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Abstract——Epidermal growth factor receptor (EGFR),
a receptor tyrosine kinase, is activated by ligand binding,
overexpression, or mutation. It is well known for its

tyrosine kinase-dependent oncogenic activities in a vari-
ety of human cancers. A large number of EGFR inhibitors
have been developed for cancer treatment, including
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monoclonal antibodies, tyrosine kinase inhibitors, and a
vaccine. The EGFR inhibitors are aimed at inhibiting the
activation or the activity of EGFR tyrosine kinase. How-
ever, these agents have shown efficacy in only a few types
of cancers. Drug resistance, both intrinsic and acquired, is
common even in cancerswhere the inhibitors have shown
efficacy. The drug resistance mechanism is complex and
not fully known. The key vulnerability of cancer cells that
are resistant to EGFR inhibitors has not been identified.
Nevertheless, it has been increasingly recognized in re-
cent years that EGFR also possesses kinase-independent
oncogenic functions and that these noncanonical func-
tionsmay play a crucial role in cancer resistance to EGFR
inhibitors. In this review, both kinase-dependent and -
independent activities of EGFR are discussed. Also dis-
cussed are the mechanisms of actions and therapeutic
activities of clinically used EGFR inhibitors and sus-
tained EGFR overexpression and EGFR interactionwith

other receptor tyrosine kinases to counter the EGFR in-
hibitors. Moreover, this review discusses emerging ex-
perimental therapeutics that have shown potential for
overcoming the limitation of the current EGFR inhibi-
tors in preclinical studies. The findings underscore the
importance and feasibility of targeting both kinase-
dependent and -independent functions of EGFR to enhance
therapeutic efficacy andminimize drug resistance.

Significance Statement——EGFR is a major onco-
genic driver and therapeutic target, but cancer resis-
tance to current EGFR inhibitors remains a significant
unmet clinical problem. This article reviews the cancer
biology of EGFR as well as the mechanisms of actions
and the therapeutic efficacies of current and emerging
EGFR inhibitors. The findings could potentially lead to
development of more effective treatments for EGFR-
positive cancers.

I. Introduction

A. The Human Epidermal Growth Factor Receptor
Family Receptor Tyrosine Kinases

Epidermal growth factor receptor (EGFR), also known
as ErbB1 or HER1, which was discovered by Cohen and
coworkers in 1978 (Carpenter et al., 1978), is a member
of the human epidermal growth factor receptor (HER)
family of four closely related receptor tyrosine kinases
(RTKs). The other HER family members include HER2
(ErbB2), HER3 (ErbB3), and HER4 (ErbB4). The HER
receptors are single-pass transmembrane proteins, com-
posed of an extracellular domain (ECD), a transmem-
brane domain, an intracellular tyrosine kinase domain,
and a C-terminal tail. Upon ligand binding to the ECD of
the RTKs or their own overexpression, the receptors un-
dergo homo- or heterodimerization, which results in tyro-
sine kinase activation and auto- or trans-phosphorylation
of tyrosine residues in the C-terminal tail. The phospho-
tyrosine sites recruit adaptor proteins, signaling proteins,
and regulatory proteins to activate various growth signal-
ing pathways, such as the RAS/RAF/MEK/ERK pathway
and the PI3K/AKT/mTOR pathway (Fig. 1) (Wee and
Wang, 2017). However, HER3 kinase is almost totally in-
active due to nonconservative substitution of several
amino acids in its kinase domain, but exerts potent onco-
genic activity by relying on transphosphorylation by an-
other RTK with which it heterodimerizes (Beji et al.,
2012; Lee et al., 2009; Lyu et al., 2018). EGFR can also
function without requiring its kinase activity, as described

later. The HER RTKs play important roles in various

developmental and physiologic processes, but excessive

activity resulting from overexpression or activating muta-

tion drives cancer development and progression (Sibilia
et al., 2007; Roskoski, 2014).

B. Epidermal Growth Factor Receptor Overexpression
and Mutation in Cancer

GFR is overexpressed in a variety of human cancers.
High tumor EGFR expression is linked to poor progno-
sis in bladder cancer (Neal et al., 1990), breast cancer
(Lee et al., 2015b), cervical cancer (Tian et al., 2016),
esophageal cancer (Jiang et al., 2015), head and neck
cancer (Chung et al., 2011), ovarian cancer (Psyrri
et al., 2005), and stomach cancer (Galizia et al., 2007).
EGFR is also overexpressed in colorectal cancer (CRC),
non-small cell lung cancer (NSCLC), and glioblastoma
multiforme (GBM), but the prognostic significance of
EGFR overexpression is not observed in NSCLC and
GBM (Hirsch et al., 2003; Heimberger et al., 2005) and
is controversial in CRC (Spano et al., 2005; Rego et al.,
2010; Hong et al., 2013). The mechanism of EGFR over-
expression is not fully understood. EGFR overexpres-
sion results mainly from gene amplification in GBM
(Viana-Pereira et al., 2008), but in CRC and NSCLC,
EGFR is amplified in about 10% to 16% of CRC cases
and about 10% of NSCLC cases, while EGFR is overex-
pressed in about 60% of the cases in both diseases
(Hirsch et al., 2003; Shia et al., 2005; Spano et al., 2005;
Kato et al., 2019). Gene amplification is not the main
driver of EGFR overexpression in head and neck squa-
mous cell carcinoma (HNSCC) as well (Bei et al., 2004;
Maiti et al., 2013). Several studies show that EGFR
expression may be induced by its own ligand through in-
creasing protein synthesis (Clark et al., 1985; Kudlow

ABBREVIATIONS: ADCC, antibody-dependent cellular cytotoxicity; AREG, amphiregulin; CME, clathrin-mediated endocytosis; CRC, co-
lorectal cancer; ECD, extracellular domain; Exon19del, Exon 19 deletion; GBM, glioblastoma multiforme; HER, human epidermal growth
factor receptor; HNSCC, head and neck squamous cell carcinoma; IGF1R, insulin-like growth factor 1 receptor; mAbs, monoclonal antibod-
ies; NSCLC, non-small cell lung cancer; PEPD, peptidase D; PROTAC, proteolysis targeting chimera; RTK, receptor tyrosine kinase; TKI,
tyrosine kinase inhibitor; VHL, von Hippel-Lindau; WT, wild-type.
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et al., 1986; Yoshida et al., 1989). Activating EGFR muta-
tion is common only in NSCLC and GBM. EGFR is mu-
tated in its kinase domain in NSCLC in 10% to 20% of the
cases in North America and Europe and 40% to 64% of
the cases in Asia (Midha et al., 2015). In contrast, EGFR
is activated by point or deletion mutations in its ECD in
GBM (An et al., 2018). EGFRvIII, an in-frame deletion of
exons 2 to 7 removing 267 amino acids, is the most com-
mon EGFR mutant in GBM and occurs in 20% to 30% of
the cases (Heimberger et al., 2005; Gan et al., 2013).

