
 | Clinical Microbiology | Research Article

Development of Cas13a-based assays for Neisseria gonorrhoeae 
detection and gyrase A determination

Lao-Tzu Allan-Blitz,1,2,3 Palak Shah,2,3 Gordon Adams,2,3 John A. Branda,4 Jeffrey D. Klausner,5 Robert Goldstein,3 Pardis C. Sabeti,2 

Jacob E. Lemieux2,3

AUTHOR AFFILIATIONS See affiliation list on p. 12.

ABSTRACT Neisseria gonorrhoeae is one of the most common bacterial sexually 
transmitted infections. The emergence of antimicrobial-resistant N. gonorrhoeae is an 
urgent public health threat. Currently, the diagnosis of N. gonorrhoeae infection requires 
expensive laboratory infrastructure, while antimicrobial susceptibility determination 
requires bacterial culture, both of which are infeasible in low-resource areas where the 
prevalence of infection is highest. Recent advances in molecular diagnostics, such as 
specific high-sensitivity enzymatic reporter unlocking (SHERLOCK) using CRISPR-Cas13a 
and isothermal amplification, have the potential to provide low-cost detection of 
pathogen and antimicrobial resistance. We designed and optimized RNA guides and 
primer sets for SHERLOCK assays capable of detecting N. gonorrhoeae via the porA 
gene and of predicting ciprofloxacin susceptibility via a single mutation in the gyrase 
A (gyrA) gene. We evaluated their performance using both synthetic DNA and purified 
N. gonorrhoeae isolates. For porA, we created both a fluorescence-based assay and 
lateral flow assay using a biotinylated fluorescein reporter. Both methods demonstrated 
sensitive detection of 14 N. gonorrhoeae isolates and no cross-reactivity with 3 non-gon­
ococcal Neisseria isolates. For gyrA, we created a fluorescence-based assay that correctly 
distinguished between 20 purified N. gonorrhoeae isolates with phenotypic ciprofloxa-
cin resistance and 3 with phenotypic susceptibility. We confirmed the gyrA genotype 
predictions from the fluorescence-based assay with DNA sequencing, which showed 
100% concordance for the isolates studied. We report the development of Cas13a-based 
SHERLOCK assays that detect N. gonorrhoeae and differentiate ciprofloxacin-resistant 
isolates from ciprofloxacin-susceptible isolates.

IMPORTANCE Neisseria gonorrhoeae, the cause of gonorrhea, disproportionately affects 
resource-limited settings. Such areas, however, lack the technical capabilities for 
diagnosing the infection. The consequences of poor or absent diagnostics include 
increased disease morbidity, which, for gonorrhea, includes an increased risk for HIV 
infection, infertility, and neonatal blindness, as well as an overuse of antibiotics that 
contributes to the emergence of antibiotic resistance. We used a novel CRISPR-based 
technology to develop a rapid test that does not require laboratory infrastructure for 
both diagnosing gonorrhea and predicting whether ciprofloxacin can be used in its 
treatment, a one-time oral pill. With further development, that diagnostic test may be of 
use in low-resource settings.
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N eisseria gonorrhoeae is one of the most common bacterial sexually transmitted 
infections worldwide (1). There were an estimated 87 million cases reported in 2016 

(1), with the highest prevalence among low-resource settings (2–4), which is likely to 
be an underestimate due to under-reporting. The consequences of inadequately treated 
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infection can be serious, ranging from pelvic inflammatory disease (5), infertility (6), and 
neonatal blindness (7), to an increased risk for HIV infection (8–13).

Furthermore, antimicrobial resistance in N. gonorrhoeae is a global public health 
threat (14, 15). N. gonorrhoeae has developed resistance to nearly all antimicrobials 
used in its treatment (16). Because culture is not routinely performed and standard-of-
care nucleic acid amplification testing via polymerase chain reaction (PCR) does not 
provide information on antibiotic susceptibility, all N. gonorrhoeae infections in the 
United States are treated with third-generation cephalosporins, further driving selective 
pressure toward the emergence of resistance (16, 17). Recent reports of resistance to 
third-generation cephalosporins (18–22) have raised concern for untreatable infection. 
In response, the U.S. Centers for Disease Control and Prevention has increased the 
recommended dose of ceftriaxone for treating gonorrhea (23). However, the treatment 
of N. gonorrhoeae infection with antibiotics no longer empirically recommended due to 
high levels of resistance has been made possible by rapid molecular assays detecting 
genotypic markers of resistance (16, 17, 24). Use of such assays might reduce the spread 
of cephalosporin resistance (25).

