolites of
diverse chemical nature and composition, which play diverse roles in crop improvement
and can be effective biostimulants. The need to minimize the use of chemical fertilizers
and pesticides is imperative if sustainability, soil fertility conservation, and ecological
balance are to be restored. The potential role of microbes and their exudates can prove to
be essential components as bio-agents, bioremediators, or biostimulants in regenerative
agriculture or organic farming systems.

Despite realizing the potential of microbes to some extent, there is a fundamental
lack of investment in and implementation of their role in the agriculture sector. Thus,
optimizing cultivation conditions, biochemically characterizing microbial biostimulants,
conducting extensive research on their mode of action and mechanism, and determining
the dose and concentration of the compounds and their effective formulation are necessary
for developing microbial exudates as biostimulants at the commercial level. It is essential to
qualitatively and quantitatively identify compounds secreted by microbes and explore their
transcriptomics, metabolomics, and proteomics to characterize their biosynthetic pathways
and maximize their utilization as potential biostimulants. Addressing these challenges and
constraints will pave the way for realizing the full potential of microbial exudates as an
essential component of sustainable and eco-friendly agriculture systems.
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