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Abstract 

Background:  Single-cell RNA-sequencing (scRNA-seq) measures gene expression 
in single cells, while single-nucleus ATAC-sequencing (snATAC-seq) quantifies chroma-
tin accessibility in single nuclei. These two data types provide complementary informa-
tion for deciphering cell types and states. However, when analyzed individually, they 
sometimes produce conflicting results regarding cell type/state assignment. The power 
is compromised since the two modalities reflect the same underlying biology. Recently, 
it has become possible to measure both gene expression and chromatin accessibility 
from the same nucleus. Such paired data enable the direct modeling of the relation-
ships between the two modalities. Given the availability of the vast amount of single-
modality data, it is desirable to integrate the paired and unpaired single-modality 
datasets to gain a comprehensive view of the cellular complexity.

Results:  We benchmark nine existing single-cell multi-omic data integration meth-
ods. Specifically, we evaluate to what extent the multiome data provide additional 
guidance for analyzing the existing single-modality data, and whether these meth-
ods uncover peak-gene associations from single-modality data. Our results indicate 
that multiome data are helpful for annotating single-modality data. However, we 
emphasize that the availability of an adequate number of nuclei in the multiome 
dataset is crucial for achieving accurate cell type annotation. Insufficient representation 
of nuclei may compromise the reliability of the annotations. Additionally, when gen-
erating a multiome dataset, the number of cells is more important than sequencing 
depth for cell type annotation.

Conclusions:  Seurat v4 is the best currently available platform for integrating scRNA-
seq, snATAC-seq, and multiome data even in the presence of complex batch effects.
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Background
Over the past 10  years, hundreds of single-cell RNA-seq (scRNA-seq) (for transcript 
abundance in single cells) or single-nucleus ATAC-seq (snATAC-seq) (for chromatin 
accessibility in single nuclei) datasets have been produced by laboratories worldwide, 
leading to the discovery of new cell types and regulatory circuits. In addition, by apply-
ing single-cell assays to two-state models such as the comparison between control and 
mutant tissues, changes in gene expression or chromatin accessibility caused by a gene 
mutation could be analyzed easily at the cell type-specific level for the first time. Unfor-
tunately, each single-modality dataset measures either the gene expression or the chro-
matin accessibility of a given cell. Although the two datasets can be generated from the 
same cell population, they measure different individual cells. Most of the time, the two 
experimental modalities result in the identification of similar cell types, as the highly 
expressed genes used to define cell types at the transcript levels frequently have promot-
ers that are identified as highly accessible by the ATAC-seq modality. However, there 
are situations when the two profiles are discordant. In these situations, simultaneous, 
joint profiling of gene expression and chromatin accessibility is paramount for resolv-
ing inconsistency and revealing novel cell types and states that show modality-specific 
features. Moreover, the joint profiling of gene expression and chromatin accessibility of 
the same exact cells offers the most direct link between cis-regulatory elements and their 
target genes [1].

Recently, it has become feasible to simultaneously determine both transcript levels 
and chromatin state in the same nucleus, using so-called “multi-omics” approaches. An 
example is the 10 × Genomics Single Cell Multiome ATAC + Gene Expression technol-
ogy [2]. Multi-omics data are superior at refining cell types and revealing gene regulatory 
networks [1]. However, it is not practical to repeat all prior studies of interest performed 
using the single-modality assays with the multiome approaches, as frequently precious 
samples are either no longer available or funding is limited. Therefore, it is highly desir-
able to integrate pre-existing single-modality scRNA-seq and snATAC-seq datasets with 
multiome data generated subsequently using the newer technology to achieve more 
accurate cell type annotations.

Several methodologies have been developed for multi-omic data integration. Here, we 
refer to multi-omic integration as the integration of RNA-seq and ATAC-seq profiles 
measured in single cells or nuclei, either with or without the guidance of multiome data. 
These methods attempt to align cells profiled by separate technologies and project them 
into one common low-dimensional space to ensure consistent cell type calling. However, 
we still lack an objective evaluation of whether the addition of multiome data improves 
the annotation of single-modality datasets. Furthermore, some of the methods attempt 
to impute the missing modality for the single-modality datasets and identify peak-gene 
pairs using these “pseudo-paired” datasets. Thus, it is still uncertain if the imputed miss-
ing modality can truly provide additional biological insights to the same degree as pro-
vided by the experimentally produced multiome datasets. Finally, given the availability 
of many methods for multi-omic data integration, at present, we do not know which 
method performs the best when integrating all three data types.

The current multi-omic integration methods can be divided into two catego-
ries. Methods in the first category perform multi-omic integration using only the 
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single-modality datasets, aiming to find a mapping between gene expression profiles and 
chromatin accessibility states to create an aligned space that explains both modalities; 
we call these approaches “unpaired integration.” Representative methods in this category 
include Seurat version 3 (Seurat v3) [3], which performs canonical correlation analysis 
(CCA) to align experimentally measured gene expression with pseudo-gene expression 
obtained from chromatin accessibility. One example of pseudo-gene expression is the 
gene activity score, calculated by summing up peak counts within the gene body plus 
2  kb upstream in the ATAC-seq data. LIGER [4] also uses gene expression and activ-
ity scores to obtain shared features between the two modalities and then derives a low-
dimensional embedding through a non-negative matrix factorization approach. FigR [5] 
aligns the snATAC-seq and scRNA-seq data using a CCA-based approach. In addition, it 
provides matching of snATAC-seq and scRNA-seq cells, which enables the identification 
of cis-regulatory elements similarly to what can be achieved with paired multiome data. 
BindSC [6] goes beyond the simple construction of gene activity scores. Instead, bindSC 
uses a bi-directional CCA to empirically construct a cell-by-gene matrix for the snA-
TAC-seq cells that preserve its similarity with the ATAC-seq input and simultaneously 
maximizes the correlation with the scRNA-seq matrix it is being integrated with. A 
recently developed method called GLUE [7] uses a deep-learning approach called “vari-
ational autoencoder” to extract features for each modality. To link the features across 
modalities, GLUE requests a knowledge-based guidance graph, which links genomic 
regions to genes based on their genomic proximity. Using the knowledge graph and the 
autoencoder system, GLUE learns the representation of cells from different modalities 
and aligns them through an iterative process.

Methods in the second category encompass more recent approaches that incorporate 
information from multiome cells and integrate all three data types for a more compre-
hensive exploration of cellular identities; we term these approaches “multiome-guided 
integration.” Representative methods in this category include Seurat version 4 (Seurat 
v4) [8], an approach that first learns a low-dimensional representation of the cells pro-
filed by the multiome methodology using both the RNA-seq and ATAC-seq profiles by 
weighted nearest neighbors (WNN) analysis [8]. Subsequently, the two single-modality 
datasets are projected onto the WNN embedding space in a supervised manner. MultiVI 
[9] and Cobolt [10] also use “variational autoencoders” to embed all three data types. 
Both methods employ the encoder-decoder system to learn a low-dimensional represen-
tation of the data. Specifically, two encoders and two decoders are set up, one for each 
modality. However, the two platforms employ different model choices. MultiVI assumes 
a negative binomial distribution for the RNA-seq data and a Bernoulli distribution for 
the ATAC-seq data, while Cobolt assumes a Multivariate Normal distribution for both 
modalities. Furthermore, the two methods integrate the modality-specific representa-
tion for the paired cells differently. MultiVI first aligns the two embeddings through a 
symmetric Kullback–Leibler (KL) divergence loss and then obtains an average of the two 
embeddings. On the other hand, Cobolt simply multiplies the two embeddings to repre-
sent the paired cells, while the representation of the unpaired cells is first generated by 
the corresponding encoder and refined using a linear transformation to ensure enough 
similarity between the RNA-seq derived embedding and the ATAC-seq derived embed-
ding. We included another method called scMoMaT [11]. We chose this method to 
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represent a broad category of methods called “mosaic integration,” which can integrate 
datasets that differ in either cells, features, or both [12]. In addition, these methods could 
integrate situations where there are three or more modalities. We acknowledge that 
the situations benchmarked here do not represent these methods’ full capacity, but we 
wanted to include at least one method from this category to represent their performance 
in this specific situation where we integrate scRNA-seq, snATAC-seq, and multiome 
datasets. ScMoMaT employs a matrix tri-factorization framework, which decomposes 
each count matrix into a cell matrix, a feature matrix, and, finally, an association matrix 
that captures the strength between the cell and feature matrices.

All methods described above aim to project cells from different data types into one 
shared space to facilitate the identification of cell types through clustering. Nevertheless, 
a common goal for studies profiling chromatin accessibility and gene expression at the 
single-cell level is to understand cell type-specific cis-regulatory logic. Since the two sin-
gle-modality datasets are generated from different cells in a given population, albeit rep-
resenting the same cell types, the single-modality datasets cannot be naïvely combined 
to test for association between chromatin accessibility and gene expressions. Therefore, 
multiple efforts have attempted to impute the missing modality for the single-modal-
ity datasets, aiming to computationally generate paired profiles similar to those meas-
ured experimentally by the multiome technology. Some methods mentioned above, e.g., 
Seurat v3, FigR, bindSC, Seurat v4, and MultiVI, are capable of this task. However, an 
objective evaluation of how reliable the in silico imputed profiles are compared to what 
is directly measured by the paired multiome technologies is still lacking. Therefore, we 
aimed to conduct an extensive benchmarking analysis to evaluate the abovementioned 
methods by addressing two important questions. First, do multiome data improve the 
integration of single-modality datasets? Second, what is the best computational method 
for the integration of scRNA-seq, snATAC-seq, and multiome data?