Neither PCR for pathogen detection nor bacterial culture for susceptibility determina­
tion is available in most low-resource settings, as PCR requires expensive laboratory 
infrastructure and culture can be laborious and time intensive for N. gonorrhoeae 
(26). Consequently, the treatment of N. gonorrhoeae infection is limited to syndromic 
management in low-resource settings, which is insensitive for case finding (27–29) and 
further drives the emergence of antimicrobial resistance (16, 17). In fact, limited data 
suggest that low-resource areas have some of the highest prevalence of antimicrobial-
resistant N. gonorrhoeae infections (30–32). Thus, the World Health Organization’s action 
plan for combating the emergence of antimicrobial resistance calls for the development 
of rapid molecular assays for pathogen detection and predicting antimicrobial suscepti­
bility (33). Previous work has indicated that the porA gene may be a useful target for N. 
gonorrhoeae detection (34) and that phenotypic resistance to ciprofloxacin is predicted 
by the presence of a single-nucleotide polymorphism at codon 91 of the gyrase A (gyrA) 
gene (35, 36). Such testing, however, still requires PCR capabilities, which are generally 
inaccessible in low-resource settings.

Specific high-sensitivity enzymatic reporter unlocking (SHERLOCK) technology utilizes 
Cas13a, a CRISPR enzyme paired with isothermal amplification via recombinase 
polymerase amplification (RPA) (37, 38), a low-cost, sensitive, and field-deployable 
diagnostic technology (39, 40). Cas13a-based detection works via complementary 
binding of programmable CRISPR guide RNA (gRNA) sequences to target sequences, 
which activates the inherent Cas13a-mediated collateral cleavage of an RNA reporter 
(37, 41). Such assays can be employed with standard fluorescence reports or adapted 
for paper-based lateral flow detection (42). Moreover, Cas13a has been shown to have 
reduced tolerance for activation with increasing mismatches between gRNA and the 
template, which can facilitate discriminating between strains containing point muta­
tions. In this study, we aimed to develop SHERLOCK assays for N. gonorrhoeae detection 
and gyrA genotype determination. We explored fluorescence-based and lateral flow 
readouts for each assay and evaluated their performance using N. gonorrhoeae synthetic 
DNA and purified isolates. We aimed for this work to be a first step toward develop­
ing methods for N. gonorrhoeae detection and antimicrobial resistance determination 
accessible anywhere in the world.

MATERIALS AND METHODS

Reagents and materials

Detailed information on reagents used and stock concentrations can be found in Tables 
S1 and S2.
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Synthetic DNA preparation and DNA extraction from purified isolates

We tested assays using both synthetic N. gonorrhoeae DNA and purified N. gonorrhoeae 
isolates. We prepared synthetic DNA samples by serial dilution from commercially 
purchased (Integrated DNA Technologies, USA), double-stranded DNA (dsDNA) of the 
gyrA target region into nuclease-free water. We stored purified isolates in glycerol 
at −80°C prior to extraction. We extracted whole-genomic DNA from N. gonorrhoeae 
purified isolates using the DNeasy Blood and Tissue Kit (Qiagen, Germany). The starting 
volume for extraction was 400 µL, and extracted DNA was eluted into 100 µL of 
nuclease-free water. With each isolate, we were provided minimum inhibitory concen­
trations (MICs) in micrograms per milliliter for ciprofloxacin, obtained using standard 
methods, as well as the anatomic site of collection (Table 1). Additionally, we purchased 
non-gonococcal Neisseria isolates from American Type Culture Collection (ATCC), and the 
Massachusetts General Hospital Clinical Microbiology Laboratory cultured those isolates: 
N. meningitidis (ATCC 13077), N. perflava (ATCC 14799), and N. lactamica (ATCC 23970). 
The performance of the porA assay was also assessed on those isolates.