C. Clinically Used Epidermal Growth Factor Receptor
Inhibitors

Reflecting the critical importance of EGFR as a thera-
peutic target in cancer, a total of 20 direct EGFR inhibi-
tors have been developed over the past two decades,
which include tyrosine kinase inhibitors (TKIs) and

monoclonal antibodies (mAbs) (Table 1). Since the ap-

proval of gefitinib as the first EGFR TKI in 2003, 15 ad-

ditional EGFR TKIs have been developed. The EGFR

TKIs are either reversible or irreversible inhibitors and

are approved either in the United States (gefitinib,

erlotinib, lapatinib, afatinib, brigatinib, dacomitinib, mo-

bocertinib, neratinib, osimertinib, pyrotinib, and vandeta-

nib) or outside the United States (icotinib, almonertinib,

simotinib, lazertinib, and olmutinib). The EGFR TKIs

were recently reviewed (Abourehab et al., 2021), except

for mobocertinib (Gonzalvez et al., 2021; Han et al.,

2021a) and lazertinib (Dhillon, 2021; Heppner et al.,

2022), both of which were approved in 2021. Some of the

EGFR TKIs are also inhibitors of other RTKs. Lapatinib

also inhibits HER2 and is known as a dual EGFR/HER2

TKI. Afatinib, dacomitinib, neratinib, and pyrotinib also

inhibit HER2 and HER4 and are known as pan-HER

TKIs. Brigatinib and vandetanib are multikinase inhibi-

tors. Brigatinib also inhibits anaplstic lymphoma kinase,

FMS-like tyrosine kinase 3, and ROS1. Vandetanib also

inhibits vascular endothelial growth factor receptor-1/2/3

and RET. Since the approval of cetuximab as the first

EGFR mAb in 2004, three additional EGFR mAbs have

been developed. Three EGFR mAbs are approved in the

United States, including cetuximab, panitumumab, and

necitumumab, and another, nimotuzumab, is approved

outside the United States (Ramakrishnan et al., 2009; Yao

et al., 2018; Cai et al., 2020). In addition to the EGFR TKIs

and mAbs, a vaccine known as CIMAvax was developed in

Cuba and entered the first clinical trial in 1998 there

(Gonz�alez et al., 1998). CIMAvax inhibits EGFR activa-

tion by generating antibodies against circulating epider-

mal growth factor (EGF), one of the EGFR ligands

(Rodr�ıguez et al., 2010).

D. Clinical Activities of Epidermal Growth Factor
Receptor Inhibitors

Although EGFR is implicated as an oncogenic driver

in a variety of human cancers as described before, the

EGFR inhibitors have shown clinical efficacy only in a

few types of cancers. The EGFR TKIs are approved only

for treating NSCLC harboring activating EGFR muta-

tion, except for lapatinib, neratinib, pyrotinib, and van-

detanib. Lapatinib, neratinib, and pyrotinib, which also

inhibit HER2, are approved for treating HER2-positive

breast cancer (Table 1). Vandetanib, which is a multiki-

nase inhibitor, is approved for treating medullary thy-

roid cancer (Table 1). The EGFR mAbs are approved for

treating CRC, HNSCC, or squamous cell lung carci-

noma (squamous NSCLC) depending on the mAb, ex-

cept for nimotuzumab, which is approved outside the

United States for treating HNSCC, glioma, and naso-

pharyngeal carcinoma (Table 1). CIMAvax has not been

approved in the United States, but a phase 1 trial there

showed that CIMAvax is safe in NSCLC patients (Evans

et al., 2022). The US Food and Drug Administration
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Fig. 1. EGFR signaling and trafficking and the effects of EGFR inhibitors.
EGFR is activated by seven ligands. EGFR may also be activated by overex-
pression; by heterodimerizing with other RTKs; or by Janus tyrosine kinase 2,
fatty acid synthase, and SRC. Other RTKs may be activated by binding to
EGFR. EGFR may also bind to and stimulate the activity of non-RTK mem-
brane proteins such as sodium/glucose cotransporter 1. Activation of EGFR
and its binding partners initiate multiple growth signaling pathways, leading
to cell proliferation and other changes. Activated EGFR may be internalized
and delivered to lysosome for degradation; be recycled to cell membrane to
maintain signaling; or exert growth signaling in endosome, mitochondria,
nucleus, and exosome. EGFRheterodimerizationmay prevent EGFR internal-
ization. EGFR mAbs and TKIs as well as CIMAvas only partially inhibit the
EGFR signaling network.
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denied approval of poziotinib (an EGFR TKI) for patients

with NSCLC in 2022 on the grounds that benefit does not

outweigh risk (http://bit.ly/3Vy8TkB). Even in cancers

where the drugs show clinical efficacy, intrinsic and ac-

quired drug resistance is common, as discussed in Section

IV. Cancer resistance to EGFR inhibitors and the complex

mechanisms of resistance have been the subjects of numer-

ous reviews, some of which are cited here (Bertotti and

Sassi, 2015;Westover et al., 2018; Leonetti et al., 2019; Par-

seghian et al., 2019; Pan and Magge, 2020). However,

translating the knowledge of drug resistance mechanisms

to benefit patients has been very challenging. For example,

activating KRAS mutation was found to confer resistance

to EGFR inhibitors in NSCLC, and KRASG12C is the most

common activating KRASmutant in NSCLC (Kempf et al.,

2016). However, in a phase 3 clinical trial, sotorasib, which

inhibits KRASG12C, achieved median progression-free sur-

vival at 5.6 months in NSCLC patients whose tumors har-

bor this mutation, compared with docetaxel, which targets

microtubule and achievedmedian progression-free survival

at 4.5 months (de Langen et al., 2023). KRAS mutation

also renders CRC resistant to EGFR mAbs, but sotorasib

achieves objective response rate of only 7% to 10% in pa-

tients whose tumors harbor KRASG12C (Hong et al., 2020;

Fakih et al., 2022). Even in patients whose tumors respond

to sotorasib, response is not durable. The key vulnerability

of therapy-resistant cancer cells remains unknown. The

EGFR inhibitors inhibit the activation or activity of EGFR

tyrosine kinase but not its kinase-independent oncogenic

functions.

