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Abstract

Rationale: Lung disease is the major cause of morbidity and
mortality in persons with cystic fibrosis (pwCF). Variability in CF
lung disease has substantial non-CFTR (CF transmembrane
conductance regulator) genetic influence. Identification of genetic
modifiers has prognostic and therapeutic importance.

Objectives: Identify genetic modifier loci and genes/pathways
associated with pulmonary disease severity.

Methods: Whole-genome sequencing data on 4,248 unique pwCF
with pancreatic insufficiency and lung function measures were
combined with imputed genotypes from an additional 3,592 patients
with pancreatic insufficiency from the United States, Canada, and
France. This report describes association of approximately 15.9
million SNPs using the quantitative Kulich normal residual
mortality-adjusted (KNoRMA) lung disease phenotype in 7,840
pwCF using premodulator lung function data.

Measurements and Main Results: Testing included common
and rare SNPs, transcriptome-wide association, gene-level, and

pathway analyses. Pathway analyses identified novel
associations with genes that have key roles in organ
development, and we hypothesize that these genes may relate to
dysanapsis and/or variability in lung repair. Results confirmed
and extended previous genome-wide association study findings.
These whole-genome sequencing data provide finely mapped
genetic information to support mechanistic studies. No novel
primary associations with common single variants or rare
variants were found. Multilocus effects at chr5p13 (SLC9A3/
CEP72) and chr11p13 (EHF/APIP) were identified. Variant
effect size estimates at associated loci were consistently
ordered across the cohorts, indicating possible age or birth
cohort effects.

Conclusions: This premodulator genomic, transcriptomic,
and pathway association study of 7,840 pwCF will facilitate
mechanistic and postmodulator genetic studies and the
development of novel therapeutics for CF lung disease.
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Lung disease is the major cause of morbidity
andmortality in cystic fibrosis (CF) (1), but
the severity can vary widely among
individuals. In part, this variation reflects
genetic variants in CFTR (CF
transmembrane conductance regulator) (2)
that span a spectrum of severity from
complete loss-of-function mutations that are
associated with exocrine pancreatic
insufficiency (PI) to CFTR variants with
residual function (2). Additionally, although
environmental influences contribute to lung
disease variability, non-CFTRmodifier genes
also play a role (heritability, 0.54) (3, 4).
Although recent advances in CFTR
modulator therapies have improved
outcomes for many persons with CF
(pwCF), some do not benefit as a result of

nonresponsive genetic variants in CFTR.
Continued exploration of non-CFTR genetic
modifiers is expected to provide new
therapeutic targets (5).

A previously published genome-wide
association study (GWAS) for lung disease
severity in pwCF with PI reported modifier
variants at five loci (6), with an additional
significant GWAS locus identified using
improved imputation of SNP genotypes
from the primary paper (7). These previous
studies used whole-genome SNP arrays and a
validated lung disease phenotype, Kulich
normal residual mortality-adjusted
(KNoRMA), which is based on multiple
measurements of FEV1 corrected for sex, age,
and survival, enabling analysis across
different ages and cohorts (6).

Whole-genome sequencing (WGS)
has made it possible to study
genotype–phenotype associations at high
resolution. The Cystic Fibrosis Genome
Project (CFGP) is a multisite consortium to
dissect molecular sources of the variability
of phenotypes in pwCF (8). We reasoned
that combining data from WGS samples
with samples and data from prior GWASs
would provide a highly resolved picture of
CF lung disease phenotype–genotype
associations and a more detailed biological
understanding of CF lung disease. We
report extensive analyses using KNoRMA,
calculated from lung function data before
modulator therapy, to identify genetic
modifiers of pulmonary disease in 7,840
pwCF, the largest such study to date. These
rigorous premodulator data will inform
ongoing therapeutic development studies
and serve as a basis for future
postmodulator genome studies.

Some of the results of these studies have
been previously reported in the form of an
abstract (9).

Methods

The online supplement includes numerous
details, with brief descriptions provided here.