We quantified the concentration of extracted N. gonorrhoeae DNA using quantitative 
polymerase chain reaction (qPCR). The forward and reverse primer sequences for the N. 
gonorrhoeae gyrA gene were 5′ GCGACGGCCTAAAGCCAGTG 3′ and 5′ GTCTGCCAGCAT­
TTCATGTGAG 3′, respectively. Those primers were provided by a previous study (43). 
The qPCR mixtures contained 1× FastStart SYBR Green Master Mix (Sigma Aldrich, USA), 
0.5 µM of each primer, and DNA template in a 1:9 template to master mix ratio. We 
adjusted the final qPCR volume to 10 µL with nuclease-free water and loaded in triplicate 
on a 384-well plate, which was run on a QuantStudio 6 (Applied Biosystems, USA) with 
the following cycle conditions: heat activation at 95°C for 3 minutes, 40 cycles of a 
denaturing step at 95°C for 15 seconds, an annealing step at 60°C for 1 minute, and 
an extension step at 72°C, followed by a final extension step at 68°C for 2 minutes. 
We collected amplification data during the second extension stage and analyzed those 
data using the standard curve module of the Applied Biosystems Analysis Software. We 

TABLE 1 Characteristics of purified N. gonorrhoeae isolates

Year collected Anatomic site Ciprofloxacin MIC (µg/mL)a Resistance interpretation GyrA genotype (PCR) GyrA concordance

2014 Pharynx ≤0.015 Susceptible Wild type Yes
2014 Pharynx ≤0.015 Susceptible Wild type Yes
2014 Pharynx ≤0.015 Susceptible Wild type Yes
2014 Urethra 8.000 Resistant Mutant Yes
2013 Urethra 8.000 Resistant Mutant Yes
2013 Urethra 8.000 Resistant Mutant Yes
2013 Urethra >16.000 Resistant Mutant Yes
2014 Urethra >16.000 Resistant Mutant Yes
2014 Urethra 8.000 Resistant Mutant Yes
2014 Urethra >16.000 Resistant Mutant Yes
2014 Urethra 8.000 Resistant Mutant Yes
2014 Urethra 8.000 Resistant Mutant Yes
2011 Urethra 16.000 Resistant Mutant Yes
2011 Urethra 16.000 Resistant Mutant Yes
2012 Urethra 16.000 Resistant Mutant Yes
2011 Urethra 16.000 Resistant Mutant Yes
2011 Urethra 16.000 Resistant Mutant Yes
2014 Urethra >16.000 Resistant Mutant Yes
2014 Urethra 1.000 Resistant Mutant Yes
2014 Urethra 1.000 Resistant Mutant Yes
2013 Urethra 1.000 Resistant Mutant Yes
2014 Urethra 16.000 Resistant Mutant Yes
2013 Urethra 16.000 Resistant Mutant Yes
aMinimum inhibitory concentration.
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quantified isolates against a standard curve, which showed an average concentration 
of 1,000 copies per milliliter across isolates. Subsequently, we evaluated thermal DNA 
extraction by resuspending three purified isolates in 100 µL of nuclease-free water and 
heating the isolates to 95°C for 10 minutes in accordance with prior protocols (44).

Guide RNA and primer design for N. gonorrhoeae detection

Cas13a gRNAs have two components: the fixed “handle” region to which the Cas13a 
protein binds and a 28-nucleotide “spacer” region complementary to the target. The 
nucleotide sequence of the spacer can be chosen by the user to confer the specificity 
of the assay. We selected the porA gene of N. gonorrhoeae for pathogen detection 
as has been used previously (34). We used an online software package ADAPT (Activity-
Informed Design with All-Inclusive Patrolling of Targets; https://adapt.run) (45), which 
applies an algorithm for optimal Cas13a gRNAs design, and selected three gRNAs from 
the output of that software targeting different locations in the porA gene.