II. Kinase-Dependent Activities of Epidermal
Growth Factor Receptor

A. Ligand-Dependent and -Independent Activation of
Epidermal Growth Factor Receptor Kinase

EGFR and its family members are best known for its
kinase-dependent signaling from cell surface membrane.
EGFR is stimulated by seven ligands with varying affinity
(Olayioye et al., 2000; Singh et al., 2016). Four ligands are
specific to EGFR, including EGF, transforming growth fac-
tor a (TGFa), amphiregulin (AREG), and epigen. Three li-
gands bind to both EGFR and HER4, including heparin-
binding EGF-like growth factor, epiregulin, and betacellulin.
Ligand binding to theECDof EGFR induces homo- and het-
erodimerization, activation of tyrosine kinase, and phos-
phorylation of tyrosine residues in the C-terminal tail.
These phosphotyrosine sites act as docking locations for a
variety of proteins, which trigger cascades of downstream
growth signaling (Fig. 1). In-depth molecular details of the
activation of EGFR tyrosine kinasemay be found in a recent
review (Wee andWang, 2017). EGFRmay also form inactive
dimer before ligand binding and kinase activation (Yu et al.,
2002; Hajdu et al., 2020). In fact, all HER family receptors
may pre-form homo- and heterodimers on the cell surface
(Tao andMaruyama, 2008). Cancer cells may also overex-
press EGFR ligands to enhance its oncogenic signaling.
In a study of stomach cancer, high expression of EGF, be-
tacellulin, epiregulin, heparin-binding epidermal growth
factor-like growth factor receptor, TGFa, and AREG was
detected in 8%, 12%, 24%, 29%, 31%, and 48% of the
cases, respectively, and there are considerable positive
correlations among the ligands (Byeon et al., 2017). Ho-
bor et al. showed that CRC cells resistant to EGFR mAbs

TABLE 1
Clinically used EGFR inhibitors

Agent type Agent Effect on EGFR kinase Cancer treatment References

TKI Brigatinib Reversible inhibition of
kinase

NSCLC Abourehab et al., 2021;
Dhillon, 2021; Gonzalvez
et al., 2021; Han et al.,

2021a

Elotinib NSCLC
Gefitinib NSCLC
Icotinib* NSCLC
Lapatinib HER2-positive breast

cancer
Simotinib* NSCLC
Vandetanib Medullary thyroid cancer
Afatinib Irreversible inhibition of

kinase
NSCLC

Almonertinib* NSCLC
Dacomitinib NSCLC
Lazertinib* NSCLC
Mobocertinib NSCLC
Neratinib HER2-positive breast

cancer
Olmutinib* NSCLC
Osimertinib NSCLC
Pyrotinib HER2-positive breast

cancer
mAb Cetuximab Inhibition of ligand

activation of kinase
CRC, HNSCC Ramakrishnan et al.,

2009; Yao et al., 2018; Cai
et al., 2020

Panitumumab CRC
Necitumumab NSCLC
Nimotuzumab* HNSCC, glioma,

nasopharyngeal
carcinoma

*These drugs are approved for clinical use outside the United States.
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secret TGFa and AREG to protect surrounding cells from
EGFR blockade (Hobor et al., 2014). In addition, EGFR
kinase may be activated without ligand binding. EGFR
becomes tyrosine phosphorylated and initiates signaling
when overexpressed, while subsequent ligand bindingmay
induce EGFR conformation change and a shift of down-
stream signaling (Chakraborty et al., 2014). Palmitoylation
of EGFR by intracellular fatty acid synthase also leads to
EGFR dimerization and kinase activation in the absence of
ligand (Bollu et al., 2015). Persistent signaling by mutated
EGFR in TKI-resistant cancer cells was reported to rely on
EGFR palmitoylation (Ali et al., 2018). It was also shown
that Janus tyrosine kinase 2 (JAK2) and SRC activate
EGFR by phosphorylating its tyrosine residues (Yamauchi
et al., 1997; Biscardi et al., 1999).Most notably, constitutive
activation of EGFR kinase results from activating gene
mutation, which is common in NSCLC and GBM as men-
tioned before. However, while EGFR overexpression and
mutation are known to drive oncogenesis and confer ther-
apy resistance, it is not known to what extent EGFR acti-
vation by fatty acid synthase, Janus tyrosine kinase 2, or
SRCmay contribute to these activities.

B. Epidermal Growth Factor Receptor Internalization
and Trafficking

Activated EGFR may be internalized, which may be
recycled back to cell membrane or delivered to lyso-
some (Sigismund et al., 2008), mitochondria (Demory
et al., 2009), nucleus (Wang et al., 2010), or exosome
(Sanderson et al., 2008) (Fig. 1). The mechanisms of

EGFR internalization and trafficking are complex and
are not fully known. Sortilin, a membrane glycopro-
tein, was shown to bind to EGFR (Fig. 2) and limit its
signaling by promoting its internalization in lung can-
cer (Al-Akhrass et al., 2017). In NSCLC patients, sorti-
lin expression decreases with increase in pathologic
grade and strongly correlates with survival, especially
in patients with high EGFR expression (Al-Akhrass
et al., 2017). EGFR is internalized by clathrin-mediated
endocytosis (CME) or non-clathrin endocytosis as a func-
tion of ligand dose and EGFR ubiquitination, with high
ligand dose and lack of ubiquitination favoring CME
(Sigismund et al., 2005, 2013). p38 kinase-mediated
phosphorylation of the C-terminal tail of unliganded
EGFR, which may result from minimal EGFR activa-
tion by low level of ligand, also induces EGFR inter-
nalization via CME (Tanaka et al., 2018). CME-
internalized EGFR is predominantly recycled back
to cell membrane, whereas non-clathrin endocytosis
commits EGFR to degradation in lysosomes (Sigismund
et al., 2008). There is evidence that CME contributes to
cancer resistance to EGFR TKI (M�enard et al., 2018;
Kim et al., 2021). Additional information is available in a
comprehensive review (Caldieri et al., 2018), regarding the
mechanism of EGFR endocytosis, postendocytic trafficking,
importance of endocytosis in controlling EGFR signaling
and function, and how cancer cells evade endocytic control
of EGFR singling to gain growth advantage. Interestingly,
genetic and pharmacologic dynamin-mediated inhibi-
tion of EGFR endocytosis was shown to improve natural
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killer cell-mediated antibody-dependent cellular cyto-
toxicity (ADCC) and reverse tumor cell resistance to ce-
tuximab (Chew et al., 2020).

C. Epidermal Growth Factor Receptor Functions in
Noncanonical Locations

While recycling EGFR back to cell membrane helps sus-
tain its signaling, EGFR trafficked to other locations may
also exert oncogenic activities. Nuclear EGFR has been
shown to promote cancer growth, progression, and ther-
apy resistance via multiple mechanisms (Brand et al.,
2011; Lee et al., 2015a). Nuclear EGFR functions as a
transcriptional coactivator for oncogenes (e.g., cyclin D1
and cyclooxygenase-2), and as a protein kinase that phos-
phorylates, stabilizes, and activates proliferation cell nu-
clear antigen and ataxia-telangiectasia mutated protein
kinase. It also physically interacts with DNA-dependent
protein kinase to promote DNA repair. EGFR may also
contribute to cancer growth, progression and therapy re-
sistance by binding to p53 upregulated modulator of apo-
ptosis to prevent its accumulation in mitochondria and by
translocating to mitochondria to induce mitochondrial fis-
sion and distribution (Zhu et al., 2010; Che et al., 2015).
EGFR shed from cancer cells and carried in exosomes was
shown to induce angiogenic signaling in endothelial cells
(Al-Nedawi et al., 2009). Some of the EGFR functions in
the noncanonical locations may be kinase-independent,
such as its transcriptional functions, and its regulation
of DNA-dependent protein kinase and p53 upregulated
modulator of apoptosis. Even if the EGFR functions
are kinase-mediated in these locations, it is not known
if any clinically used EGFR inhibitor has an effect on
such functions.