A total of 5,199 CFGP samples were
sequenced (8). Of those, 4,248 were patients
with PI with sufficient premodulator lung
function measures for inclusion from three
studies/sites: the GeneModifier Study at the
University of North Carolina (UNC), the
Twin and Sibling Study and CF-related
Diabetes Studies at Johns Hopkins
University, and the Early Pseudomonas
Infection Control Study at the University of
Washington (UW) (Table 1). TheseWGS
data were combined with an independent set
of 3,592 patients with genome-wide
genotypes imputed from TOPMed data (10)
from array-based genotypes (6) (total
N=7,840).

A validated quantitative lung function
trait was calculated using the KNoRMA
phenotype (6), which allows analyses across
age, sex, and cohort. KNoRMA is based on
multiple measures of FEV1 over 3 years using
data from the CF Foundation Patient
Registry (2017) (11) and is corrected for age,
sex, and survival. A disease progression– and
mortality-adjusted phenotype such as
KNoRMA increases statistical power while
reducing the need for stratification or
additional covariates. For this study, to avoid
the confounding effects of recently approved
modulators, KNoRMAwas calculated from
FEV1 before modulator therapy (see online
supplement for details).

At a Glance Commentary

Scientific Knowledge on the
Subject: Genetic modifiers affect
lung disease severity.

What This Study Adds to the
Field: This is the largest
premodulator genome-wide
association study to date for lung
function in cystic fibrosis, using
recently generated whole-genome
sequencing. Genetic variation
controlling cystic fibrosis lung disease
severity spans the biological spectrum,
from innate immunity to lung
development, and defines key genes
and pathways for future exploration.
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CFGP samples were sequenced to
approximately 303 coverage with careful
quality/identity checks (see online
supplement for details). The GWAS array-
based data and cohorts were described
previously (6). Genetic imputation for the
non-CFGP samples was performed as
described previously (10).

Analyses used a quantitative trait of
lung disease severity (KNoRMA) (6). The
primary analyses included nonrare single-
variant SNP testing (minor allele count
>20). Association was tested using
KNoRMA as a response in an additive effect
mixed model using ancestry, sex, and terms
for site/platform combinations as covariates.
A genetic relatedness matrix was used to

account for the small proportion of families
and cryptic relatedness. Results were
combined across site3 platform as a fixed-
effect meta-analysis. P value thresholds were
applied at the genome-wide significance level
(P, 53 1028) (12), and we considered
SNPs with P, 53 1027 to be suggestive.

For the significant GWAS loci, we ran
Causal Variants Identification in Associated
Regions to assess evidence of SNP causality
(13). The Ensembl Variant Effect Predictor
was used to determine putative effects of
variants on genes, transcripts, protein
sequences, and regulatory regions (14).

Transcriptome-wide association
(TWAS) evidence was determined from
50 tissues using a summary association

z-statistic (15). This approach uses SNP-level
gene-expression weights from 48 tissues
from the Genotype-Tissue Expression
project v8 (16), peripheral blood from the
Netherlands Twin Registry (17), and whole
blood from the Young Finns Study (18). For
these and all gene-based approaches,
including gene association summaries and
rare-variant methods, we used a false-
discovery q value of less than 0.1 to declare
significance.

Although the KNoRMA phenotype is
corrected for age-dependent effects on
survival, we additionally devised a reverse
regression approach to investigate potential
age interactions for genotype associations
(see online supplement). In addition, a

Table 1. Characteristics of Patients with CF (All with Pancreatic Insufficiency) in the Present Study

Cohort Total Pts.
CFGP

WGS Pts. Imputed Pts.

KNoRMA
[Mean
(SD)]

Age, yr*
Male sex
[n (%)]

European†

[n (%)]

F508del/
F508del
[n (%)]Mean (SD) Median

JHU 1,683 1,466 217 0.54 (0.86) 20.6 (9.8) 19.0 893 (53.1) 1,565 (93.0) 947 (56.3)
UNC 2,159 1,605 554 0.60 (0.92) 26.8 (11.2) 24.9 1,170 (54.1) 2,057 (95.3) 1,606 (74.4)
UW 1,177 1,177 0 0.51 (0.73) 13.1 (3.5) 12.9 592 (50.3) 1,088 (92.4) 710 (60.3)
FrGMS 1,207 0 1,207 0.32 (0.77) 21.1 (9.2) 20.1 619 (51.3) 1,196 (99.1) 707 (58.6)
CGS 1,614 0 1,614 0.38 (0.82) 17.3 (9.2) 14.9 865 (53.6) 1,531 (94.9) 1,015 (62.9)
Overall 7,840 4,248 3,592 0.48 (0.84) 20.6 (10.4) 18.4 4,139 (52.8) 7,437 (94.9) 4,985 (63.6)