Results
Overview of the benchmarking scheme and evaluation strategies

The overall workflow of our benchmarking evaluations is summarized in Fig. 1. Fig-
ure  1A illustrates our approach to evaluate whether multiome data integration can 
improve the value of single-modality datasets, while Fig.  1B outlines how we assess 
the effectiveness of each integration method, at various conditions of the multiome 
dataset. To answer the proposed questions, we simulated situations where all three 
data types are available by using three publicly available multiome datasets [1, 13–15]. 
The first multiome dataset [13] profiled 10,085 peripheral blood mononuclear cells 
(PMBCs) and represents a simple biological system, because PBMCs can be eas-
ily divided into seven well-separated cell types (Additional file 1: Fig. S1A). The sec-
ond dataset profiled bone marrow mononuclear cells (BMMC) [14, 15], an example 
of highly complex cell populations. BMMCs are closely related to each other tran-
scriptionally, and contain, for example, myeloid progenitors and their closely related 
descendants, CD16 + and CD14 + monocytes (Additional file  1: Fig. S1B). The indi-
vidual BMMC cell types are therefore much harder to separate compared to the 
PBMC populations, thus allowing us to thoroughly evaluate the performance of each 
method in both simple and complex biological systems. Moreover, the BMMC dataset 
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is composed of samples generated from four research sites and nine donors [14, 15], 
which enables the analysis of batch effects and technical replicates. The third mul-
tiome dataset [1] employed SHARE-seq, a technology  developed by the Buenrostro 
group, to profile cells from the mouse skin. This dataset offers joint profiles of 32,231 
cells, which have been annotated into 22 different cell types (Additional file  1: Fig. 
S5). It encompasses cells from various lineages, including regenerative compartments 

Fig. 1  Outline of the benchmarking evaluations. A Scheme to evaluate if multiome data help the integration 
of single-modality data. B Scenarios simulated to evaluate multi-omic integration methods
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of the hair follicles, as well as distinct cell groups like endothelial and macrophages 
[1]. Although the sequencing depth of this dataset is slightly lower than the two pre-
vious multiome datasets, it has the largest number of cells. Table 1 provides detailed 
information about each dataset.

We evaluated five popular unpaired integration methods (Seurat v3, LIGER, FigR, 
BindSC, and GLUE), and four multiome-guided integration methods (Seurat v4, Mul-
tiVI, Cobolt, and scMoMaT). Given that “multiome-guided integration” methods use the 
multiome dataset in the integration process, the overall number of cells employed dur-
ing integration and clustering is substantially increased. To account for the increased 
power, we created another scenario termed “unpaired (multiome-split)” in which the 
RNA-seq and ATAC-seq data from the multiome samples were treated as independent 
datasets and appended to the single-modality datasets. This category again includes the 
five unpaired integration methods, the only difference being that the single-modality 
datasets now include additional single-modality cells that were converted from the mul-
tiome cells.

To evaluate the performance of each method for cell type identification, we performed 
Louvain clustering [16] on the integrated embedding. For methods capable of missing 
modality imputation, we imputed gene expression using snATAC-seq profiles. We then 
evaluated the integration results in four aspects as shown in Fig.  1A. Specifically, we 
evaluated cell type annotation accuracy using two metrics: Adjusted Rand Index (ARI) 
[17] and Normalized Mutual Information (NMI) [18]. Both metrics range from 0 to 1, 
with 1 being the best. The detailed approach is described in the “Methods” section. The 
accuracy of cell type annotation depends on the number of cell clusters identified; there-
fore, an additional way to measure data integration quality is via the accuracy of cell type 
separation. Using the ground-truth annotation, we evaluated how well cells of different 
identities are separated, using a cell type-specific average silhouette width (ASW) [19] 
and a cell type Local Inverse Simpson’s Index (cLISI) [20, 21]. Furthermore, because the 
three data types could have technology-specific differences, we used a batch ASW [19] 
and the k-nearest neighbor batch effect test (kBET) [19] to measure batch mixing of the 
integrated results. These four measurements were normalized to be in the range of 0 and 

Table 1  Summary of the data used for simulation. Columns are number of cells (n_cells), number of 
unique genes expressed per cell on average in the RNA profile (nGene_RNA), total counts expressed 
per cell on average in RNA profile (nCount_RNA), number of unique fragments per cell on average 
in the ATAC profile (nFrag_ATAC), number of peak counts per cell on average in the ATAC profile 
(nPeakCount_ATAC)

Source n_cells nGene_RNA nCount_RNA nFrag_ATAC​ nPeakCount_
ATAC​

PBMC 10085 2013 4463 15510 11305

BMMC site 1 donor 2 (S1D2) 6740 1365 2525 11064 7512

BMMC site 1 or donor 1 29486 1205 2227 11798 7615

Share-seq mouse skin 32231 637 1245 5622 4231

HPAP multiome 13109 3651 13244 13462 8465

HPAP scRNA-seq 32115 4086 21032 NA NA

HPAP snATAC-seq 26439 NA NA 25098 16892
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1 in which 1 is the best result, namely high separation between cell types and complete 
mixing of data batches.

We also evaluated the quality of “peak to gene pair” predictions by assessing the accu-
racy of assigning an ATAC-seq peak to a specific gene. Using the measured ATAC-
seq and imputed RNA-seq data, we computed the percentage of significant peak-gene 
pairs recovered as compared to a ground truth obtained using all cells in the multiome 
dataset. To penalize for the presence of false positives reported by the data integration 
methods, we also calculated an F1 score [18], which normalized the absolute percent 
recovery of the true peak-gene pairs by the occurrence of false positive and false nega-
tive relationships.

Do Multiome data improve the annotation of single‑modality datasets?

PBMC

To answer if multiome data improve the analysis of single-modality datasets (scRNA-seq 
and snATAC-seq), we first simulated the situation with 1000 scRNA-seq cells and 1000 
snATAC-seq cells based on the PBMC data. These single-modality cells were integrated 
using each of the five unpaired integration methods. To evaluate if the inclusion of mul-
tiome data improve the analysis of single-modality datasets, we considered the situation 
where we have a multiome dataset, potentially with different numbers of cells (e.g., 1000, 
3000, or 8000). These multiome data were integrated with the single-modality datasets 
using the multiome-guided methods. However, because the number of cells used dur-
ing clustering and gene expression imputation impacts the clustering accuracy and peak-
gene association identification, we ran the unpaired integration methods again, this time 
treating the multiome dataset as single-modality cells and adding them to the existing 
single-modality data. Here, any increase in performance is solely caused by the increase 
in cell number; the results from these evaluations are labeled as the “unpaired (multi-
ome-split)” category. For each simulation, we randomly drew the cells from the 10,085 
PBMC dataset and each condition was repeated five times. The parameters used for this 
simulation are summarized in Fig. 2A.

The evaluation results for each method are summarized in Fig.  2B. The initial cell 
type annotation accuracy was quite high even before the incorporation of multiome 
data. When integrating the unpaired data using BindSC, the accuracy was 0.81 in the 
Adjusted Rand Index (ARI) and 0.81 in the Normalized Mutual Information (NMI) met-
ric (Fig. 2B). After incorporating the multiome cells for the “unpaired integration” meth-
ods as described above, all “unpaired (multiome-split)” methods show a slight increase 
in cell type annotation accuracy. Interestingly, incorporating 3000 multiome cells yielded 
similar results as incorporating 8000 cells, suggesting the existence of an empirical limit 
for the cell type annotation score, given this dataset.

On the other hand, when including 1000 multiome cells in the multiome-guided 
approaches, the results were worse compared to simply integrating the 2000 single-
modality cells (Fig. 2B). This unexpected result can be attributed to the fact that 1000 
multiome cells alone did not achieve sufficient cell type separation, which is a crucial 
requirement for the success of multiome-guided methods. However, when we used 3000 
or 8000 multiome cells, Seurat v4, one of the multiome-guided methods, achieved the 
best cell type annotation results (Fig.  2B). Moreover, comparing the multiome-guided 
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Fig. 2  Comparison of integration performance without vs. with multiome cells. A The number of cells and 
cell types for each simulated dataset using the PBMC or BMMC multiome data as the ground truth. B, C 
Performance of cell type annotation and peak-gene association recovery in the PBMC-based simulations 
(B) and BMMC-based simulations (C). ARI and NMI measure agreement between predicted cell type and 
ground-truth labels. Peak-gene pair % recovered is the percentage of peak-gene pairs correctly identified 
compared to the ground-truth list calculated using 10,412 paired PBMC cells (B) and 6740 BMMC cells (C). F1 
is the prediction accuracy normalized by the number of false positives and false negatives. The dashed line 
shows the percent recovery and F1 score calculated using 1000 multiome cells. Error bar is mean ± standard 
deviation. D Runtime measured in seconds, for each method, in log2 scale. Error bar is mean ± standard 
deviation. E UMAP projection using integrated embedding for a select number of methods. UMAP projection 
for the other methods are shown in Additional file 1: Fig. S3 (PBMC) and Additional file 1: Fig. S4 (BMMC)
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results with the unpaired (multiome-split) results, Seurat v4 demonstrated comparable 
or slightly higher performance at 3000 or 8000 cells (Fig. 2B) in ARI and NMI metrics. 
Thus, our findings suggest that the presence of multiome data can enhance cell type 
annotation in single-modality datasets, as long as a sufficient number of multiome cells 
are available.