III. Kinase-Independent Activities of Epidermal
Growth Factor Receptor

EGFR knockout either is embryonically lethal or causes
the newborn to die within 3 weeks, depending on the ge-
netic background (Sibilia and Wagner, 1995; Threadgill
et al., 1995). However, mice carrying a point mutation in
the EGFR kinase domain (V743G) which reduces its tyro-
sine kinase activity by 80% to 95%, are normal except for
some abnormalities in the skin and eye (Luetteke et al.,
1994). A kinase inactive EGFR mutant (D813A) stimu-
lates MAP kinase activity and DNA synthesis in response
to EGF in cultured cells (Coker et al., 1994). Another ki-
nase inactive EGFR mutant (K721R) prevents apoptosis
induced by interleukin 3 withdrawal (Ewald et al., 2003).
Kinase-inactive EGFR mutants also were detected in hu-
man NSCLC tumors (Kancha et al., 2009). There is evi-
dence that EGFR exerts its kinase-independent functions
in several cellular locations, including cell membrane, en-
dosome, mitochondria, and nucleus. On cell membrane,
loss of EGFR expression, but not inhibition of its kinase
activity, results in autophagic cancer cell death (Weihua
et al., 2008). EGFR, independent of its kinase activity,

may prevent cell death in part by directly interacting
with sodium/glucose cotransporter 1 (Fig. 2), which stabil-
izes sodium/glucose cotransporter 1 and maintains intra-
cellular glucose (Weihua et al., 2008). Independent of its
kinase activity, EGFR also increases cancer cell invasion
by directly interacting with and promoting the expression
and function of the cysteine-glutamate transporter xCT
(Fig. 2) (Tsuchihashi et al., 2016). xCT is a major cell
membrane antiporter that mediates cellular uptake of
cysteine and has been implicated in tumor growth, pro-
gression, and drug resistance (Liu et al., 2020). At the en-
dosome, EGFR interacts with the lysosomal-associated
transmembrane protein 4B (Fig. 2), independent of its ki-
nase function, to stimulate autophagy for survival under
serum starvation or metabolic stress (Tan et al., 2015).
Notably, autophagy may have opposing and context-
dependent effects on cancer cell growth and survival (Yun
and Lee, 2018). Mitochondrial EGFR was shown to in-
duce mitochondria fission independent of its kinase activ-
ity (Che et al., 2015). Nuclear EGFR may also exert its
transcriptional activity independent at least partly of its
kinase activity. Kinase-deficient EGFR was shown to
transcriptionally activate FOS gene expression (Eldredge
et al., 1994). In addition, as described in Section V, EGFR
may function without requiring its kinase activity by
forming heterodimeric signaling units with other RTKs.
Additional information about the kinase-independent ac-
tivities of EGFR may be found in previous reviews (Lee
et al., 2015a; Tan et al., 2016; Sigismund et al., 2018;
Thomas and Weihua, 2019). Collectively, while the litera-
ture on the kinase-independent functions of EGFR is
much less than that on the kinase-dependent functions of
EGFR, there is convincing evidence that EGFR exerts sig-
nificant kinase-independent functions.

IV. Mechanisms of Actions And Therapeutic
Activities of Clinically Used Epidermal Growth

Factor Receptor Inhibitors

A. Tyrosine Kinase Inhibitors

Sixteen EGFR TKIs have been approved for clinical use
(Table 1). Some of the EGFR TKIs are reversible inhibi-
tors, including brigatinib, elotinib, gefitinib, icotinib, lapa-
tinib, simotinib, and vandetanib. Others are irreversible
inhibitors, including afatinib, almonertinib, dacomitinib,
lazertinib, mobocertinib, neratinib, olmutinib, osimertinib,
and pyrotinib. The reversible inhibitors function by com-
peting with ATP binding to the kinase domain, whereas
the irreversible inhibitors act by covalently binding to a
cysteine residue (Cys797) in the kinase domain (Hossam
et al., 2016). The TKIs differ in target specificity with re-
gard to wild-type (WT) EGFR versus its mutants. For ex-
ample, gefitinib and erlotinib are as potent against WT
EGFR as against sensitive mutants, including exon 19 de-
letion (Exon19del), L858R, and L861Q (Kitagawa et al.,
2013). Osimertinib, however, is 7.5 to 300 times more
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potent against EGFR mutants, including L858R/T790M,
Exon19del/T790M, Exon19del, L858R, and L861Q, than
WT EGFR, with IC50 values of 0.1, 0.9, 0.93, 1, 4, and
30 nM, respectively (Han et al., 2021b). The EGFR TKIs
have been approved only for treating NSCLC harboring
mutant EGFR, except for several TKIs that also target
other RTKs and are used to treat HER2-positive breast
cancer or medullary thyroid cancer (Table 1). While
NSCLC patients whose tumors harbor EGFR mutation
frequently derive clinical benefit from EGFR TKI, resis-
tance invariably develops, typically after a median of 9 to
15 months of treatment (Westover et al., 2018; Leonetti
et al., 2019). Also, 20% to 30% of the patients are intrinsi-
cally resistant to the drugs, i.e., no response or responding
for less than 3 months (Wang et al., 2016; Santoni-Rugiu
et al., 2019). The drug resistance mechanisms are complex
and not fully known. The known resistance mechanisms
include EGFR mutation or amplification; activation of
other RTKs, such as AXL, HER2, insulin like growth fac-
tor 1 receptor (IGF1R), and MET; mutation of KRAS and
PIK3CA; epithelial-mesenchymal transition; and transfor-
mation to small cell lung cancer (Wang et al., 2016;
Westover et al., 2018; Leonetti et al., 2019; Santoni-
Rugiu et al., 2019; Shi et al., 2022a). The key vulnera-
bility of drug-resistant NSCLC cells is unknown.
Notably, a new class of EGFR TKIs, known as allosteric

inhibitors, have shown promising preclinical activities
against therapy-resistant EGFRmutants, including those
with T790M and/or C797S mutations (Jia et al., 2016; De
Clercq et al., 2019; Gero et al., 2022; Obst-Sander et al.,
2022; To et al., 2022). Notably, C797S mutant is resistant
to clinically available EGFR TKIs. There is evidence that
allosteric EGFR inhibitors and other EGFR inhibitors
bind to target cooperatively (Beyett et al., 2022). Studies
have also shown that combining an allosteric EGFR in-
hibitor with osimertinib or cetuximab is more effective
than any single agent (Jia et al., 2016; To et al., 2019;
Obst-Sander et al., 2022). However, homodimerization or
heterodimerization of EGFR mutants with HER family
member confers resistance to allosteric EGFR inhibitors
(To et al., 2019, 2022).