Definition of abbreviations: CFGP=Cystic Fibrosis Genome Project; CGS=Canadian CF Gene Modifier Study (population-based);
FrGMS=French CF Gene Modifier Consortium (population-based); JHU=Johns Hopkins University (twin-siblings design); KNoRMA=Kulich
normal residual mortality-adjusted; UNC=University of North Carolina (extremes of phenotype); UW=University of Washington (longitudinal
study for effect of Pseudomonas aeruginosa acquisition on lung disease); WGS=whole-genome sequencing.
*Age for lung function phenotyping for KNoRMA calculation.
†Based on self-reported ancestry, confirmed by ancestry by genotyping.
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Figure 1. Distributions of the Kulich normal residual mortality-adjusted (KNoRMA) age-adjusted lung function phenotype by site cohort. The line
inside each box is the median KNoRMA, and the box represents the interquartile range, or distance between the first and third quartiles
(the 25th and 75th percentiles). Violin plots show the overall population distribution. Sample sizes are shown, with symbol areas proportional to
sample size. CGS=Canadian CF Gene Modifier Study (population-based); FrGMS=French CF Gene Modifier Consortium (population-based);
JHU=Johns Hopkins University (twin-siblings design); UNC=University of North Carolina (extremes of phenotype); UW=University of
Washington (longitudinal study for effect of Pseudomonas aeruginosa acquisition on lung disease).
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method was devised to assess concordant
effect size ordering across site cohorts for
different loci using a summary of pairwise
correlations of estimated effect sizes across
cohorts, with statistical significance assessed
by permutation. For our meta-analysis
statistic, we show that this permutation
approach remains valid under selection for
genome-wide significance (see online
supplement). Gene-level summary analyses
were performed using VEGAS2 (19) for
intragenic SNPs and SNPs within a flanking
region of 20 kb around each gene. Gene-
based pathway analyses were performed
using the Gene Set Enrichment Analysis
(GSEA) method (20), available in the

clusterProfiler R package (21). Rare variant
methods (minor allele count,20) were
performed at the gene level using the
GENESIS R package for the burden test,
SMMAT, and SKAT-O.

Results

Table 1 describes key features of the five
cohorts, including the country of enrollment.
Themajority (n=4,248) of these pwCF with
PI hadWGS, and the remainder (n=3,592)
had genotypes imputed fromWGS (10). The
means and standard deviations for lung
disease severity (KNoRMA) were comparable

across cohorts despite considerable
differences in mean (andmedian) age. On
average, the UW cohort includes the youngest
patients (mean, 13.1 yr) and the UNC cohort
the oldest (mean, 26.8 yr). The vast majority
of these pwCF are of European ancestry
(�95%), andmost (�64%) are
c.1521_1523del (p.Phe508del; legacy: F508del)
homozygotes. Effective ancestry control could
be achieved by four genotype principal
components (22), and we used six principal
components to be conservative. The violin
plot in Figure 1 illustrates the distribution of
KNoRMA by cohort, and the UNC plot
shows two distinct modes, reflecting an
extremes-of-phenotype design (6).

Figure 2. Genetic loci significantly associated with Kulich normal residual mortality-adjusted (KNoRMA) lung phenotype. Genome-wide
Manhattan plot of associations with KNoRMA in all 7,840 patients. Red line shows genome-wide significance of P, 53 1028. Blue line shows a
suggestive significance of P, 531027.