We designed forward and reverse RPA primers using National Center for Biotech­
nology Information Primer-Basic Local Alignment Search Tool (BLAST), which were 
synthesized by Integrated DNA Technologies (USA). We developed two primer sets per 
guide location (total of six primer sets), which were 27–35 nucleotides in length. The 
primer sets had melting temperatures between 58°C and 68°C and produced amplicons 
of 140–200 base pairs in length. We appended a T7 RNA polymerase promoter sequence 
(5′ GAAATTAATACGACTCACTATAGG 3′) to the 5′ end of the forward primers of each set to 
allow for T7 transcription.

One-pot SHERLOCK assay

We performed SHERLOCK reactions using 45 nM C2c2 LwaCas13a (GenScript Biotech 
Corp, USA) resuspended in 1× storage buffer (SB: 50 mM Tris [pH 7.5], 600 mM KCl, 
5% glycerol, and 2 mM dithiothreitol [DTT]) such that the resuspended protein was at 
2.25 µM, 1 U/µL murine RNase inhibitor (NEB), 10 U/µL T7 RNA polymerase (Lucigen 
Corporation, USA), 136 nM RNaseAlert substrate v2 (ThermoFisher Scientific, USA), 1× 
SHINE Buffer {SHINE: 20 mM HEPES [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid] 
(pH 8.0), 60 mM KCl, and 5% polyethylene glycol (PEG)}, and 2 mM of each rNTP (NEB).

We rehydrated the TwistAmp Basic Kit lyophilized pellets (one pellet per 73.42-µL 
master mix volume) using the prepared master mix. We added 14 mM MgAOc (TwistDx, 
United Kingdom) after resuspension to activate the RPA pellets. We then subdivided 
the master mix for each guide-primer set pair being analyzed, to which we added 
22.5 nM gRNA (Integrated DNA Technologies, USA) and 320 nM each of the RPA primers 
(Integrated DNA Technologies, USA). We prepared SHERLOCK reactions to 70 µL and 
loaded as 20-µL triplicates into a 384-well plate, with a ratio of 1:5 master mix to 
sample. We measured fluorescence by the BioTek Cytation 5 plate reader (BioTek, USA) 
over 3 hours at 37°C, with readings every 5 minutes (excitation, 485; emission, 528) for 
quantitative detection.

Lateral flow detection

To convert to lateral flow readout, we modified the SHERLOCK master mix to exchange 
substrate v2 for a biotinylated fluorescein (FAM) reporter at a final concentration of 
1 µM. We incubated samples at 37°C for 90 minutes per existing protocols to allow 
for optimal RPA amplification. Following incubation, we added 80-µL HybriDetect assay 
buffer (Milennia Biotec, Germany) to each sample in a 1:5 dilution along with a HybriDe­
tect lateral flow strip (Milennia Biotec, Germany). We inspected strips and took images 
using a smartphone camera 3–5 minutes after the strips were added.

Confirmatory DNA sequencing

We performed whole-genome sequencing on extracted DNA samples following the 
Illumina DNA Prep manufacturer protocol (Illumina, USA). We constructed and pooled 
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libraries using the Illumina DNA Prep Kit. We measured library concentrations on 
a Qubit4 Fluorometer using the Qubit High Sensitivity 1× dsDNA kit (ThermoFisher 
Scientific, USA), while we measured the average library size on an Agilent TapeStation 
4150 using the Agilent High Sensitivity D1000 ScreenTape kit (Agilent Technologies, 
USA). We conducted genomic sequencing on an Illumina MiniSeq instrument (Illumina, 
USA).

Data analysis

We subtracted baseline fluorescence (at 0 minutes) from fluorescence values through 
reaction progression. We averaged the final 10 fluorescence values of each replicate to 
provide the reported fluorescence values. We compared mean differences in fluores-
cence using Student’s t-test, with significance defined as P < 0.05. We interpreted lateral 
flow readouts by visual inspection. We generated all figures in PRISM Software version 
9.5.1 (GraphPad, USA).