B. Monoclonal Antibodies

Four EGFR mAbs have been approved for clinical
use (Table 1), three of which are approved in the
United States, including cetuximab, panitumumab,
and necitumumab. Cetuximab is approved for both
CRC and HNSCC. Panitumumab is approved for CRC,
and necitumumab is approved for squamous NSCLC.
More than 80% of primary and metastatic CRCs are
EGFR-positive, with overexpression in about 60% of
the cases (Shia et al., 2005; Spano et al., 2005). EGFR
mutation in CRC is uncommon, although several rare
mutations in the ECD may prevent binding of cetuxi-
mab and/or panitumumab (Arena et al., 2015; Price
et al., 2020). Both cetuximab and panitumumab bind
to subdomain 3 of EGFR ECD to block EGFR

activation by ligands (Li et al., 2005; Sickmier et al.,
2016). Cetuximab is an IgG1 mAb and therefore can
also activate ADCC (Kimura et al., 2007), whereas
panitumumab is an IgG2 mAb and is incapable of elic-
iting ADCC. However, the two mAbs show similar effi-
cacy in CRC patients (Price et al., 2014). Only about
10% of chemotherapy refractory patients respond to
mAb monotherapy, and response (median progression-
free survival) lasts about 1.5 to 3.5 months, although
combination with chemotherapy increases treatment
response (Cunningham et al., 2004; Saltz et al., 2004;
Hecht et al., 2007; Van Cutsem et al., 2007). Likewise,
cetuximab monotherapy produces partial response in
only 8% to 11% of HNSCC patients (Fury et al., 2012).
Adding cetuximab to chemotherapy in HNSCC in-
creases response rate from 20% to 36%, median progres-
sion-free survival from 3.3 to 5.6 months, and median
overall survival from 7.4 to 10.1 months (Vermorken
et al., 2008). Necitumumab is an IgG1 mAb and also in-
hibits EGFR by binding to subdomain 3 of its ECD (Li
et al., 2008). It is active in squamous carcinoma but not
adenocarcinoma in NSCLC, at least partly because
the EGFR mutation rate is very low in the former
(2.1%–4.5%) (Cheung et al., 2020; Joshi et al., 2017) and
EGFR overexpression is more common in squamous
NSCLC (82%) than in nonsquamous NSCLC (40%)
(Hirsch et al., 2003). However, even in squamous NSCLC,
necitumumab efficacy is very limited. Adding necitumu-
mab to chemotherapy increased median overall survival
only from 9.9 to 11.5 months (Thatcher et al., 2015).
Nimotuzumab is an IgG1 mAb and also binds to subdo-
main 3 of EGFR ECD (Talavera et al., 2009), which has
not been approved in the United States. In a randomized
phase 2 trial in NSCLC patients in India, complete re-
sponse and partial response were 3.6% and 50% in nimo-
tuzumab plus chemotherapy, respectively, and 4% and
30.9% in the chemotherapy control, respectively (Babu
et al., 2014). Nimotuzumab did not significantly impact
median progression-free survival or overall survival. As
with EGFR TKIs, the mechanisms that confer primary
and acquired resistance to the EGFR mAbs, which were
uncovered mainly from studies in CRC, are complex and
not fully known. The known resistance mechanisms in-
clude activating mutations of KRAS, NRAS, BRAF, and
PIK3CA; loss of PTEN; activation of VEGFR1 and
IGF1R; amplification of HER2 and MET; mutation or
methylation of EGFR; overexpression of EGFR ligand;
and epithelial-mesenchymal transition (Van Emburgh
et al., 2014; Bardelli and Siena, 2010; Zhou et al., 2021;
Park et al., 2022). The key vulnerability of drug-resistant
NSCLC cells is unknown.

C. CIMAvax

CIMAvax is currently undergoing clinical evalua-
tion in the United States in NSCLC patients, and its
therapeutic efficacy has not been reported yet. A
previous phase 3 trial in NSCLC patients in Cuba
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showed that CIMAvax induces anti-EGF antibodies
and decreases serum EGF level, as expected but only
increases median survival time from 8.86 months
in the control arm to 10.83 months in the vaccine
arm (Rodriguez et al., 2016). The limited efficacy is not
surprising, however, because other EGFR ligands may
compensate for EGF loss (Fig. 1), and activating muta-
tion of EGFR may render it independent of EGF or
other ligands.

V. Sustained Epidermal Growth Factor
Receptor Overexpression and Epidermal

Growth Factor Receptor Crosstalk with Other
Receptor Tyrosine Kinases to Counter

Epidermal Growth Factor Receptor Inhibitors

A. Lack of Downregulation of Epidermal Growth
Factor Receptor and Its Mutants Confers Resistance
to Epidermal Growth Factor Receptor Inhibitors

In cancer cells that overexpress WT or mutated EGFR,
the expression level of the proteins often remains high
when treated by EGFRTKIs or after developing resistance
to these agents, while its autophosphorylation may be in-
hibited (Wood et al., 2004; Tabara et al., 2012; Jacobsen
et al., 2017; Liu et al., 2018; Thomas et al., 2019; Shaurova
et al., 2020). Shtiegman et al. reported that EGFR mu-
tants that are associated with NSCLC, such as L858R/
T790M, may dimerize with HER2 to evade ubiquitination
and subsequent degradation (Shtiegman et al., 2007).
M�enard et al. showed that reactivation of lysosomal degra-
dation of mutant EGFR in NSCLC cells, including L858R/
T790M and other mutants, by inhibiting clathrin over-
comes resistance to EGFR TKIs (M�enard et al., 2018). An
EGFR degrader known as DPBA (a 23-hydroxybetulinic
acid derivative) is more effective than EGFR TKIs, in-
cluding gefitinib, afatinib, and osimertinib, in inhibiting
the growth of NSCLC cells expressing WT or mutated
EGFR (Yao et al., 2020). Targeted degradation of EGFR
and HER2 by proteolysis targeting chimera (PROTAC) is
also more effective in inhibiting cancer cell growth than
inhibiting the kinase activity of the RTKs (Burslem
et al., 2018). Failure to downregulate EGFR by mAbs
may also be a critical cause for resistance to these agents.
Pre-treatment tumor EGFR level does not correlate with
clinical response to cetuximab and panitumumab in
CRC (Cunningham et al., 2004; Hecht et al., 2010). How-
ever, EGFR downregulation after treatment with each
mAb predicts the antitumor effect (Okada et al., 2017).
In the majority of cultured cell lines and mouse tumor
models that are either sensitive or resistant to cetuxi-
mab, panitumumab, or necitumumab, the mAbs are in-
capable of downregulating EGFR or even increasing its
expression as well as increasing the expression of its
family members, while its tyrosine phosphorylation may
be inhibited (Wheeler et al., 2008; Ashraf et al., 2012;
Misale et al., 2012; Iida et al., 2013; Iida et al., 2014;