Table 2. Genome-Wide Significant (P< 531028) and Suggestive (P< 531027) Association Results

Chromosome
Band Gene(s)

Base Pair
Position SNP

Risk/Protective
Allele PAF b* P Value

Prior GWAS Regional
P Value†

Significant findings
3q29 MUC20/MUC4 195,760,866 rs2246771 G/A 0.29 0.1 6.73 10212‡ 3.33 10211‡

5p15.33 SLC9A3/CEP72 537,775 rs56108664 T/C 0.83 0.11 2.83 10210‡ 6.83 10212‡

6p21 HLA class II 32,462,048 rs9268860 T/C 0.68 0.08 9.93 10210‡ 1.23 1028‡

11p13 EHF/APIP 34,808,842 rs485845 A/C 0.64 0.09 2.63 1029‡ 4.83 1029‡

16p12.2 CHP2/PRKCB 23,779,017 rs194788 A/T 0.44 0.07 2.53 1028‡ 7.73 1027

Xq23 AGTR2/SLC6A14 116,230,240 rs12009976 G/A 0.49 0.08 6.13 10212‡ 1.83 1029‡

Suggestive findings
1p36 CEP85 26,257,354 rs41284341 A/C 0.009 0.39 1.63 1027 9.13 1023

6q15 UBE2J1 89,330,626 rs9294434 T/C 0.009 0.41 1.33 1027 8.03 1023

8q11.2 SNTG1 50,730,869 rs140650336 C/T 0.005 0.65 1.23 1027 7.23 1024

17q22 PPM1E 58,950,377 rs72828739 C/T 0.991 0.36 4.73 1027 7.13 1022

Gene listed if intergenic; flanking genes are listed otherwise.
Definition of abbreviations: GWAS=genome-wide association study; PAF= frequency of protective allele.
*b-Coefficient refers to increased average Kulich normal residual mortality-adjusted for each copy of the protective allele.
†From Corvol and colleagues, 2015 (6).
‡P values with genome-wide significant association, P, 53 1028; others listed are suggestive association, P, 531027.
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The GWAS analysis for KNoRMA
using nonrare variants (minor allele count
.20, hereafter termed “common”) identified
six genome-wide significant (P, 53 1028)
(12) loci (Figure 2, Table 2, and Figures E1
and E2 in the online supplement). The
present analyses increased the significance of
four of five loci reported in our previous
GWAS (Table 2) (6). The sixth locus at
16p12.2 near CHP2 and PRKCB
(P=2.53 1028) (Table 2 and Figure E2) was
not reported in our previous GWAS (6) but
was identified in a separate analysis using
updated and improved imputation of SNP
genotypes (7). Each of these six loci contains
genes of high biological relevance to the
pathophysiology of CF lung disease (4, 7).
Four suggestive loci (P, 53 1027; all with
lowminor allele frequency; range,

0.005–0.009) were also identified, including
chr1p36 (CEP85), chr6q15 (UBE2J1),
chr8q11.2 (SNTG1), and chr17q22 (PPM1E)
(Table 2 and Figure E3). Finally, we
identified many associations (P, 1025) with
KNoRMA in all pwCF (N=7,840) and 4,985
F508del homozygotes (Table E1 in the online
supplement).

Conditioning on the top-ranked SNP in
six regions with genome-wide significance
eliminated significant secondary signals in
four regions, but two loci (chr5p15.33;
SLC9A3/CEP72 and chr11p13;APIP/EHF)
displayed regional significance for secondary
SNPs (Figure E2). By fitting all regional
two-SNPmodels for chr5p15 and chr11p13
(see METHODS), we determined the best-fitting
SNP pair for each region. For chr5p15,
conditioning on the primary SNP

(rs56108664) revealed a significant secondary
SNP (rs111275646) and other SNPs in
linkage disequilibrium (LD) (Figure E4).
Conditioning on the secondary SNP at
chr5p15 recapitulated the original signal
(conditional P� 33 1028 for the original
SNP rs56108664 after conditioning on
rs111275646). For the chr11p13 locus, the
use of the best two-SNPmodel (primary,
rs483769; secondary, rs1509661) provided
informative results (Figure E5). Namely, the
P values for SNPs in the primary LD “block”
after conditioning on the secondary SNP
(rs1509661) became approximately 10,000-
fold smaller (P� 73 10214) than in the
original single-variant analysis
(P� 2.63 1029) (Table 2). Further
investigation of the chr11p13 locus revealed
that the minor alleles of the primary and