Next, we evaluated the performance of each method in predicting peak-gene pairs. 
Peak-gene pairs are calculated using 1000 measured chromatin accessibility profiles 
and the corresponding 1000 imputed gene expression profiles. Here, we compared pre-
dicted peak-gene pairs to the ground-truth list calculated using multiome cells in the full 
PBMC data. Seurat v3 performed well at recovering the absolute number of peak-gene 
pairs, and the incorporation of data from multiome cells through splitting only margin-
ally increased the performance (Fig. 2B). BindSC had a slightly better F1 score than Seu-
rat v3, meaning that the Seurat v3 results contained more false positives (Fig. 2B). For 
the multiome-guided methods, the more multiome cells available during gene expres-
sion imputation resulted in higher peak-gene pair recovery (Fig. 2B). Nevertheless, the 
incorporation of data from multiome cells using the multiome-guided methods did not 
perform better than the unpaired methods, with the exception that the F1 score was 
higher in MultiVI (Fig. 2B).

The number of cells used for predicting peak-gene pairs influences the accuracy. To 
give a general idea of how well the predicted gene expression profiles are, we compared 
the peak-gene pair identification result to the one obtained using the real paired profiles. 
We included a red dashed line in Fig. 2B to indicate the percentage of peak-gene pair 
recovery and F1 score calculated using the measured, paired gene expression and chro-
matin accessibility profiles of the 1000 cells being evaluated, instead of the gene expres-
sion profile imputed from chromatin accessibility. What is surprising is that the in silico 
prediction profile from Seurat v3 revealed a higher percentage of recovered peak-gene 
pairs than the measured paired gene expression and chromatin accessibility profile from 
1000 cells, although the F1 score is lower. This is likely due to the dropout issue common 
to single-cell assays and the predicted RNA profile can borrow information from similar 
cells, thus recovering the trend better. Although the predicted profiles are sometimes 
better than the measured gene expression profiles, here we are only imputing the expres-
sion of 1000 cells, and there are at least 1000 scRNA-seq cells used for training. Further 
testing is required to assess the reliability of in silico imputation when dealing with vary-
ing numbers of scRNA-seq cells and multiome cells.

BMMC

Having evaluated the various data integration platforms with the PBMC data, which rep-
resent a low-complexity situation with clearly defined major cell types, we next sought 
to determine how the different methodologies perform when analyzing data from highly 
complex cell populations, as is the case for bone marrow mononuclear cells (BMMC). 
Here, to avoid complexity caused by batch differences, we only used 6740 multiome 
cells from one sample (site 1 donor 2). We again started with 1000 scRNA-seq and 1000 
snATAC-seq cells, and then tested the result when incorporating 1000, 2000, and 4000 
multiome cells, composed of 21 cell types (Fig. 2A). In this biological system, we found 
that including a larger number of multiome cells improved cell type annotation, with 
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GLUE and Seurat v3 being the top 2 performing methods in the unpaired (multiome-
split) category (Fig.  2C). Among the multiome-guided methods, Seurat v4 achieved 
the highest ARI when the input data included 4000 multiome cells. Remarkably, when 
we utilized data from only 1000 or 2000 multiome cells, all multiome-guided methods 
exhibited poorer performance compared to splitting the multiome data into two sepa-
rate, unpaired modalities (Fig. 2C), as indicated by both the ARI and NMI metrics. A 
similar trend was observed in the peak-gene pair prediction (Fig. 2C). The likely reason 
causing the poor performance of the multiome-guided methods is the limited quality 
of the multiome data and the high complexity of the biological system being investi-
gated. It is worth noting that peak-gene prediction recovery and F1 score obtained via 
the unpaired Seurat v3 algorithm are still higher than the association calculated from the 
observed multiome profile, as indicated by the red dashed line in Fig. 2C.

Comparison of run time and visualization of integration

Another important issue to consider when comparing various computational approaches 
is the computation time needed to complete a given task. All methods were run with 8 
CPU cores and 32  GB of RAM. Figure  2D shows the runtime, measured in log2 (sec-
onds). Unpaired methods all have similar runtimes, except GLUE, which requires more 
compute time. Unpaired (multiome-split) category in comparison took a longer time, 
and this was likely due to the incorporation of the additional data from multiome experi-
ments. Importantly, the multiome-guided methods vary greatly in runtime. Cobolt and 
scMoMaT were much faster than the other two methods, but unfortunately, they exhib-
ited comparatively low clustering accuracy. Seurat v4 had comparable runtime than the 
unpaired (multiome-split) methods, while MultiVI took the longest runtime to complete 
the assigned tasks, due to its use of a variational autoencoder.

To visually examine the integration results, we generated UMAP plots using the inte-
grated latent embedding and colored the cells by the ground-truth annotation, the pre-
dicted identity, and the dataset origin. Figure 2E summarizes the best-performing results 
from both the unpaired (multiome-split) and multiome-guided categories for each of 
the PBMC and BMMC simulations. Additional evaluation on cell type separation and 
batch mixing are shown in Additional file 1: Fig. S2. Most metrics show method-spe-
cific values, meaning the rankings of methods do not change across different numbers 
of multiome cells. Among the unpaired methods, Seurat v3 is the best at separating 
cell types in the integrated space, but it has the worst batch mixing result. On the other 
hand, FigR shows the opposite trend; it ranked the highest for batch mixing, but the low-
est for cell type separation. Among the multiome-guided integration methods, MultiVI 
mixes the batches better while Seurat v4 often results in a higher cell type silhouette 
score, especially when there is a greater number of multiome cells. We also evaluated 
the integration results visually, through examining UMAP projections of the integration 
results as shown in Additional file 1: Fig. S3 for the PBMC simulations, and Additional 
file 1: Fig. S4 for the BMMC simulations. Visually, we do not see dramatic differences 
between methods, and none exhibits particularly poor cell type separation or batch mix-
ing results.
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SHARE‑seq Mouse Skin dataset

We conducted a similar study using the SHARE-seq mouse skin dataset to validate 
our findings. Given the larger number of cells available in this dataset, we designed a 
simulation with 8000 scRNA-seq cells and 8000 snATAC-seq cells. We then performed 
integrations without or with the inclusion of 5000, 10,000, or 15,000 cells from the mul-
tiome dataset (Fig.  3A). The integration performance of each method is depicted in 
Fig. 3B. Consistent with the evaluation results from the PBMC- and BMMC-simulated 
scenarios, GLUE and Seurat v3 emerged as top-performing methods in the “unpaired 
(multiome-split)” category, with GLUE being the best performer. Among the “multiome-
guided” methods, Seurat v4 exhibited the best performance and outperformed all meth-
ods in the two “unpaired integration” categories.

Regarding peak-gene pair recovery, Seurat v3 demonstrated the highest recovery in 
terms of the absolute number of peak-gene pairs, surpassing the value obtained from 
the truly paired profiles. However, when considering the F1 score, which corrects for 
false positive and false negative rates, FigR performed significantly better than the other 
methods and even outperformed the F1 score from the truly paired profiles. Seurat v4 
achieved the highest F1 score among the multiome-guided methods and ranked second 
in overall performance, just behind FigR. In terms of runtime, GLUE had the longest 
execution time among the “unpaired integration” category, while the remaining meth-
ods had similar runtime overall, comparable to that of Seurat v4. MultiVI had the long-
est runtime, whereas Cobolt and scMoMaT were the fastest (Fig.  3C). Representative 
UMAP plots after integration are displayed in Fig. 3D. UMAP plots of other integration 
methods are shown in Additional file 1: Fig. S6.

In conclusion, our findings confirm that the incorporation of multiome cells enhances 
cell type annotation when there are sufficient cells to resolve the cell type heterogene-
ity within the multiome dataset. Regarding the recovery of peak-gene pairs, Seurat v4 
performed slightly better than the paired cells consistently when there were a large num-
ber of multiome cells, but there was always another method from the “unpaired (multi-
ome-split)”category that performed better. However, this top-performing method varied 
depending on dataset and metric type.

How to spend your sequencing dollars: more cells or increased sequencing depth?