Troiani et al., 2014; Ohnishi et al., 2015; Bagchi et al.,
2018; Yang et al., 2022). However, in cell lines and tu-
mors where cetuximab downregulates EGFR or its mu-
tants, it invariably inhibits the growth of these cells and
tumors, whether they express WT or mutated EGFR
(Perez-Torres et al., 2006; Yang et al., 2022). Also, down-
regulation of EGFR by siRNA or targeted degradation of
EGFR by PEPDG278D, a recombinant human protein
that is discussed later in detail, inhibits CRC cells that
are resistant to cetuximab and panitumumab (Yang
et al., 2022). It is poorly understood as to why EGFR
mAbs downregulate EGFR in some cancer cells but not
in most other cancer cells. Wheeler et al. showed that
EGFR insensitivity to cetuximab may result from dysregu-
lation of EGFR internalization and degradation involving
CBL, an E3 ligase (Wheeler et al., 2008). Liao et al. showed
that EGFRmethylation in its ECD renders it less sensitive
to cetuximab (Liao et al., 2015). Several rare acquired mu-
tations in the ECD of EGFRwere reported in CRC patients
following cetuximab treatment, including R451C, K467T,
and S492R, each of which prevents cetuximab binding and
confers resistance to cetuximab (Arena et al., 2015; Price
et al., 2020). The R451C and K467T mutants also bind
poorly to panitumumab (Arena et al., 2015).

B. Heterodimerization of Epidermal Growth Factor
Receptor and Its Mutants with Other Receptor
Tyrosine Kinases Confers Resistance to Epidermal
Growth Factor Receptor Inhibitors

EGFR is well known to heterodimerize with all its
family members, including HER2, HER3, and HER4
(Okines et al., 2011). It also heterodimerizes with other
RTKs, including AXL, IGF1R, MET, fibroblast growth
factor receptor 2, MER receptor tyrosine kinase, plate-
let derived growth factor receptor a, platelet derived
growth factor receptor b, and RET (Fig. 2) (Morgillo et al.,
2006; Tanizaki et al., 2011; Chang et al., 2015; Wang
et al., 2015; Chakravarty et al., 2017; Ortiz-Zapater et al.,
2017; Taniguchi et al., 2019; Yan et al., 2022). AXL,
HER2, IGF1R, MER receptor tyrosine kinase, MET, and
RET fusion have been shown to confer resistance to
EGFR TKIs in NSCLC (Yonesaka et al., 2011; Yeo et al.,
2015; Piotrowska et al., 2018; Taniguchi et al., 2019;
Marrocco et al., 2021; Zhu et al., 2021a; Yan et al., 2022).
More information about EGFR heterodimerization may
be found in a previous review (Kennedy et al., 2016).
HER2 has also been shown to heterodimerize with a vari-
ety of RTKs (Kennedy et al., 2019). The RTKs mentioned
above likely render cancer cells resistant to EGFR inhibi-
tors at least in part by forming heterodimeric signaling
units with EGFR, to allow EGFR to continue to exert on-
cogenic activities despite suppression of its tyrosine ki-
nase. This property is not unique to EGFR, as HER3 is
kinase-defective but exerts strong oncogenic activity by
heterodimerizing with other RTKs as described before.
Moreover, HER2, HER3, and platelet derived growth fac-
tor receptor b have been shown to inhibit EGFR
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endocytosis by heterodimerizing with it (Wang et al.,
1999; Wang et al., 2015). Thomas et al. showed that
EGFR TKIs, including gefitinib, erlotinib, and AEE728,
stimulate EGFR dimerization, that EGFR TKI-inhibited
EGFR is still required for the survival of EGFR-express-
ing cancer cells, and that downregulation of EGFR by
siRNA or herdegradin (a peptide) kills TKI-resistant cells
(Thomas et al., 2019). In NSCLC cells that harbor EGFR
Exon19del (E746-A750del), EGFR TKI osimertinib stimu-
lates AXL and increases AXL association with the EGFR
mutant (Taniguchi et al., 2019). EGFR E746-A750del also
heterodimerizes with HER2 and HER3 in NSCLC cells
(Sakai et al., 2007). Using computation methods, Zhu
et al. found that there is a looser EGFR crosstalk with
MET, HER2, and IGF1R for the drug-sensitive EGFRmu-
tant (L858R) than for the drug-resistant mutant (L858R/
T790M) (Zhu et al., 2021b). Indeed, more MET binds
to EGFR L858R/T790M than to EGFRL858R and WT
EGFR (Ortiz-Zapater et al., 2017). In cancer cells that de-
velop acquired resistance to cetuximab, there is also in-
creased EGFR dimerization with HER2 and HER3 and
activation of these RTKs (Wheeler et al., 2008). These
findings strongly suggest that disrupting EGFR heterodi-
merization may be key to improving the efficacy of EGFR
targeted therapies and also suggest that it may not be suf-
ficient to disrupt just one type of EGFR heterodimer.

VI. Emerging Epidermal Growth Factor
Receptor Degraders and Their Therapeutic

Activities

EGFR exerts both kinase-dependent and -independent
oncogenic activities, and various EGFR heterodimers
may contribute to the kinase-independent activities of
EGFR and confer drug resistance, as described before.
Therefore, eliminating the physical presence of EGFR

may be a much more effective therapeutic strategy than
inhibiting its kinase activity. Many agents have been
shown to induce EGFR degradation, including PRO-
TACs, non-PROTAC small molecules, antibody combina-
tions, and non-antibody proteins (Table 2). These agents
have shown promising preclinical therapeutic activities.
Some of the degraders may primarily target cell surface
EGFR, but they may also abolish EGFR functions in
other locations (exosome, endosome, mitochondria, and
nucleus), as EGFR is transferred to these locations from
cell surface membrane.

A. Proteolysis Targeting Chimeras

PROTAC works by linking a small molecule that binds
to a target protein with a ligand for an E3 ligase and
achieving target degradation via intracellular proteolysis
by the ubiquitin-proteasome system. It has emerged as a
promising new platform for cancer drug development.
Many EGFR-directed PROTACs have been synthesized
(Table 2) and evaluated in cultured cells, one of which was
also evaluated in a mouse tumor model in vivo. Burslem
et al. synthesized several PROTACs by conjugating an
EGFR TKI to a ligand that binds to E3 ligase von Hippel-
Lindau (VHL) (Burslem et al., 2018). Using lapatinib as
the EGFR TKI which binds to both EGFR andHER2, they
showed that the PROTAC induces the degradation of both
RTKs and is more effective in inhibiting cell growth than
the equivalent kinase inhibitor. Using gefitinib, which
binds to EGFR mutants, they showed that the PROTAC
induces the degradation of EGFR mutants including
Exon19del and L858R. Exon19del and L858R mutants as
well as other EGFR kinase domain mutants described
later are activating EGFR mutants that occur in NSCLC.
Using afatinib, they showed that the PROTAC induces the
degradation of gefitinib-resistant EGFRL858R1T790M. Zhang
et al. synthesized a PROTAC that specifically targets