Figure 3. Forest plots for SNP association effect size by cohort at significant loci. b (coefficient) refers to the average change in Kulich normal
residual mortality-adjusted (KNoRMA) phenotype for each copy of the protective allele. Square sizes are proportional to the sample size (n) of
each cohort, and the line segments are 95% confidence intervals of each b. The most significant SNP from each locus was chosen. For each
SNP, the protective allele is listed on the left, and frequencies of the protective alleles are shown in parentheses. Cohorts are arranged by
increasing mean age (at KNoRMA). CFGP=Cystic Fibrosis Genome Project; CGS=Canadian CF Gene Modifier Study (population-based);
FF=patients with CF who are F508del homozygous in the CFTR gene; FrGMS=French CF Gene Modifier Consortium (population-based);
JHU=Johns Hopkins University (twin-siblings design); non-FF=patients with CF who are not homozygous for F508del in the CFTR gene;
UNC=University of North Carolina (extremes of phenotype); UW=University of Washington (longitudinal study for effect of Pseudomonas
aeruginosa acquisition on lung disease).
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secondary SNPs are positively associated
(r2 = 0.28) but have associations in opposite
directions with KNoRMA. In this scenario,
most subjects in this study have at least one
risk allele at the primary locus and at least
one protective allele at the secondary locus,
with combinations of risk alleles from either
locus contributing to overall phenotype
consequences (Figure E6). For the chr5p15
and chr11p13 regions, haplotype analyses
that account for the linkage phase (see online
supplement) were not more significant than
the primary genotype-based analyses.

Causality at each significant locus has
not been established because of LD structure,
and analysis by Causal Variants
Identification in Associated Regions (13) and
annotation of the top SNPs in the six regions
with the Ensembl Variant Effect Predictor
(14) did not point to any obvious causal links
(Table E2). The gene-level rare variant
analyses did not identify any significant gene
at q, 0.1, perhaps reflecting reduced power
for rare variant detection compared with
common variant analyses.

Our reverse regression model included
terms for age at phenotyping and
age3KNoRMA interaction and largely
recapitulated our main findings, with five of
the six reported loci achieving significance
(rs194788 near CHP2 achieving only
P=3.233 1027), and no new significant
findings. The age and age3KNoRMA
interaction terms were not significant for
these regions. Nonetheless, substantial

cohort variation was apparent. The effect
sizes (magnitude of b-coefficients) for the
peak SNP at the six significant loci were
evaluated using forest plots for each cohort,
ordered by mean age (Figure 3). There is a
similar distribution of the effect (size) across
cohorts, with the UNC cohort (the oldest)
showing the largest effect size and the UW
cohort (the youngest) showing the smallest.
This concordance of effect sizes manifests
as positive correlation in all pairwise
comparisons (mean correlation, 0.70), as
depicted in plots of effect sizes (Figure E7).
A test of concordance of effect sizes
demonstrated concordance among cohorts
(P=3.43 1024), with the UW cohort
consistently exhibiting the smallest effect
size.

To further investigate genotype
associations for all pwCF (N=7,840), we
imputed expression values to investigate
TWAS association with lung phenotype
using a modified approach (15) compared
with a previous study of TWAS in CF (7).
Twenty-nine annotated genes displayed a
false-discovery q value lower than 0.1
(Figure 4 and Tables E3 and E4). Most genes
with significant TWAS signals occurred in
the six significant GWAS loci (Figure 2),
congruent with a previous report (7). In this
analysis,MUC4was suggestive (q=0.14).

Previous studies suggested that there
may be GWAS loci associated more strongly
with pwCF homozygous for the CFTR
variant F508del (6). Analyses in this study

identified three new suggestive loci (Figures
E8–E10).