Experimentalists are commonly constrained by budget limitations and need to con-
sider whether sequencing a larger number of cells at low depth or a smaller number 
of cells at high depth is the more productive approach. To answer this question, we 
evaluated how the sequencing depth of the multiome dataset influences the integra-
tion result. Since we know that including multiome data improves cell type anno-
tation for the single-modality datasets, for this analysis, we evaluated the cell type 
annotation accuracy of the three data types together. Table  1 shows the sequenc-
ing depth of the original multiome samples. To simulate data with lower depths, we 
downsampled the reads for both RNA and ATAC profiles to 25, 50, and 75% of the 
original data (Fig. 4A) and compared these results to the original samples. We per-
formed this experiment on both the PBMC dataset (Fig. 4B) and the BMMC dataset 
(Fig.  4C). We did not perform this experiment on the SHARE-seq dataset because 
the original sequencing depth was not sufficient. For the PBMC study, an increase 
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Fig. 3  Comparison of integration performance without vs. with multiome cells, simulated using the 
SHARE-seq mouse skin dataset. A The number of cells and cell types for each simulated dataset using the 
SHARE-seq mouse skin data as the ground truth. B Performance of cell type annotation and peak-gene 
association recovery. ARI and NMI measure agreement between predicted cell type and ground-truth 
labels. Peak-gene pair % recovered is the percentage of peak-gene pairs correctly identified compared to 
the ground-truth list calculated using 32,231 cells from the SHARE-seq dataset. F1 is the prediction accuracy 
normalized by the number of false positives and false negatives. The dashed line shows the percent recovery 
and F1 score calculated using 8000 multiome cells. Error bar is mean ± standard deviation. C Performance of 
cell type separation and batch mixing. Cell type average silhouette width (ASW) and cell type Local Inverse 
Simpson’s Index (cLISI) measure separation of cell types. Batch ASW and k-nearest neighbor batch effect 
test (kBET) measure the mixing of scRNA-seq and snATAC-seq cells. Error bar is mean ± standard deviation. 
D Runtime measured in seconds, for each method, in log2 scale. Error bar is mean ± standard deviation. E 
UMAP projection using integrated embedding for a select number of methods. UMAP projection for the 
other methods is shown in Additional file 1: Fig. S6
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Fig. 4  Evaluation of integration performance at varying sequencing depth for multiome cells. A Details of 
the simulation scheme. B, C Performance of cell type annotation and peak-gene association recovery in the 
PBMC-based simulations (B) and BMMC-based simulations (C: left panel, 2000 multiome cells; right panel, 
4000 multiome cells). ARI and NMI measures agreement between predicted cell type and ground-truth 
labels. Peak-gene pair % recovered is the percentage of peak-gene pairs correctly identified comparing to the 
ground-truth list calculated using 10,412 paired PBMC cells (B) and 6740 BMMC cells (C). F1 is the prediction 
accuracy normalized by the number of false positives and false negatives. D Performance of cell type 
annotation using Seurat v3 or Seurat v4 at increasing depth or increasing number of cells. E Performance 
of peak-gene association recovery using Seurat v3 or Seurat v4 at increasing depth or increasing number of 
cells. For all subplots, error bar is mean ± standard deviation
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in sequencing depths resulted in an increase in cell type annotation accuracy for 
all methods, with Seurat v4 achieving the highest ARI and NMI scores among all 
methods for 75 and 100% sequencing depth (Fig.  4B). In contrast, when we used 
the BMMC data set as the input, we noted that when including only 2000 multi-
ome cells, regardless of sequencing depth, the unpaired method, GLUE, performed 
the best (Fig. 4C left). However, when we included 4000 cells in the BMMC multi-
ome sample, 50% of read depth was sufficient for Seurat v4 to annotate the cell types 
most accurately (Fig. 4C right). These conflicting results prompted us to ask whether 
sequencing depth is less important than cell number.

To answer this question, we designed another simulation  using the BMMC dataset. 
Given a fixed cost for 1,000,000 RNA-seq reads and 4,000,000 ATAC-seq reads, we 
used either 400 cells with 100% of the depth (see Table 1), or 10% of the reads for 4000 
cells. Next, we analyzed the datasets using Seurat v3 and Seurat v4. We chose to use 
Seurat v3 instead of GLUE because Seurat v3 allows peak-gene pair recovery and is just 
slightly worse than GLUE in the unpaired (multiome-split) category. For cell type anno-
tation accuracy, the sequencing depth curve plateaued sooner than the number of cells 
curve (Fig. 4D). For Seurat v4, the ARI and NMI scores did not increase much beyond 
60% sequencing depth, while both scores increased consistently as the number of cells 
increased (Fig. 4D). Comparing Seurat v3 with Seurat v4, we noted that Seurat v4 per-
formed better when there was 30% sequencing depth given 4000 cells or 2600 cells 
given 100% depth (Fig. 4D). Therefore, for the accuracy of cell type annotation for inte-
grated data, having more cells is more important than having a higher sequencing depth. 
Importantly, once a sufficient number of cells have been profiled to capture the complex-
ity of a given sample, the multiome-guided methods, specifically Seurat v4, perform the 
best. Our analysis also demonstrated that the “sufficient” number of cells depends on 
the complexity of the biological system in question. For PBMC, we see that if the goal is 
to detect seven distinct cell types, 2000 cells is already sufficient. However, for BMMC 
with its more complex cell type composition, at least 2600 cells are needed to achieve 
adequate cell type annotation accuracy.

In addition to the cell type annotation accuracy, we also evaluated the recovery of 
peak-gene association for the 1000 single-modality ATAC-seq cells when incorpo-
rating multiome samples generated at ten different depths and numbers of cells. We 
noted that Seurat v3 performed consistently better than Seurat v4 (Fig. 4E). Moreo-
ver, the number of cells and sequencing depth did not affect the percentage of peak-
gene pair recovery nor the F1 score. This is likely because Seurat v3 predicts RNA 
expression using the nearest neighbor approach on the integrated space, and the 
software was given a sufficient number of cells in the scRNA-seq dataset for the pre-
diction, thus changes in the multiome data did not affect the result.

Next, we evaluated cell type separation and batch mixing results as summarized 
in Additional file  1: Fig. S7. Most metrics increased slightly as sequencing depth 
increased, but the ranking of methods is similar as described before. Overall, Seurat 
v4 exhibited the best separation of cell types in the integrated space, but the mix-
ing of batches is the worst, across sequencing depths. A UMAP projection of each 
method under each simulated scenario is shown in Additional file 1: Fig. S8-10 for 
visual comparison.
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Overall, we conclude that the number of cells in the multiome data is more critical 
than sequencing depth for annotating cell types in the integrated data. On the other 
hand, increasing depth or number of cells of the multiome dataset does not improve 
the peak-gene pair recovery result for the “unpaired (multiome-split)” methods, 
while higher depth or larger number of multiome cells both improve the peak-gene 
pair recovery for the “multiome-guided” methods slightly.

Which method is the best at removing batch effects?

It is common that scRNA-seq and snATAC-seq data are generated by different labs 
or from different individuals than the multiome data. Therefore, another key char-
acteristic for integration methods is whether they can integrate samples displaying 
batch effects. To answer this question, we leveraged the complex batch structure 
present in the BMMC dataset. Figure  5A shows the technical batch or biological 
batch structure we aimed to evaluate, with the multiome cells coming from a differ-
ent research site, or a different donor. Figure 5B shows results of cell type annotation 
accuracy for the “unpaired (multiome-split)” methods and the “multiome-guided” 
methods. We again saw increasing cell type annotation accuracy as the number of 
multiome cells increased. With 3000 or more multiome cells, Seurat v4 again was 
the best-performing method, although GLUE showed comparable NMI scores. Seu-
rat v4 is a supervised approach, meaning that the multiome sample serves as a ref-
erence to which the single-modality datasets are mapped to. Figure  5B shows that 
although the multiome sample has strong batch effects (Additional file 1: Fig. S11), 
the supervised mapping approach resulted in the most accurate cell type annotation. 
Additional integration results are shown in Additional file 1: Fig. S12 and the UMAP 
projections are shown in Additional file 1: Fig. S13-14.

To further challenge all methods in the situation of complex mixtures of samples, we 
considered two situations where the multiome sample includes cells from a mixture of 
two donors, and the scRNA-seq and snATAC-seq data come from the same (Fig. 5C left) 
or different research sites (Fig. 5C right). Due to batch effects in the multiome samples, 
we added one more category called “Seurat v4 integrate,” in which the integration of sam-
ples was first done on each modality separately, then the two modalities were joined using 
the Seurat v4 weighted nearest neighbor approach, and lastly combined with the single-
modality dataset (see more in Additional file 1: Supplementary methods). Figure 5D (left) 
shows that in the case of low batch effects between the two donors, Seurat v4 and “Seu-
rat v4 integrate” performed similarly well at annotating cell types. However, in the pres-
ence of stronger batch effects, “Seurat v4 integrate” outperformed all other methods for 
cell type annotation (Fig. 5D right), with much higher cell type separation as measured in 
cell type average silhouette width (ASW) (Additional file 1: Fig. S15). In these two tests, 
“unpaired (multiome-split)” methods achieved similar performance, although GLUE 
was consistently ranked among the top two in ARI and NMI. In comparison, “Seurat v4 
integrate” was consistently the best, although just slightly better than others. From the 
UMAP projection in Additional file 1: Fig. S16, we noted that “Seurat v4 integrate” mixes 
cells from the two multiome samples much better than Seurat v4, especially for “Complex 
test 2.” Therefore, when the multiome data include two donors with strong batch effects, 
integration across the batches is required before mapping the single-modality datasets.
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Integration of single‑cell multi‑omic datasets from Human Pancreas Analysis Program (HPAP)

Simulated datasets are critical for evaluating integration performance due to the 
availability of ground-truth cell type annotations. However, there are limitations with 

Fig. 5  Evaluation of integration performance in the presence of batch effects. A Simulation details for the 
constructed data with technical batches and biological batches. B Performance of cell type annotation and 
runtime in the presence of technical and biological batches shown in A. ARI and NMI measure agreement 
between predicted cell type and ground-truth labels. Runtime is measured in seconds, for each method, 
in log2 scale. Error bar is mean ± standard deviation. C Simulation details for two datasets with more 
complex batch structures. D Performance of cell type annotation and runtime in the presence of technical 
and biological batches shown in C. ARI and NMI measure agreement between predicted cell type and 
ground-truth labels. Runtime is measured in seconds, for each method, in log2 scale. Whisker is 1.5 times the 
inter-quartile range
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the use of simulated datasets. The three data types we simulated all came from the 
same single-cell multiome dataset and thus represent the most idealized situation 
where there is no batch effect between the single-modality datasets and the multiome 
dataset. In reality, there are significant differences between datasets generated from 
different technologies, due to the different library preparation workflow. Moreover, 
the difference between scRNA-seq and snRNA-seq is non-negligible.