RESULTS

N. gonorrhoeae detection via a Cas13a-based porA assay

To create an assay for N. gonorrhoeae detection, we first designed six porA primer-
guide pairs and evaluated their performance, both in terms of high sensitivity and 
low cross-reactivity, using a fluorescence-based readout (Fig. 1). We performed initial 
testing on three purified N. gonorrhoeae isolates using both negative template controls 
as well as synthetic gyrA as a positive control. We selected guide 2 primer set 2 as it 
produced both a high fluorescent signal and excellent discrimination between synthetic 
N. gonorrhoeae purified isolates and the negative controls. We excluded guide 3 primer 
set 1 due to cross-reactivity with the gyrA control.

Having selected our gRNA and primer set for porA detection, we evaluated the limit of 
detection (LoD) using serial dilutions in nuclease-free water as well as the detection of 
purified N. gonorrhoeae isolates using a fluorescence-based readout. The porA assay had 
an LoD of 10,000 copies per milliliter (Fig. 2a). We then tested the assay on 14 purified 
isolates and 3 non-gonococcal Neisseria isolates: N. meningitidis, N. perflava, and N. 
lactamica. The assay detected all 14 N. gonorrhoeae isolates, with peak fluorescence 
occurring after 20 minutes and did not detect any of the non-gonococcal Neisseria 
isolates.

We then assessed the N. gonorrhoeae porA detection assay using a lateral flow 
readout, substituting the standard fluorescence reporter with a biotinylated FAM 
reporter compatible with the test strips. Based on prior protocols, we allocated 90 
minutes for the assay. Visual inspection of the test strips 3–5 minutes after specimen 
introduction revealed detection of all 14 purified isolates tested in triplicate (Fig. 3a) and 
excellent discrimination between N. gonorrhoeae and three non-gonococcal Neisseria 
isolates (Fig. 3b).

Having shown that we can develop a lateral flow-based N. gonorrhoeae detection 
assay, we explored the possibility of simplifying upstream DNA extraction to facilitate 
deployment in low-resource settings. To do so, we evaluated fluorescence N. gonorrhoeae 
detection on three purified isolates that underwent thermal DNA extraction. We 
quantified the DNA extracted using PCR and found DNA concentrations above 1,000,000 
copies per milliliter. All three of those isolates were detected using the selected guide-
primer set combination.

GyrA genotype determination via a Cas13a-based assay

To create an assay for predicting N. gonorrhoeae resistance to ciprofloxacin, we first 
designed two guide pairs (wild type and mutant) to target the point mutation in codon 
91 of the gyrA gene and three flanking primer sets. We placed the mutation of interest 
three nucleotides distal to the Cas hairpin, previously shown to be the optimal position 
(46). We placed an additional synthetic mismatch in either the second position or the 
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fourth position of the spacer region. We elected to design the guides manually instead of 
using ADAPT, given the precise mutation of interest was known. Placing the synthetic 
mutation at the second position produced the highest fluorescence and greatest 
discrimination between the wild-type and mutant synthetic DNA targets (Fig. S1). We 
tested three forward and reverse primer sets for use with that guide and selected the set 
that produced the highest fluorescence signal and greatest discrimination between the 
wild-type and mutant synthetic DNA targets (Fig. S2). We evaluated the in vitro LoD of 
the fluorescence-based gyrA assay via serial dilutions in nuclease-free water of synthetic 
wild-type and mutant DNA targets. The gyrA assay had an LoD of 1,000,000 copies per 
milliliter for both wild-type and mutant targets (Fig. 2b).

To further assess the performance of the gyrA assay, we analyzed 23 purified N. 
gonorrhoeae isolates with susceptibility to ciprofloxacin determined phenotypically by 
culture and genotypically by sequencing to detect mutation codon 91 of the gyrA gene. 
We used a standard MIC breakpoint of ≥1 µg/mL to define ciprofloxacin resistance (Table 
1) (47). Of the 23 isolates, 20 with MICs between 1 and >16 µg/mL were deemed 

FIG 1 Guide and primer selection for a Cas13a-based assay for detecting N. gonorrhoeae. (a) Performance of three guides targeting different regions of the porA 

gene tested on three N. gonorrhoeae purified isolates as well as synthetic gyrA template as a control and a negative template control (NTC). (b) The selected porA 

guide sequence. *** indicates statistically significant differences in florescence at the P < 0.05 level.
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resistant, and three with MICs <0.015 µg/mL were deemed susceptible. Of the 20 N. 
gonorrhoeae isolates with MICs ≥1 µg/mL, 100% had mutant gyrA genotypes by DNA 
sequencing. Of the 3 N. gonorrhoeae isolates with MICs <0.015 µg/mL, 100% had no 
mutation at codon 91 of the gyrA gene by DNA sequencing. Figure S3 shows the 
phylogenetic tree of the 23 N. gonorrhoeae isolates, demonstrating that the phylogeneti­
cally diverse isolates on which the Cas13a-based assay was tested.