Significant results (q, 0.10) from the
VEGAS2 gene-level association analyses are
provided in Table E5. Because gene-level
analyses can capture effects of long-range
LD, we grouped significant regions into
those separated by more than 5Mb. Five of
the six regions with individually significant
SNPs (see above) were also significant in
gene-level analysis (excepting the chr11p13
region). Among the remaining significant
genes identified by VEGAS2, several
achieved Bonferroni significance at a more
stringent a=0.05 (P, 2.53 1026):
ADAMTS8, LINC01844, and PTTG1IP.

We performed GSEA on genes ranked
using VEGAS2 P values (Table E5) (19) to
explore pathways linked to lung disease
severity. Pathways identified were largely
related to pathogenic mechanisms linked to
pulmonary host defense and genes at
GWAS-significant loci (Table E6) (6, 7, 23,
24) involving inflammation, viral and
bacterial infection and host responses,
immunity and HLA-II pathways,
endomembrane function, and
microtubular/cytoskeletal function. In
addition, multiple pathways related to organ
development and morphogenesis were
identified (Table E6). The most significant
development/morphogenesis pathway (Gene
Ontology [GO] BP0048754, branching
morphogenesis of an epithelial tube; GSEA
plot shown in Figure 5) includes 32 genes

Figure 4. Significant genes based on transcriptome-wide association (TWAS) evidence for expression versus lung function (Kulich normal
residual mortality-adjusted phenotype). Genome-wide Manhattan plot of TWAS associations. The red line corresponds to transcriptome-wide
false-discovery q lower than 0.10, with significant genes labeled. Red-colored text corresponds to increased expression associated with
improved lung function, and blue-colored text corresponds to increased expression associated with decreased lung function. Regions of
significant genome-wide phenotype–genotype association are marked with black arrows on the x-axis.
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in the leading edge (in boldface in Figure 5)
that relate to three signaling pathways (Shh
[Sonic Hedgehog], TGFb [transforming
growth factor b], and Wnt [wingless
related-integration site]/b-catenin) that are
necessary for lung development and
branching morphogenesis (25–27). Thus,
genetic variation that affects lung
development in utero and early childhood
has implications for the severity of CF lung
disease.

Discussion

Variability of lung disease severity in CF
reflects substantial non-CFTR genetic
variation (3). Identifying the molecular basis
of CF lung disease severity will provide
pathobiological insights and identify new
therapeutic targets. Studies using genotype
array–based platforms and a standardized
lung disease phenotype (KNoRMA) in
different cohorts, study designs, and
ages/birth cohorts have identified non-CFTR
genetic variation of high mechanistic interest
(6). By combiningWGS with imputation
from array-based genotypes across multiple
cohorts, we provide the largest analyses
associating genetic variation with CF lung
disease severity in the premodulator era to
date (7,840 pwCF; an estimated 19% of

pwCF currently in North America and
France) (2, 4).

One novel insight emerged from
pathway analyses (i.e., GSEA) of genes
ranked by VEGAS2, in which multiple
significant pathways related to organ
development were identified. Although not
annotated specifically to the lung, the genes
within these pathways, especially those
related to three key signaling pathways (Shh,
TGFb, andWnt), are known to be critical for
lung development and branching
morphogenesis (25–27). There are at least 40
genes that relate to these three key signaling
pathways in the top annotated pathway
(Figure 5). The next challenge will be to
decipher the mechanism by which these
genes could influence CF lung disease
severity. The issue is complex because not
only do these genes play a role in lung
development/morphogenesis, but it is also
now appreciated that reactivation of
developmental genes/pathways is a necessary
component of lung repair after
injury/inflammation (28). Several potential
complementary mechanisms could be
operative. First, variable early-life growth of
the bronchial tree airway diameter relative to
lung volume (i.e., dysanapsis) was proposed
nearly 50 years ago (29). There is now
anatomical evidence from computed
tomography to confirm dysanapsis in