To evaluate the performance of different integration methods in a more realistic 
situation, we used data generated by the Human Pancreas Analysis Program (HPAP; 
https://​hpap.​pmacs.​upenn.​edu/​about-​pancdb; PMID: 36206763; PMID: 31127054). 
Specifically, we integrated 22 samples generated from human islets, including 10 
scRNA-seq samples, 8 snATAC-seq samples, and 4 multiome samples (Fig. 6A). The 
scRNA-seq and snATAC-seq datasets were obtained from healthy adult human sam-
ples, while the multiome dataset included samples from one healthy adult, one young 
healthy donor, and two type 2 diabetic donors. Some of the datasets were obtained 
from islet cells in the same donor; Fig. 6B shows the overlap of donors between data-
sets. We believe the HPAP data represent a realistic scenario where all three data 
types are present, and the goal is to integrate all cells to achieve one uniform cell 
type clustering result. We integrated the datasets using methods belonging to the 
“unpaired (multiome-split)” and “multiome-guided integration” categories. However, 
due to the presence of strong batch effects, we tried our best to modify each method’s 
default pipeline to limit the impact of technical batch differences. For methods that 
require z-score standardization, we performed this donor-by-donor and aggregated 
the scaled data. In situations where highly variable gene selection is needed, we ran 
highly variable gene selection per donor and aggregated the selected genes across 
donors by ranking to obtain the most representative genes. More details on specific 
optimization for each method are in the Additional file 1: Supplementary methods.

Results of each integration method are shown in Fig. 6C and Additional file 1: Fig. 
S17A. Since we did not have ground-truth annotation, we analyzed the integration 
results in three different ways: UMAP projections using the integrated embedding 
labeled by cluster id (left column) and dataset origin (middle column), and a dot plot 
showing the average gene expression and percentage of expressed cells for 10 marker 
genes, one per expected cell type (right column). Overall, Seurat v4, MultiVI, and 
GLUE all showed good separation of the  major cell types (Fig.  6C). However, Seu-
rat v4 revealed the cleanest result as it produced 10 clusters, each expressing only 
one cell type marker gene and showing the least amount of co-expression of marker 
genes for different cell types. The two rare cell populations in the human islet, PPY-
expressing gamma cells and GHRL-expressing epsilon cells, were also found by Seu-
rat v4. For MultiVI and GLUE, although the broad cell type separation was decent, 
the GCG​-expressing cell population was separated into two clusters, possibly due 
to technical reasons. Moreover, both methods failed to identify distinct clusters for 
gamma cells or epsilon cells. The results from other integration methods are shown in 
Additional file 1: Fig. S17A. We also calculated the same metrics measuring the mix-
ing of batches (scRNA-seq, snATAC-seq, or multiome), and the mixing of cells from 

https://hpap.pmacs.upenn.edu/about-pancdb
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Fig. 6  Integration of scRNA-seq, snATAC-seq, and multiome datasets from the Human Pancreas Analysis 
Program (HPAP). A Illustration of the number of samples for each data type from PANC-DB, the website 
releasing all HPAP datasets. B Overlap of samples from the same human donor between data types. C 
Integration results: UMAP projection using integrated embedding for a select number of methods, colored by 
cluster ID (left), data type (middle), and dot-plots showing the expression of marker genes per cluster, colored 
by average expression, sized by the percentage of cells expressing the gene (right). Integration results of the 
rest of the methods and other evaluation metrics are shown in Additional file 1: Fig. S17
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different donors (Additional file 1: Fig. S17B). Like previous trends, Seurat v4 showed 
relatively poorer mixing of cells from different types of assays and donors, while FigR 
showed better batch mixing than the other methods. This HPAP analysis also allowed 
us to better evaluate each method’s run time, as there were more than 70,000 cells in 
this dataset. We again found MultiVI to be the slowest method. Among the “unpaired 
(multiome-split)” methods, LIGER took the longest while the remaining methods 
took similar time, also comparable to Seurat v4. ScMoMaT and Cobolt were the fast-
est, but again, their integration performance was less optimal.

When your single‑modality datasets have different cell types as the Multiome dataset, 

do the integration methods still work?

It is not uncommon to have unique cell types in a certain dataset. This could happen 
when one of the datasets is generated in a different lab that may have slightly different 
tissue digestion or single-cell/nucleus isolation protocol. Moreover, there are intrinsic 
distinctions between scRNA-seq datasets and the gene expression profiling in the mul-
tiome dataset, as the former is single cell, with mRNA mostly from the cytoplasm, while 
the latter is single nucleus, with the mRNA coming from the nucleus. In these situations 
where the scRNA-seq, snATAC-seq, and multiome have cell types that only exist in two 
or even one dataset, it is of interest to investigate if the integration algorithms can accu-
rately identify the unique cell populations that are not shared by all three datasets. To 
this end, we considered two scenarios: (1) scRNA-seq or snATAC-seq do not share the 
same cell types, e.g., NK cells are found in scRNA-seq and multiome, but not snATAC-
seq dataset; (2) multiome dataset does not share the same cell populations as the single-
modality datasets, e.g., NK is missing in the multiome dataset, but present scRNA-seq 
and snATAC. For each situation, we explored varying degrees of cell type overlap, illus-
trated in Figs. 7 and 8.

We performed simulations for the above-described scenarios using the PBMC and 
the SHARE-seq data as the source. The BMMC dataset was not used for this simulation 
because there were not enough numbers of cells in any single donor, making it challeng-
ing to evaluate the impact of rare cells, and the batch effects become strong if all donors 
are combined. For the PBMC and SHARE-seq simulations, we ensured that the targeted 
cell types being excluded in certain datasets had at least 50 cells during the clustering 
step. In the PBMC simulation, the NK cells account for 4.6% of the 10,085 total cells. We 
considered the situation where there are 1000 scRNA-seq cells, 1000 snATAC-seq cells, 
and 1000, 3000, or 6000 multiome cells. We calculated the F1 score for recovering the NK 
cells in the scRNA-seq dataset and that in the snATAC-seq dataset separately. By com-
paring the two plots in Fig. 7A, we found that the absence of NK cells in the snATAC-seq 
data (right) led to decrease in the correct identification of NK cells in the scRNA-seq data, 
as compared to the baseline (left) using the “unpaired integration” methods. If we incor-
porate the multiome dataset, which contained the NK cells, the F1 score was comparable 
to the baseline, for both the “unpaired (multiome-split)” and the “multiome-guided inte-
gration” methods. Figure 7B shows the F1 score of identifying NK cells in snATAC-seq 
data when scRNA-seq data does not have NK cells. Similar to Fig. 7A, the absence of NK 
cells from scRNA-seq data led to a decrease in recovering NK cells in snATAC-seq data 
after integration.
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Fig. 7  Evaluation of rare cell recovery when one of the single-modality datasets miss the rare population 
of cells. A, B F1 score of recovering “Natural Killer” (NK) cells in PBMC-simulated situations. A F1 score of 
recovering NK cells in scRNA-seq at the baseline situation (left) and when snATAC-seq does not have NK cells 
(right). B F1 score of recovering NK cells in snATAC-seq at the baseline situation (left) and when scRNA-seq 
does not have NK cells (right). C–F F1 scores of recovering “Hair Shaft” (HS) cells or “Endothelial” (Endo) 
cells in SHARE-seq-simulated situations. C F1 score of recovering HS cells in scRNA-seq at the baseline 
situation (left), versus when snATAC-seq does not have HS cells (middle), versus when snATAC-seq does not 
have HS and Endo cells (right). D F1 score of recovering Endo cells in scRNA-seq at the baseline situation 
(left), versus when snATAC-seq does not have Endo cells (middle), versus when snATAC-seq does not have 
HS and Endo cells (right). E F1 score of recovering HS cells in snATAC-seq at the baseline situation (left), 
versus when scRNA-seq does not have HS cells (middle), versus when scRNA-seq does not have HS and 
Endo cells (right). F F1 score of recovering Endo cells in snATAC-seq at the baseline situation (left), versus 
when scRNA-seq does not have Endo cells (middle), versus whens cRNA-seq does not have HS and Endo cells 
(right). For all subplots, error bar is mean ± standard deviation
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We generalized this evaluation strategy to the SHARE-seq dataset where we filtered 
out cell types with less than 500 cells and subset the dataset to one with a total of 10,000 
cells, in which “Hair Shaft” (HS) cells account for 10% and “endothelial” cells account 
for 5% of the total cell population. Using this dataset, we evaluated the situation where 
snATAC-seq dataset does not have HS cells, endothelial cells, or both and calculated the 
F1 score for identifying the rare cell population in scRNA-seq (Fig. 7C,D). We repeated a 
similar setup but with the rare cell population missing in the scRNA-seq data and evalu-
ated the recovery of the rare cell population in snATAC-seq (Fig. 7E,F). We also consid-
ered the situation when each single-modality dataset has one cell type (scRNA-seq has 
HS, snATAC-seq has Endo), but the result (data not shown) is similar to the single cell 
type missing scenarios shown in Fig. 7.