TABLE 2
Emerging degraders of EGFR and its family members

Agent class Agent Targets References

PROTACs Lapatinib-based EGFR, HER2 Burslem et al., 2018
Dacomitinib-based
Novel TKI-based

EGFRExon19del Zhang et al., 2020a; Shi et al.,
2022b

Gefitinib-based
Gefitinib derivative-based

EGFRExon19del, EGFRL858R Burslem et al., 2018; Cheng
et al., 2020; Yu et al., 2022

Afatinib-based
Novel TKI-based

EGFRL858R1T790M Burslem et al., 2018; Zhang
et al., 2020b

Osimertinib-based
Novel TKI-based

EGFRExon19del, EGFRL858R1T790M He et al., 2020; Zhao et al., 2020;
Qu et al., 2021

Novel TKI-based EGFRL858R1T790M,
EGFRL858R1T790M1C797S,
EGFRL858R1T790M1C718Q

Jang et al., 2020

Novel TKI-based EGFRExon19del1T790M1C797S Zhang et al., 2022
Non-PROTAC small molecules DPBA EGFR, EGFRE736-A750del,

EGFRL858R1T790M
Yao et al., 2020

Hydroxytyrosol EGFR Terzuoli et al., 2016
VM26 and analogs EGFR Iradyan et al., 2019

Tephrosin EGFR, HER2, HER3 Choi et al., 2010
Antibody combinations Sym004 EGFR Pedersen et al., 2010

Sym013 EGFR, HER2, HER3 Jacobsen et al., 2015
Non-antibody proteins PEPD, PEPDG278D EGFR, HER2 Yang et al., 2014, 2015, 2016

The EGFR mutants listed in this table occur in NSCLC.
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EGFRL858R/T790M by conjugating an experimental
EGFRL858R/T790M-specific inhibitor to a ligand that
binds to VHL and showed that it induces the degrada-
tion of EGFRL858R/T790M but not WT EGFR (Zhang
et al., 2020b). Zhao et al. showed that a PROTAC that
links an experimental EGFR TKI, 9-cyclopentyl-8-
phenylamino-2-(4-(piperazin-1-yl)phenylamino)-9H-
purine, to a ligand for VHL is highly effective
against EGFRExon19del and EGFRL858R1T790M but not
WT EGFR (Zhao et al., 2020). Several other PROTACs,
linking a novel EGFRTKI to a ligand for either VHL or cer-
eblon, another E3 ligase, degrade EGFRExon19del but have
weak activity against EGFRL858R1T790M and WT EGFR
(Zhang et al., 2020a). He et al. generated a PROTAC by con-
jugating osimertinib to a ligand for cereblon, which signifi-
cantly decreases the expression of EGFRExon19del and
EGFRL858R1T790M (He et al., 2020). Cheng et al. generated
PROTACs by conjugating a gefitinib derivative to a ligand
for either VHL or cereblon and showed that the PROTACs
potently induce the degradation of EGFRExon19del and
EGFRL858R but not WT EGFR (Cheng et al., 2020; Yu
et al., 2022). Qu et al. synthesized PROTACs by conjugat-
ing canertinib, an experimental EGFRTKI, or a derivative
of it to a ligand for cereblon and showed that these agents
degrade EGFRL858R1T790M and EGFRExon19del but is inac-
tive against EGFRExon19del1T790M and WT EGFR (Qu
et al., 2021). Shi et al. synthesized PROTACs by conjugat-
ing dacomitinib to a ligand for cereblon or VHL and
showed that these agents are highly effective against
EGFRExon19del but notWTEGFR, one of which strongly in-
hibits the growth of NSCLC cell xenograft harboring
EGFRExon19del in mice (Shi et al., 2022b). Jang et al. gen-
erated a PROTAC by conjugating an allosteric EGFR in-
hibitor to a ligand for cereblon and showed that it is
effective against multiple EGFR mutants, including
EGFRL858R1T790M, EGFRL858R1T790M1C797S, and
EGFRL858R1T790M1C718Q, but not WT EGFR (Jang et al.,
2020). Zhang et al. showed that an allosteric EGFR in-
hibitor-derived VHL-recruiting degrader is effective
against EGFRExon19del1T790M1C797S but is only weakly
effective or not effective at all against WT EGFR, EGFR
Exon19del, EGFRL858R1T790M, and EGFRL858R (Zhang
et al., 2022). These studies show the widespread interest
in developing PROTACs targeting EGFR, its mutants,
and HER2 in cancer and the promise of this approach.
However, there is significant redundancy in generating
PROTACs targeting EGFR mutants by different re-
search groups, and it is unclear whether any agent will
be effective against a broad spectrum of EGFR mutants
occurring in NSCLC.

B. Non-Proteolysis Targeting Chimera Small
Molecules

Yao et al. found that a 23-hydroxybetulinic acid deriv-
ative, termed DPBA, is an EGFR degrader by screening
more than 700 natural compounds and their derivatives
(Yao et al., 2020). DPBA induces the degradation of

EGFR but not its family members, including HER2,
HER3, and HER4. It induces lysosomal degradation of
both WT EGFR and mutants including E736-A750del
and L858R1T790M by binding to their ECD and induc-
ing clathrin-independent endocytosis, without inducing
their dimerization. It inhibits the growth of cancer cells
and tumors harboring WT EGFR, EGFRE736-A750del, or
EGFRL858R1T790M in vitro and in vivo. Terzuoli et al. re-
ported that hydroxytyrosol, from olive oil, induces EGFR
degradation by stimulating its ubiquitination and inhib-
iting the growth of EGFR-expressing cancer cells in vitro
and in vivo (Terzuoli et al., 2016). Hydroxytyrosol does
not appear to downregulate EGFR in normal cells and
has not been evaluated against EGFR mutants. Iradyan
et al. reported that several furfuryl derivatives of 4-allyl-
5-[2-(4-alkoxyphenyl)-quinolin-4-yl]-4H-1,2,4-triazole-3-
thiol (VM26 and analogs) inhibit EGFR phosphorylation
and induce its internalization and degradation by bind-
ing to an allosteric site located in the vicinity of the
catalytic pocket in the kinase domain of the receptor
(Iradyan et al., 2019). Choi et al. reported that tephro-
sin, a natural rotenoid, inhibits the phosphorylation of
EGFR, HER2, and HER3; induces the internalization
and lysosomal degradation of the RTKs; and causes cell
death (Choi et al., 2010).