We evaluated the discrimination of the selected wild-type and mutant Cas13a guides 
for codon 91 of the gyrA gene among all 23 isolates. All of the 20 ciprofloxacin-resistant 
gyrA mutant specimens were detected by the mutant Cas13a assay, while none of the 
three wild-type isolates were detected by the mutant Cas13a assay, showing a 100% 
agreement. Figure 4 shows the pooled performance among all specimens, while Fig. S4 
shows the performance on each individual specimen. Figure 5 shows the DNA sequence 
alignment for all 23 isolates with the wild-type and mutant gRNAs.

We next aimed to convert the gyrA resistance assay into a portable format suitable for 
use in resource-limited settings. We tested a lateral flow format, again substituting the 
standard fluorescence reporter with a biotinylated FAM reporter compatible with the test 
strips. Figure 6a shows the performance of the gyrA lateral flow on three purified isolates 

FIG 2 In vitro limit of detection of the Cas13a N. gonorrhoeae and gyrA genotypic assays. (a) The limit of detection of the N. gonorrhoeae Cas13a detection assay 

using the selected guide-primer set for the porA gene among purified N. gonorrhoeae isolates and a negative template control (NTC). (b) The limit of detection 

of the Cas13a-based assay using the wild-type guide against synthetic wild-type DNA target. (c) The limit of detection of Cas13a-based assay using the mutant 

guide against synthetic mutant DNA target. The serial dilutions of synthetic DNA were done in nuclease-free water.
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(one with known phenotypic and genotypic susceptibility to ciprofloxacin and two with 
known resistance). We tested each isolate in duplicate. The wild-type guide failed to 
discriminate visually between resistant and susceptible isolates. The mutant guide 
demonstrated promising discrimination; however, we detected a faint positive line in the 
susceptible isolate.

Given the technical limitations of our gyrA assay using a lateral flow readout, we 
evaluated the performance of the assay using a portable quantitative fluorescence 
detector. Such a detector, the Qubit 4 Fluorometer (ThermoFisher Scientific, USA), would 
permit low-cost detection in the absence of a plate reader (Cytation 5, BioTek, USA). We 
incubated our one-pot SHERLOCK reaction for 90 minutes at 37°C and then transferred 
the reaction to Qbit Assay tubes, diluted with nuclease-free water to 200 µL. We meas­
ured green fluorescence detection on the blue excitation setting (430–495 excitation 
filter; 510–580 emission filter). Figure 6b shows successful discrimination for both the 
wild-type and mutant isolates using that method.

FIG 3 Performance of a Cas13a-based lateral flow assay for detecting N. gonorrhoeae. (a) The performance of the Cas13a-based lateral flow assay on 14 purified 

N. gonorrhoeae isolates tested in triplicate. (b) The discrimination of the lateral flow assay for N. gonorrhoeae isolates compared with non-gonococcal Neisseria 

isolates. * indicates the faint band at the test line in the negative control is expected per the manufacturer protocol.
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DISCUSSION

We report the development of a Cas13a-based lateral flow N. gonorrhoeae detection 
assay able to detect 100% of tested isolates, which did not amplify closely related 
Neisseria species. That assay offers the potential to introduce pathogen-specific 

FIG 4 Cas13a-based gyrase A determination of purified N. gonorrhoeae specimens pooled discrimination of the Cas13a-based assay using fluorescence 

detection for determining the gyrA genotype of 23 purified N. gonorrhoeae isolates.