None of the unpaired integration methods were consistently better than the others 
when a cell type was missing from one of the single-modality datasets. We observed that, 
in general, if one single-modality dataset lacks a certain cell type, the identification of 
this cell type after integration is harder, with the exception of the case shown in Fig. 7D. 
In this case, the baseline performance for some of the unpaired integration methods is 
comparable to the “snATAC missing Endo” or “snATAC missing HS & Endo” results. 
One hypothesis is that endothelial cells have very distinct gene expression patterns com-
pared to other cell populations. Therefore, they are distinct enough to be identified as 
one cluster in the integrated space. “Unpaired (multiome-split)” integration methods 
and “multiome-guided” integration methods generally achieved a similar accuracy. The 
top-performing method in the “unpaired (multiome-split)” category was GLUE for the 
SHARE-seq simulated scenarios, but BindSC and FigR performed better for the PBMC-
simulated cases. Seurat v4 is the best-performing method most of the times, except for 
situations shown in Fig. 7E,F.

For the second group of scenarios, we again simulated data using the PBMC and 
SHARE-seq datasets. Here, our goal was to test the missing cell type situation where 
multiome did not contain a specific cell population, or if two of the three datasets missed 
the cell type. Figure 8A,B shows the integration results for scenarios simulated using the 
PBMC dataset, and the target cell type is NK cells. Comparing the baseline (left) to the 
“Multiome missing NK” (middle) result, we observe a large decline in the F1 score for 
Seurat v4 and Cobolt. The other multiome-guided methods are less affected. Results 
from the unpaired integration methods are included as a baseline, demonstrating results 

Fig. 8  Evaluation of rare cell recovery when the multiome dataset or two of the three datasets to 
be integrated miss the rare population of cells. A, B F1 score of recovering “Natural Killer” (NK) cells in 
PBMC-simulated situations. A F1 score of recovering NK cells in scRNA-seq at the baseline situation (left), 
versus when multiome does not have NK cells (middle), versus when multiome and snATAC-seq do not have 
NK cells (right). B F1 score of recovering NK cells in snATAC-seq at the baseline situation (left), versus when 
multiome does not have NK cells (middle), versus when multiome and scRNA-seq do not have NK cells 
(right). C–F F1 scores of recovering “Hair Shaft” (HS) cells or “Endothelial” (Endo) cells in SHARE-seq-simulated 
situations. C, E F1 score for recovering HS (C) and Endo (E) in scRNA-seq at the baseline situation (left), versus 
when multiome does not have the cell type (middle), versus when multiome and snATAC-seq do not have 
the target cell type (right). D, F F1 score for recovering HS (E) and Endo (F) in snATAC-seq at the baseline 
situation (left), versus when multiome does not have the cell type (middle), versus when multiome and 
scRNA-seq do not have the target cell type (right). For all box plots, the whisker is 1.5 times the inter-quartile 
range

(See figure on next page.)



Page 22 of 33Lee et al. Genome Biology          (2023) 24:244 

achieved by the integration of the scRNA-seq and snATAC-seq datasets. The rightmost 
panel shows an extreme situation where the cell type is only present in scRNA-seq. In 
this scenario, we observe a decline in performance for the unpaired integration methods 
as well. We repeated the analysis using the SHARE-seq dataset and simulated with two 
rare cell populations again, checking if the result would differ depending on the number 
of cells in the two cell types (Fig. 8C–F). Similar to what we observed in the PBMC-based 

Fig. 8  (See legend on previous page.)
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simulations, Seurat v4 was affected the most. This is expected because Seurat v4 is a 
supervised integration approach; it builds a reference dataset using the multiome cells 
and then maps the single-modality dataset onto the reference space. Our results suggest 
that, if there are single-modality-specific cell types, they are unlikely to be identified as a 
unique cell population using the Seurat v4 integration. In this situation, GLUE or other 
unpaired integration methods might better preserve those rare cell populations.

Discussion
In summary, we evaluated nine multi-omic integration methods under five simulated 
scenarios  and one real data  integration problem. Firstly, we showed that the incorpo-
ration of multiome data improves the cell type annotation accuracy of scRNA-seq and 
snATAC-seq data when there are a sufficient number of cells in the multiome data to 
reveal cell type identities. Secondly, we showed that the number of cells in the multiome 
data plays a more important role than sequencing depth per cell for cell type annotation 
accuracy. Thus, when generating a multiome dataset with a fixed budget, a better strat-
egy is to profile more cells so that rare cell types can be captured. Thirdly, when the three 
datasets to be integrated are confounded by batch effects, Seurat v4 resulted in the best 
cell type annotation accuracy, for both simulated and real data scenarios. Forthly, we 
explored the integration performance in situations where there is an incomplete overlap 
of cell types between the three data types. Lastly, we tested each method on a real data 
situation using data from the HPAP consortium. 

In all evaluations, GLUE and Seurat v4 both demonstrated superior performance at 
resolving cell type heterogeneity. In  situations where there are many multiome cells, 
Seurat v4 performed better than GLUE. On the other hand, when the multiome data 
have an insufficient number of cells to reveal accurate cell types, the Seurat v4 integra-
tion resulted in poor annotation accuracy and GLUE was the better option. Seurat v4 
is a supervised approach, so it is expected that the number of multiome cells affect the 
integration performance greatly. However, for the other multiome-guided methods, 
e.g., MultiVI, Cobolt, and scMoMaT, the hope is that the single-modality cells can help 
the clustering when multiome cells are small. However, as shown in Figs. 2 and 3, Mul-
tiVI, Cobolt, and scMoMaT performed worse than the “unpaired (multiome-splitted)” 
integration methods that do not leverage the paired relationship of the multiome data. 
Therefore, when the multiome dataset has a small number of cells, it is better to treat 
the multiome cells as unpaired and append them to the single-modality datasets for the 
integration of three datasets.

There are several limitations of this study. Firstly, our simulations represent the most 
ideal situation, where the single-modality cells are generated from the exact same dataset 
as the multiome cells. In reality, the single-modality and the multiome data are gener-
ated from different experimental kits that could have slight differences since the multi-
ome workflow is optimized to capture both gene expression and chromatin accessibility. 
Moreover, the gene expression captured through the multiome workflow is, in fact, 
measuring mRNA in individual nuclei, while scRNA-seq captures mRNA in whole cells. 
Slight differences between snRNA-seq and scRNA-seq datasets have been reported [22]. 
We tried to overcome these limitations by including the HPAP dataset as a demonstra-
tion of integration performances in a real-life case, and the major findings are consistent. 
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Lastly, the PBMC dataset did not have expert-annotated cell type labels. We followed a 
tutorial by Seurat v4 to obtain annotations [23], thus the evaluation of PBMC-simulated 
scenarios might favor Seurat v4. However, the BMMC and SHARE-seq data were manu-
ally annotated by experts and Seurat v4 still showed outstanding performance in evalua-
tions based on these datasets.

Secondly, we did not explore the possibility of imputing chromatin accessibility from 
scRNA-seq or appending imputed profile with observed multiome sample. To truly inte-
grate the three data types and understand the underlying cis-regulatory logic, one would 
hope to impute the missing modality for both the scRNA-seq and snATAC-seq data, and 
then append the imputed profiles with the multiome dataset to identify peak-gene pairs 
with the largest number of cells. Therefore, additional work needs to be done to evaluate 
the performance of different methods in jointly integrating the imputed single-modality 
datasets with the multiome samples for downstream analyses.

Conclusions
Our benchmarking evaluations showed that multiome data are helpful for annotating 
single-modality data. The number of cells in the multiome data is critical to ensure a 
good cell type annotation after integration and the exact number of cells depends on the 
complexity of the biological system. When generating a multiome dataset, the number 
of cells is more important than sequencing depth for cell type annotation. Lastly, Seurat 
v4 is the best at integrating scRNA-seq, snATAC-seq, and multiome data even in the 
presence of complex batch effects.

Methods
Datasets

Peripheral blood mononuclear cell (PBMC) dataset

This dataset was generated using the 10 × Genomics Single Cell Multiome ATAC + Gene 
Expression kit [13]. The PBMC dataset with granulocytes removed was downloaded 
from the 10 × Genomics website, which included 11,909 cells. The dataset was processed 
and annotated into 30 cell types following the Seurat tutorial [8, 23]. We grouped simi-
lar cell types and refined the annotations into 9 broad cell types (similar to the level 1 
categories from the Azimuth database [3]): B-cells (“B”), CD4 T cells (“CD4 T”), CD8 
Naïve T cells (“CD8 Naïve”), CD8 Effector T cells (“CD8 TEM”), Dendritic cells (“DC”), 
Monocytes (“Mono”), Nature killer cell (“NK”), other T cell (“other_T”), and other cell 
categories (“other”). The ATAC-seq profile released on 10 × Genomics website was 
counting the Tn5 insertion events in each genomic region. Here, we retabulated the cell-
peak matrix by the number of reads overlapping each genomic region, using the Signac’s 
FeatureMatrix function [24]. We used the peak-based counting result as input for the 
peak-gene pair identification (described below) and subsequent simulations. The list of 
peak-gene pairs identified using all cells in the multiome dataset (10,412 cells) is treated 
as the ground truth when calculating percentage of peak-gene pair recovery or F1 score. 
“Other_T” and “other” cells were excluded from the data simulation due to their exten-
sive separation in the UMAP embedding. After removal of cells, there are 10,085 cells 
used for simulation.
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Bone marrow mononuclear cells (BMMC) dataset

This dataset was generated as part of the “Open Problems in Single-cell Analysis” com-
petition [25]. BMMC cells from nine healthy donors were profiled at four different 
research sites using the 10 × Multiome ATAC + Gene Expression kit. The dataset was 
analyzed by Lance and colleagues [25], who annotated the cells into 22 cell types. The 
values in the cell-peak matrix of the ATAC-seq data was also the insertion-based count-
ing, so we again converted it into peak-based counting as mentioned above. Data simula-
tions related to Figs. 2 and 4 were performed using cells from the site 1 donor 2 (S1D2) 
BMMC sample. This sample contains 6740 cells, annotated into 21 cell types. The peak-
gene pair prediction accuracies shown in Figs.  2 and 4 were calculated by comparing 
the result to a ground-truth list generated with the S1D2 sample. To simulate technical 
batch and biological batch effects (Fig. 5), we used cells generated at research site 1 or 
from donor 1, which includes a total of 29,486 cells, composed of 21 cell types (Addi-
tional file 1: Fig. S1B).