C. Antibody Combinations

Sym004, a 1:1 mixture of two IgG1 antibodies bind-
ing to two nonoverlapping epitopes in the ECD subdo-
main 3 of EGFR, induces rapid internalization and
lysosomal degradation of the receptor and is more ef-
fective than cetuximab and panitumumab in inhibit-
ing tumor growth in vivo (Pedersen et al., 2010; Jones
et al., 2020). Sym004 is also effective against cancer
cells and tumors that are resistant to cetuximab and
show increased EGFR expression (Iida et al., 2013).
Sym004 is also more effective than cetuximab in CRC
PDXmodels but unexpectedly did not improve survival in
a phase 2 randomized clinical trial in metastatic CRC
with acquired resistance to anti-EGFR mAb (Montagut
et al., 2018). It is not known if Sym004 downregulates tu-
mor EGFR in patients. Jacobsen et al. generated a mix-
ture of six antibodies, termed Pan-HER (Sym013), which
simultaneously targets EGFR, HER2, and HER3, and
showed that Sym013 induces the degradation of all three
RTKs and inhibits the growth of cancer cells and tumors
in mice, including those resistant to cetuximab and tras-
tuzumab (an anti-HER2 mAb) (Jacobsen et al., 2015; Iida
et al., 2016). Notably, HER2 amplification may occur in
nearly 4% of patients with metastatic CRC (Dumbrava
et al., 2019), and HER2 confers resistance to EGFR inhi-
bition as mentioned before. However, a first-in-human
trial showed significant toxicity of Sym013 and potential
difficulty in achieving a tolerated regimen with adequate
target saturation (Berlin et al., 2022).
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D. Non-Antibody Proteins

Peptidase D (PEPD), also known as prolidase, is a
widely distributed dipeptidase important for collagen
metabolism (Myara et al., 1984). Surprisingly, we
found that, while the endogenous intracellular PEPD
has no effect on EGFR and its family members, exoge-
nous recombinant human PEPD induces the internal-
ization and lysosomal degradation of both EGFR and
HER2 by binding to their ECD (Yang et al., 2013,
2014, 2016, 2019). PEPD binds to ECD subdomain 2
in EGFR but ECD subdomain 3 in HER2 (Yang et al.,
2014, 2016). PEPD does not bind to HER3 and HER4
(Yang et al., 2014). The finding that PEPD binds to
HER2 at high affinity (Kd 5 7 nM) (Yang et al., 2014)
was unexpected, because it had been widely believed
that HER2 exists in a closed state and cannot be li-
ganded, and no ligand had been previously identified.
Crystallography studies showed that the structure of
HER2 ECD resembles a ligand-activated conformation
that is ready for dimerization (Cho et al., 2003; Garrett
et al., 2003). PEPD also represents a novel class of
EGFR ligands, as all other EGFR ligands are first syn-
thesized as membrane proteins and harbor an EGF mo-
tif, but PEPD neither is a membrane protein nor carries
an EGF motif. The binding affinity of PEPD is lower to-
ward EGFR (Kd 5 17 nM) than HER2 (Yang et al.,
2016). The enzymatic activity of PEPD is not required
for targeting EGFR and HER2 (Yang et al., 2013, 2014,
2015, 2016). Recombinant PEPDG278D, which is enzy-
matically inactive, shows no difference from PEPD in
targeting EGFR and HER2, but it is a more attractive
antitumor agent than PEPD. PEPDG278D may not inter-
fere with the enzymatic function of endogenous PEPD,
and PEPD, but not PEPDG278D, increases HIF1a growth
signaling due to inhibition of its degradation by the prod-
ucts of PEPD enzymatic reaction (Surazynski et al.,
2008; Yang et al., 2015). PEPDG278D and PEPD have
shown strong antitumor activities in preclinical models
of EGFR- and/or HER2-overexpressing cancers (Yang
et al., 2014, 2015, 2016). In models of HER2-positve
breast cancer and EGFR-positive CRC, PEPDG278D

strongly inhibits the growth of cancer cells and tumors
that are resistant to clinically used EGFR and HER2
inhibitors (Yang et al., 2019, 2022). PEPDG278D and
PEPD target EGFR and HER2 overexpressed in cancer
cells but not the RTKs expressed low in normal cells
(Yang et al., 2015; 2019). This apparently is due to
their unique binding mode. PEPDG278D as well as
PEPD are homodimers, and each subunit binds to a
monomer of EGFR or HER2 to form a tetra-complex
(Yang et al., 2014, 2015, 2019), which requires the RTKs
to be overexpressed on cell membrane. Furthermore,
while PEPDG278D binds to both EGFR and HER2, it does
not bind to both RTKs simultaneously and disrupts
EGFR-HER2 heterodimers by forming a tetra-complex
with each RTK (Yang et al., 2015). This may be due to

PEPDG278D binding to different locations in the ECD of
the RTKs. Besides WT EGFR and HER2, PEPDG278D

also targets EGFRmutants that do not bind to cetuximab
and panitumumab (Yang et al., 2022). It is possible that
PEPDG278D is also effective against a wide spectrum of
EGFR and HER2 mutants that occur in NSCLC, since
PEPDG278D binds to the ECD of the RTKs but the muta-
tions occur in the intracellular kinase domain.

VII. Concluding Remarks

EGFR drives cancer development and progression
through both kinase-dependent and kinase-independent
functions. EGFR inhibitors that are currently available
in the clinic, including mAbs and TKIs, inhibit EGFR ki-
nase without inhibiting or even promoting its kinase-
independent functions. These inhibitors have shown clini-
cal efficacy in only a few types of cancers, and even in these
cancers, drug resistance is common and treatment efficacy
is not durable. CIMAvax is also limited in its mechanism of
action for inhibiting EGFR, as it indirectly inhibits EGFR
tyrosine kinase by inducing EGF-neutralizing antibody,
but other EGFR ligands may compensate for EGF loss. CI-
MAvax is not known to modulate the kinase-independent
activity of EGFR, and available data show very limited
clinical efficacy of this vaccine. There is accumulating evi-
dence that the kinase-independent activities of EGFR
must also be targeted in addition to inhibiting its tyrosine
kinase activity to achieve better therapeutic outcomes and
minimize drug resistance. Targeting the degradation of
EGFR is a promising strategy for simultaneously abolish-
ing both kinase-dependent and -independent functions of
the RTK. A number of new agents have shown promis-
ing preclinical activity in inducing EGFR degradation
and inhibiting cancer cell growth. Some of the agents
also induce the degradation of other EGFR family mem-
bers, which likely enhances the therapeutic efficacy. It
will be important to confirm that the target is overex-
pressed in cancer cells before use of such agent. Tumor
heterogeneity undoubtedly presents challenge to any tar-
geted therapy, and further research is needed to deter-
mine the therapeutic efficacy of targeted degradation of
EGFR and its family members in tumors that carry other
drug resistance drivers. Notably, we showed that KRAS
mutation (G12D or G13D), BRAFmutation (V600E), and/
or PIK3CA mutation (P449Tor H1047R) do not confer re-
sistance of CRC cells and tumors to PEPDG278D, which in-
duces the degradation of both EGFR and HER2 (Yang
et al., 2022). It is also important to evaluate whether
combination of an EGFR degrader with other antitumor
agents enhances treatment efficacy.
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