FIG 5 DNA sequence alignment of codon 91 of the gyrA gene from 23 purified N. gonorrhoeae isolates DNA sequence alignment of codon 91 of the gyrA gene in 

N. gonorrhoeae with the two CRISPR-Cas13a guide sequences.
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diagnostics into low-resource settings that lack infrastructure for complex laboratory-
based testing. More work is needed to establish the sensitivity and specificity of the assay 
in a clinical setting and to optimize its performance to meet World Health Organization 
standards for point-of-care tests (48). That includes the development of methods that 
could omit an extraction step and minimize time to detection. Our preliminary results 
indicate that thermal extraction is a promising strategy. While 90 minutes was allocated 
for the lateral flow incubation to standardize our findings with prior protocols, peak 
fluorescence was noted at 20 minutes, indicating that the assay could provide rapid 
results in the field.

FIG 6 Performance of a Cas13a-based gyrA assay using lateral flow strips and a portable quantitative fluorometer on purified N. gonorrhoeae isolates. 

(a) Performance of a Cas13a-based lateral flow assay using both wild-type and mutant guides for determining gyrA genotype among 3 N. gonorrhoeae isolates. 

(b) The same Cas13a assay read on a Qubit 4 fluorometer. NTC, negative template control.
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We also report the development of a Cas13a-based fluorescence detection assay with 
excellent discrimination of wild-type and mutant gyrA genotype isolates for predicting 
ciprofloxacin resistance. That assay showed a 100% agreement with both phenotypically 
and genotypically determined resistance to ciprofloxacin. Given the urgent need to 
combat antimicrobial-resistant N. gonorrhoeae infections (14, 15) and the high burden 
of resistance in resource-limited settings (30–32), such an assay may permit resistance-
guided therapy without expensive laboratory equipment. While promising, the lateral 
flow Cas13a gyrA assay was not able to discriminate between wild-type and mutant 
genotypes as definitively and will require further optimization. Iterative adaptations of 
guide sequences and position of the mutation of interest and of the synthetic mutation 
relative to the Cas hairpin may improve the specificity of the assay for the mutant gyrA 
genotype on the lateral flow platform. Additional optimization will also be required to 
reduce the time involved in running the assay.

As an alternative field-deployable method for determining ciprofloxacin resistance, 
we devised a method for portable fluorescence of gyrA genotypes that overcame the 
limitations of the lateral flow format for that assay. The portable fluorometer Cas13a 
gyrA assay showed excellent discrimination between sensitive and resistant genotypes 
and can be implemented in resource-limited settings much more easily than qPCR or 
the BioTek Cytation 5 plate reader. While more expensive than paper-based assays and 
electricity dependent, the fluorescence-based approach would still permit rapid and 
portable gyrA genotyping of N. gonorrhoeae specimens. With minor modifications, such 
as lyophilization of reagents and optimization of reaction conditions, we believe that 
some resource-constrained areas with basic laboratory infrastructure could consider 
assessing the feasibility of N. gonorrhoeae detection and gyrA genotyping using that 
assay format.

Our study had several important limitations. First, while we report on the in vitro 
performance of two newly described assays, our study evaluated the performance of 
those assays on a small number of isolates, thus limiting the precision of our find-
ings. Moreover, the clinical utility remains to be determined and requires evaluation 
in a clinical setting. The processing required of those specimens will be of particular 
relevance for low-resource settings with limited laboratory infrastructure. However, while 
other rapid diagnostics for sexually transmitted infections are increasingly available 
(49), none has been sufficiently low cost, timely, and user friendly to be optimally 
suited for low-resource settings, and few have attempted to incorporate detection of 
molecular markers of resistance (50). Thus, our results may provide the groundwork for 
introducing point-of-care resistance-guided therapy into settings previously constrained 
to syndromic management.

Conclusion

We developed a paper-based lateral flow Cas13a assay for detecting N. gonorrhoeae, 
which was able to detect N. gonorrhoeae purified isolates and discriminate between 
other Neisseria species. We also developed a fluorescence-based Cas13a assay for 
determining gyrA genotype, which demonstrated excellent discrimination for both 
phenotypic and genotypic ciprofloxacin resistance among purified isolates.
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