conducting airways, and the presence of
smaller-diameter bronchi is known to
associate with chronic obstructive
pulmonary disease and childhood asthma
(30–33). Dysanapsis has not been previously
recognized as a potential pathogenic driver of
CF airway disease, but, given the periods of
bronchial injury common in CF, dysanapsis
could have profound effects on long-term
outcomes. Second, CFTR itself is known to
interact with lung development in several
ways: tracheal and proximal bronchial
diameter is altered in CF compared with
normal pigs during embryonic development
(34), CFTR plays a key role in fluid-mediated
distension of airways during development
(35), and lack of CFTR with consequent
infections and inflammation are associated
with tracheomalacia, which is linked to
poorer outcomes (36, 37). Finally, because
reactivation of developmental pathways is
important for repair after airway injury (28),
genetic variation in these pathways is
expected to alter outcomes after CF-related
inflammatory damage. Other significant
pathways involve microtubular/cytoskeletal
function (Gene Ontology BP0051494,
“negative regulation of cytoskeleton
organization”; Figure E11), which is of
particular interest because of a recent
potential therapeutic advance by restoration
of microtubular dysfunction in CF cells (38).

Figure 5. Genes that drive core enrichment-significant results for this branching morphogenesis pathway (Gene Ontology 0048754). This
VEGAS2 analysis Gene Set Enrichment Analysis plot includes 32 genes that are in three key signaling pathways (Shh [25]; TGFb [26]; and
Wnt [27]) for lung development (including branching morphogenesis) and/or interact with genes in those three signaling pathways and/or have
other roles in lung development (shown in bold). The 18 genes that are associated with lung repair and/or play a role in molecular pathogenic
aspects of lung disorders (e.g., chronic obstructive pulmonary disease, asthma, lung fibrosis, cellular morphogenesis) are shown with asterisks.
The remaining 11 genes are reported to have a role in development and/or morphogenesis in other tissues.
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The five genome-wide significant
loci previously reported (6) are highly
significant in the present analyses and
contain genes of relevance (2, 4). In
addition, another locus (chr16p12.2) is
genome-wide significant, and four new loci
are suggestive (P, 53 1027; all with low
minor allele frequency; range, 0.005–0.009).
The newly significant locus on chr16p12.2
is intergenic between CHP2 and PRKCB
(39, 40). CHP2 regulates airway pH
through the apical membrane Na1/H1

exchanger (40). A SNP at this locus
(rs11646605) is associated with
Mycobacterium avium complex lung disease
in non-CF patients and is an expression
quantitative trait locus (eQTL) for CHP2 in
the lung (41). TWAS analyses point to
CHP2 expression as a key candidate in this
region (Figure 4). PRKCB is a protein
kinase that plays a role in multiple cellular
functions, including apoptosis and
autophagy (39). Finally, a nearby gene
(ERN2) regulates airway mucin genes
(MUC5B and MUC5AC) (42).

At the chr3q29 locus,MUC4 and
MUC20 are highly relevant candidate genes
because they play important roles in lung
host defense and mucociliary clearance,
which are abnormal in CF (2, 4). TheseWGS
data now supportMUC4 as the mechanistic
link, with all significant SNPs intragenic to
MUC4; plus,MUC4 is supported by a
separate study integrating eQTLs and CF
GWAS summary statistics using
colocalization analysis (43).

Significant SNPs at the chr5p15.3 locus
span approximately 300 kb and cover four
pertinent genes expressed in respiratory
epithelia. Airway surface liquid pH is
abnormal in CF and regulated in part by
SLC9A3, which codes for an Na1/H1

exchanger (44). Moreover, variable numbers
of tandem repeats in this region are
associated with expression of SLC9A3 in CF
respiratory epithelia (45). The other three
genes at this locus (EXOC3, CEP72, and
TPPP) are involved in cellular microtubular
function, which is abnormal in CF (46, 47).
These three microtubule-related genes are
consistently seen in TWAS-type studies
(Figure 4) (7). Resveratrol is an
antiinflammatory polyphenol that is known
to activate several pathways relevant to
microtubule stability, and it has been recently
shown to restore microtubule function and
intracellular transport in CF cells (38).
Finally, an intergenic SNP (rs11738281) in
CEP72 in our study is associated with airflow

obstruction (i.e., reduced FEV1/FVC ratio) in
the UK Biobank GWAS (48) and is in LD
(r2 = 0.61) with the most significant regional
SNP at this locus (chr5p13).