SHARE‑seq mouse skin dataset

This dataset was generated by Ma et al. [1], who profiled cells from the mouse skin using 
a multi-omic profiling technique called simultaneous high-throughput ATAC and RNA 
expression with sequencing (SHARE-seq). We downloaded the RNA-seq and ATAC-seq 
data from GEO: GSM4156608 and GEO: GSM4156597, respectively. A total of 34,774 
cells with both RNA-seq and ATAC-seq profiles are available. Moreover, a ground-truth 
annotation was provided by the authors as part of the GEO: GSM4156597 data. Accord-
ing to Ma et  al. [1], scRNA-seq was normalized with the standard Seurat v3 pipeline, 
which was first library-size normalized and then log1p transformed. Clustering was 
done separately for the RNA-seq and ATAC-seq data. Cell types were annotated for the 
RNA-seq portion by examining marker gene expression while the activity of the line-
age-determining transcription factor was inferred from the ATAC-seq portion and used 
for cell type annotation. The authors compared the RNA-seq and ATAC-seq clustering 
results and derived one final cell type annotation, which was treated as ground truth 
in our analyses. We removed cells labeled as “Mixed,” resulting in a total of 32,231 cells 
from 22 cell types. Furthermore, we removed RNA features expressed in less than 3 cells, 
and ATAC regions with 0 counts.

Human Pancreas Analysis Program (HPAP)

HPAP is a NIDDK-funded initiative that aims to perform deep profiling of human endo-
crine pancreas and to make the data highly accessible to the broader community of 
diabetes researchers [26]. We employed the scRNA-seq and snATAC-seq available on 
PANC-DB (https://​hpap.​pmacs.​upenn.​edu), the central space releasing all data gener-
ated from the HPAP consortium. We browsed PANC-DB and selected pancreatic islet 
samples from healthy donors with age ≥ 18. A scRNA-seq sample was included if it had a 
median number of counts ≥ 2000 and the number of cells was between 2000 and 5000. A 
snATAC-seq sample was included if it had an average number of reads mapping to peak 
regions ≥ 10,000 and the number of cells was between 2000 and 5000. There were only 
four multiome samples available when we performed the integration analyses; there-
fore, no sample selection was applied for the multiome data. In total, we included 10 

https://hpap.pmacs.upenn.edu
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scRNA-seq, 8 snATAC-seq, and 4 multiome samples generated from 16 unique donors. 
The overlap of donors is shown in Fig. 6B, and sequencing details are shown in Table 1.

We processed the three datasets internally and generated count matrices that were 
then passed through each integration method being evaluated. For the scRNA-seq data, 
raw FASTQ files were processed with Cellranger-7.1.0, to generate cell-by-gene counts 
table, which included intronic and exonic reads while tabulating transcript counts. 
We removed ambient RNA with SoupX [27], and doublets with scDblFinder [28]. Fea-
tures expressed by less than 3 cells were removed. Cells with less than 200 or more 
than 10,000 features, with percentage of mitochondrial reads > 25%, or number of UMI 
counts less than 500 or more than 100,000 were removed. For the snATAC-seq data, the 
cell-peak count matrix was tabulated using the Signac package [24]. Specifically, FASTQ 
files were processed with Cellranger-atac-2.0.0. Outputs from cellranger-atac were 
used to generate a cell-peak counts matrix that tabulate the number of open chromatin 
regions observed in the peak regions for every cell. The peak set used was the peaks 
called using the four multiome samples. Cells with less than 1000 or more than 100,000 
reads mapped in peak regions had nucleosome signal greater than 2 or TSS enrichment 
less than 1 were filtered out. For the multiome data, FASTQ files were processed with 
Cellranger-arc-1.0.0. Cells were filtered by both RNA and ATAC datasets, in a sample-
specific manner. Specifically, cells with nucleosome signal > 2, TSS enrichment < 1, per-
centage of mitochondrial reads > 30%, or number of reads mapped to genes or peaks less 
than 1000 or greater than 5 median absolute deviation from the median, were removed. 
Peaks were called for each sample individually with MACS2 [29] and then merged. 
Lastly, doublets were removed with scDblFinder [28].

Evaluation metrics

Annotation accuracy

Each integration method returns an integrated latent embedding matrix for cells. Lou-
vain clustering was performed to identify k clusters, in which k is the number of cell 
types in the ground-truth annotation. To evaluate annotation accuracy, Adjusted 
Rand Index (ARI) [17] and Normalized Mutual Information (NMI) [18] from the Scib 
package (v1.0.2) [21] were calculated to compare the predicted cluster labels with the 
ground truth. Specifically, ARI compares every pair of cells in the dataset and calculates 
a similarity measurement by considering the number of cell pairs that are in the same 
cluster in both annotation results, versus the number of cell pairs showing discordant 
annotations. This metric is then adjusted by chance, as there will be a non-zero simi-
larity between the two clustering results just due to random permutation of labels. The 
resulting metric ranges from 0 to 1 in which 1 means perfect matching between the two 
results while 0 means random labeling of cells. NMI is another measurement commonly 
used for comparison of two clustering results. NMI measures if knowing one label pro-
vides information about the other label. If the two lists are highly correlated, then it has 
high mutual information. NMI is then normalized by a factor to control for differences 
due to the number of clusters in each set of labels.
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Cell type separation

We evaluated the separation of clusters and the tightness of cells in the integrated latent 
space derived from each method. We calculated cell type-specific average silhouette 
width (ASW) [21], using the ground-truth annotation and the joint embeddings. The 
resulting score is between 0 and 1 in which 1 means small intra-cluster distance and 
high inter-cluster distance. We also calculated a cell type Local Inverse Simpson’s Index 
(cLISI) [21], which is an adaptation of LISI previously used to quantify the degree of 
batch effects [20]. Here, cLISI was calculated using the ground-truth labels again in 
which it evaluates how many cells need to be drawn from a cell’s neighborhood to draw 
a second cell of the same type. The score is normalized again so that 1 means good local 
neighborhood preservation of the same cell type while 0 is otherwise.

Batch mixing

To evaluate batch mixing, two metrics were employed. A batch ASW score was used 
to evaluate the within-batch distance and the across-batch distance [21]. The score was 
rescaled so that 0 is the worst and 1 is the best separation. To evaluate the local neigh-
borhood accuracy, k-nearest neighbor batch effect test (kBET) was also performed [19]. 
Specifically, kBET measures the difference between observed batch frequency in the 
k-nearest neighbors compared to an expected frequency based on the number of cells in 
each batch. The value is rescaled to 0 and 1 in which 1 represents the optimal mixing of 
cells from different batches in which cells in the neighborhood are highly similar to the 
expected frequency.

Peak‑gene pair recovery

To identify correlated peak-gene pairs, we used the methodology introduced in the 
SHARE-seq paper [1]. Specifically, a Pearson correlation is calculated between the raw 
accessibility count of every peak and the normalized UMI count of every gene if the peak 
is within 50,000 base pairs from the transcription start site (TSS) of the gene. The null 
distribution of correlation coefficients was then generated through selecting 100 peaks 
that have similar GC content, length, and accessibility as the target peak, and calculat-
ing correlation of the background peaks and the target gene. A one-sided t-test was used 
to calculate a p-value for every peak-gene pair by comparing to the background peaks 
and the peak-gene pairs with p-value less than 0.05 and z-score greater than 0.05 identi-
fied as significant peak-gene pairs. Associated peak-gene pairs were identified using all 
cells from each dataset. To evaluate the performance of each method at imputing gene 
expression from snATAC-seq data, a peak-gene association was calculated in the same 
manner using the raw cell-peak count of the unpaired ATAC data and the predicted 
gene expression generated by the evaluated methods. To evaluate the in silico imputed 
gene expression results, we calculated the percentage of peak-gene pairs recovered using 
the imputed gene expression and the observed snATAC-seq peak counts. To account for 
false negative results, we calculated an F1 score. Thus, the peak-gene pair percent recov-
ery and the F1 score were used to evaluate each method that can impute missing gene 
expression.
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Rare cell type recovery

To assess the ability of a method in identifying rare cell populations, we computed an 
F1 score. For each method, we first perform clustering analysis. Since the ground-truth 
cell type identity is known, for clusters that contain the target rare cell population, we 
calculate the F1 score for that cluster, which considers the number of true positives 
(TP), false positives (FP), and false negatives (FN). The F1 score is calculated as follows: 
F1 = TP / (TP + 0.5 × (FP + FN)). Therefore, for each method in each scenario, we have a 
list of F1 scores, with each corresponding to one cluster being the rare cell type. We then 
select the highest F1 score to represent the performance of this method in this scenario. 
Through visual inspections, we determined that an F1 score greater than 0.8 indicates 
a good identification of the rare cell population. Conversely, an F1 score below 0.5 sug-
gests poor identification, as it means that there are twice as many false positives or false 
negatives compared to true positives.

Evaluation scenarios

We simulated five scenarios to evaluate the performance of each method. For each sce-
nario, we simulated five independent replicates. Details regarding how each method was 
implemented are described in the Additional file 1: Supplementary methods.

Scenario 1: evaluating the effect of multiome cells on single‑modality integration

Data simulation  In this task, we first defined the number of cells to be drawn for each 
data type with an example shown in Fig. 2A. Then, we randomly selected cells from the 
ground-truth multiome dataset according to the desired number of cells for each data 
type. For scRNA-seq, we kept the gene expression matrix; for snATAC-seq, we kept the 
cell-by-peak matrix and the fragment file; lastly, for the multiome sample, we kept all 
three data files. The cells were sampled without replacement.

Evaluated methods  We first ran the five unpaired integration methods (Seurat v3, 
LIGER, FigR, BindSC, and GLUE) to integrate the simulated scRNA-seq and snATAC-
seq datasets and the results were summarized under the “Unpaired” categories. To make 
use of the multiome data, we ran the five methods again, with the multiome cells treated 
as unpaired. Specifically, the RNA profile from the multiome cells was appended to the 
scRNA-seq dataset, and the ATAC-seq profile was appended to the snATAC-seq data-
set. The results from this category were summarized under “Unpaired (multiome-split).” 
Lastly, we ran the multiome-guided methods with the scRNA-seq, snATAC-seq, and 
multiome datasets as input.

Evaluations  To evaluate if the presence of multiome cells improves the integration of 
single-modality datasets, we evaluated the annotation accuracy, peak-gene pair recovery, 
cell type separation, and batch mixing of the scRNA-seq and snATAC-seq cells.
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Scenario 2: evaluating the impact of sequencing depth in multiome cells on multi‑omic data 

integration

Data simulation  For this task, we first defined the number of cells in each data type 
as well as the percentage of original depth the multiome cells will be downsampled to; 
an example is shown in Fig.  4A. We first generated the three data types according to 
the number of cells defined. Then, we performed depth-downsampling for both the gene 
expression and chromatin accessibility profiles of the multiome dataset. To downsam-
ple the cell-by-gene count matrix for gene expression, we used Scuttle::downsample [30] 
to reduce the sample depth to a percentage of the original dataset. To downsample the 
ATAC-seq depth, we performed downsampling on the fragment file and then regener-
ated the cell-by-peak count matrix. Specifically, we first counted the number of frag-
ments corresponding to the selected cells, then we calculated the target depth by mul-
tiplying the original depth to the percentage factor. We randomly selected the number 
of reads as calculated, without replacement, and saved this file as the new fragment file. 
Then the downsampled fragment file was sorted, recompressed, indexed with tabix, and 
tabulated into peak counts with the original feature set with Signac:: FeatureMatrix [24] 
function. This often resulted in less reduction in peak counts, as some of the fragments 
removed were not previously assigned to the peaks.

Evaluated methods  We ran the unpaired integration methods with the multiome data 
appended to the single-modality datasets as described above, the results were summarized 
under “Unpaired (multiome-split).” We also ran the three multiome-guided methods.

Evaluations  The evaluation of annotation accuracy, cell type separation, and batch 
mixing were calculated using all cells present in simulated scRNA-seq, snATAC-seq, 
and the multiome datasets. Given how the multiome data were split and appended to 
the single-modality datasets for the “unpaired (multiome-split)” category, it resulted in 
doubling the number of multiome cells. Thus, to ensure a fair comparison between the 
two categories of methods, half of the multiome cells appended to the RNA-seq were 
dropped while the other half of the multiome cells appended to the ATAC-seq were 
dropped. As a result, the same number of cells was evaluated for the “unpaired (multi-
ome-split)” and “multiome-guided” methods.

Scenario 3: evaluating the impact of batch effects on multi‑omic data integration

Data simulation  The analysis of batch effects was only possible for the BMMC dataset. 
As mentioned before, the BMMC dataset contains multiome cells generated at four dif-
ferent research sites and nine donors. To create different types of batches, we used the 
multiome cells from donor 1 but processed at three different sites (S1D1, S2D1, S4D1) 
as the data source to generate technical batches. We used the multiome cells generated 
at research site 1 but from different donors (S1D1, S1D2, S1D3) as the source of biologi-
cal batches. To generate scenarios with mixed technical and biological batch effects, we 
created more complex batch structures described as “complex test” in Fig. 5D using all 
samples that were either generated at research site 1 or donor 1. After defining which 
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sample each data type comes from and the number of cells, the simulation is the same 
as described in “Scenario 1,” in which cells were randomly drawn from the ground-truth 
multiome dataset to simulate scRNA-seq, snATAC-seq, and multiome samples.

Evaluated methods  The same seven methods, four from the “unpaired (multiome-split)” 
and three from “multiome-guided” were ran. For situations were multiome were composed 
of two donors, an additional variation of Seurat v4 was added, termed “Seurat v4 integrate.” 
Specifically, the two multiome datasets were first integrated across donors to generate one 
integrated reference before it was used to integrate scRNA-seq and snATAC-seq datasets.

Evaluations  We calculated metrics measuring annotation accuracy, cell type separa-
tion, and batch mixing. For batch mixing, we calculated both the mixing of data types, 
as well as the mixing of samples. Similar to what was described in “Scenario 2,” to ensure 
that the same number of cells were evaluated for the unpaired (multiome-split) methods 
and the multiome-guided methods, half of multiome cells appended to the RNA-seq and 
the other half of the ATAC-seq dataset were dropped.

Scenario 4: evaluating the recovery of a rare cell population when it is not present in one 

of the single‑modality datasets

Data simulation  The PBMC and SHARE-seq datasets were used for this task. For the 
PBMC dataset, we chose NK cells to be the rare cell type that may not be present in all 
three datasets. The simulation process was similar to scenario 1 where the source dataset 
was split into scRNA-seq, snATAC-seq, and multiome datasets but in addition, we spec-
ified if each data type has the target cell type (e.g., NK cells for the PBMC dataset). If yes, 
cells from the target cell group were first sampled to represent the exact same percent-
age as the source dataset. In the PBMC dataset, NK cells account for 4.6% of the whole 
population, thus, for scRNA-seq and snATAC-seq, which were 1000 cells in total, we 
sampled 46 NK cells. For the multiome dataset, depending on the total number of cells, 
0.046 × total number of multiome cells were first sampled before sampling the cells from 
the other cell types. In situations where the specific data type was missing NK cells, cells 
were sampled from the source dataset excluding the target cell type. For the SHARE-seq 
dataset, a similar simulation process was carried out. The only difference was that we 
downsampled the SHARE-seq dataset to 10,000 cells. Specifically, we first filtered out 
cell types with less than 500 cells, and then sampled 10,000 cells from the source dataset 
without replacement, constructing a dataset where “Hair Shaft (HS)” cells account for 
10% and “Endothelial (Endo)” cells account for 5% of the total population.
All evaluated scenarios can be found in Fig. 7; there’s an illustration next to each result 
indicating what cell types were missing and which dataset was evaluated. For the PBMC 
dataset, we simulated these situations: (1) all three data types had the NK cells (“No 
missing”), snATAC-seq did not have NK cells (“snATAC missing NK”), and (2) scRNA-
seq did not have NK cells (“scRNA missing NK”). For the simulations with the SHARE-
seq dataset, we again had scRNA-seq or snATAC-seq missing Endo cells or HS cells, 
but in addition, we had situations where a single-modality dataset did not have both cell 
types (“snATAC missing HS & Endo” and “scRNA missing HS & Endo”).
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Evaluated methods  The same methods as described in scenario 1 were ran here. Spe-
cifically, we ran all methods belonging to the “unpaired integration,” “unpaired (multi-
ome-split),” and “multiome-guided integration” categories.

Evaluations  For each simulation, we calculated the rare cell type recovery score for 
scRNA-seq cells and snATAC-seq cells separately. For example, in Fig. 7A (left), we com-
puted the recovery of NK cells in the scRNA-seq dataset when the snATAC-seq does not 
have the NK cells. We compared this score with the score calculated using the scRNA-
seq cells under the “No Missing” scenario. This ensured that the same number of cells 
was used for the metric calculation, and we were only evaluating when certain datasets 
missed the target cell population.
The rare cell type recovery score used here was essentially an F1 score. We calculated the 
number of cells annotated correctly as the rare cell population as well as the number of 
false positives and false negatives. See the “Rare cell type recovery” section of the “Evalu-
ation Metrics” for more details on the specific calculations.

Scenario 5: evaluating the recovery of a rare cell population when it is not present 

in the multiome dataset and/or a single‑modality dataset

Data simulation  Similar simulation steps as scenario 4 were carried out here, except 
we evaluated the effect of the multiome dataset lacking the target cell type. Using the 
PBMC dataset and NK cells as an example, the situations tested were as follows: (1) all 
three data types had the target cell type (“No missing”), and the multiome dataset did 
not have the NK cells (“Multiome missing NK”), and (2) multiome and one of the single-
modality datasets did not have the NK cells (“Multiome and snATAC missing NK” and 
“Multiome and scRNA missing NK”). The same setup was replicated for the SHARE-seq 
dataset for HS cells and Endo cells separately.

Evaluated methods  Methods belonging to the “unpaired integration” and “multiome-
guided integration” categories were run. In these scenarios, the multiome dataset did 
have the target cell population, thus, the “unpaired (multiome-split)” methods should 
have the same result as the “unpaired integration” methods.

Evaluations  Similar to scenario 4, F1 scores were calculated for scRNA-seq cells and 
snATAC-seq cells separately for each method under each simulated situation.
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