We observed strong gene-expression
signatures at the chr6p21.3 (HLA class II)
locus, which is associated with many
inflammatory and respiratory conditions
(49). In addition to TWAS (Figure 4),
differential gene expression and biological
pathway studies have identified several
HLA-II genes associated with CF lung
disease (23, 24), as did our pathway analyses
(see online supplement). Functional
interpretation of these data is confounded by
many polymorphisms and allotypes of genes
in this region (50).

Since the chr11p13 locus was first
associated with CF lung disease, it has been
extensively studied (51, 52). The most
significant SNPs are intergenic between EHF,
an epithelial transcription factor, and APIP,
an enzyme involved in inflammation
through roles in apoptosis and the
methionine salvage pathway (4, 24).
Conceptually, either of these genes could
impact CF lung disease severity (2, 4).
Regulatory regions are in the significant LD
block that interacts with EHF and nearby
ELF5 (52, 53), but extensive studies have not
identified any eQTLs that might drive the
phenotype (7, 51, 52). Further, our TWAS
analysis (Figure 4) produced no signatures
that suggest a mechanism. Interpretation of
this region is further complicated by finding
a second group of significantly associated
SNPs overAPIP after conditioning on the
top-ranked SNP. The presence of two
significant groups of SNPs at this locus
implies that the risk for each pwCF can be
viewed in terms of four (rather than two)
alleles, minor alleles of the primary and
secondary SNPs have opposite associations
with KNoRMA, and the effect sizes
(b-coefficients) for the primary and
secondary SNPs are different (0.9 and 0.2,
respectively). Taken together, these features
create a potential complex molecular
interplay among four alleles, whereby
genotype associations of the primary SNP
with KNoRMA are affected by the genotypes
of the secondary SNP (Figure E6).

The chrXq22-q23 locus contains two
genes (AGTR2, SLC6A14) that are expressed
in respiratory epithelia, with functions
relevant to pathophysiology of CF lung
disease. AGTR2 functions in the RAS2
pathway (renin-angiotensin signaling),
which is involved in several aspects of lung

biology, including inflammation (4). The
renin-angiotensin signaling pathway is
altered in CF, and studies in genetically
modified mice have therapeutic
implications, as deletion and pharmacologic
inhibition of AGTR2 improves several
features of lung function in CF mice (54).
AGTR2 is also prominent in pathway
analyses (Figure 5 and online supplement).
SLC6A14 encodes an amino acid
transporter with pleiotropic effects in CF, as
it has been linked to lung disease and
neonatal intestinal obstruction, but the
pathophysiologic mechanisms have not
been defined (55, 56).

We noted significant concordance of
effect sizes across significant loci among
cohorts, with the youngest cohort (UW)
showing the smallest effect size, despite
medians and distribution of KNoRMA being
similar across cohorts. This may reflect
smaller effects of variants on lung function
(i.e., FEV1) over a shorter time period in
younger pwCF. In addition, age at
phenotyping is confounded by year of birth
cohort, as improvements in treatment
(before modulators) may have blunted the
decline in lung function in these younger
pwCF. Therefore, it is challenging to define
the specific mechanism(s) for smaller effect
size in the youngest cohort.

There are several limitations of this
study. First, although this is a large sample
size for a study of a rare Mendelian disorder,
it is likely underpowered to detect rare lung
disease–associated variants. Second, a
replication study was not performed because
there is no adequate CF population readily
available. Third, we were unable to establish
causality at any locus, and identification of
causal SNPs is complicated by multiple
potential modifiers at each locus. Fourth,
some potential variants were not fully
queried, such as variable numbers of tandem
repeats and structural variants. Finally, the
population studied largely reflects European
ancestry, and important modifier loci present
in other populations therefore may have
been missed.

In summary, WGS of pwCF enabled
accurate genome-wide imputation, which
allowed a premodulator association study of
genetic variants with lung disease severity in
7,840 pwCF. This approach validated
previously identified loci, provided better
molecular understanding of significant loci,
and enabled discovery of new biologically
relevant candidate genes and biological
pathways, particularly related to lung
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development. Taken together, these genomic,
transcriptional, and pathway data will inform
future mechanistic and postmodulator
genetic studies and enable development of
novel therapeutics for CF lung
disease.�
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