
A Photoenzyme for Challenging Lactam Radical Cyclizations

Bryce T. Nicholls,

Tianzhang Qiao,

Todd K. Hyster*

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853 
USA.

Abstract

Reductive radical cyclizations are ubiquitous in organic synthesis and have been applied to the 

synthesis of structurally complex molecules. N-heterocyclic motifs can be prepared through 

the cyclization of α-haloamides; however, slow rotation around the amide C–N bond results 

in preferential formation of an acyclic hydrodehalogenated product. Here, we compare four 

different methods for preparing γ, δ, ε, and ζ-lactams via radical cyclization. We found that 

a photoenzymatic method using flavin-dependent ‘ene’-reductases affords the highest level of 

product selectivity. We suggest that through selective binding of the cis amide isomer, the enzyme 

preorganizes the substrate for cyclization, helping to avoid premature radical termination.
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Reductive radical cyclizations are classic transformations for organic synthesis.1 Due to 

their broad functional group tolerance and ability to form bonds with unactivated coupling 

partners, this family of reactions has been deployed to prepare various natural products and 

pharmaceuticals.2–5 However, the termination of radical intermediates prior to C–C bond 

formation is a significant challenge for some molecules. Consequently, substrates are often 

selected which favor reactive conformations or have low energetic barriers to bond rotation.6

Cyclizations involving α-halo esters and amides are attractive for preparing lactones and 

lactams, respectively. However, these substrates have significant barriers to rotation around 

the C–O and C–N bonds of the ester and amide. These substrates often favor the trans-

isomer, leading to hydrodehalogenation of the starting material when radical termination is 

faster than C–O or C–N bond rotation (Figure 1a).7 Stork and Ueno demonstrated the use of 

acetals instead of esters as a function of fast C–O bond rotation (Figure 1b).8 Alternatively, 

Curran found that atom transfer radical cyclization can be used with amides which reversibly 

terminates the α-acyl radical until the thermodynamically lactam is formed (Figure 1b).9 

We questioned whether modern methods for reductive radical cyclization could overcome 

the limitations of the traditional nBu3SnH/AIBN reductive cyclization conditions. Herein, 

we survey four distinct strategies for the reductive radical cyclization of α-chloroamides 

to access γ, δ, ε, and ζ lactams, i) a traditional atom transfer radical cyclization using 

nBu3SnH/AIBN, ii) an electron transfer mediated reaction involving in situ generation 

of LnFeH, iii) a photoredox method involving reductive dehalogenation using an Iridium 

photocatalyst and nBu3N as a hydride source, and iv) a photenzymatic method involving 

electron transfer from a flavin cofactor (Figure 1c).

We began by exploring a 5-exo-trig cyclization to afford a γ-lactam. Density Functional 

Theory (DFT) calculations to determine the barrier to rotation around the amide to be 14.83 

kcal/mol, with the activation barrier to cyclization being 8.16 kcal/mol. These calculations 

indicate that cyclization is faster than rotation around the amide.10,11,12 (Figure 2a). Using 

nBu3SnH and catalytic AIBN as a radical initiator, the reaction occurred in 34% yield with 

a 2.8:1 ratio of hydrodehalogenated and cyclized product, consistent with previous reports 

(Figure 2b).13,14,15 Yield is defined as the isolated mixture of HDH and Lactam. Reported 

product ratios are determined from crude NMR.

Fensterbank and coworkers described a reductive cyclization using FeCl2 and NaBH4.16,17 

Under these conditions, FeCl2 is reduced to generate a metal hydride which functions as a 

radical initiator with NaBH4 hypothesized to serve as a hydrogen atom source. This method, 

however, proved ineffective, providing a >95:5 ratio of undesired product to cyclization at a 

modest 30% yield (Figure 2b).18

Next, we considered a photoredox method where radical initiation occurs via reductive 

cleavage of the C–Cl bond. Reuping and coworkers demonstrated that iridium photoredox 

catalysts could catalyze a 5-endo-trig cyclization using α-chloroamides as substrates and 

tributylamine as a terminal reductant.19 Under these conditions led to 42% conversion of 

starting material to a 1.6:1 ratio of lactam to hydrodehalogenated product (Figure 2b).20 

We hypothesize that the slight preference for the lactam product is due to slow radical 

termination. The change in rate can be attributed to the strength of the C–H bonds of 
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tributylamine by comparison to the strength of Sn–H or B–H bonds.19b Alternatively, 

reductive dehalogenation may occur preferentially from the cis-amide isomer, reorganizing 

the radical for cyclization.

Our group recently reported a biocatalytic reductive radical cyclization using flavin-

dependent ‘ene’-reductases (EREDs). While the hallmark of this reactivity is high 

enantioselectivity, we recognized that preferential formation of the lactam product would be 

synthetically valuable.21–28 We attribute the high level of product selectivity to the enzyme 

selectively binding the cis-amide isomer, preorganizing the substrate for cyclization.21 We 

found that a small collection of ERED homologs can facilitate different amide radical 

cyclization.21 With the goal of identifying a single catalyst that would be effective for a 

variety of cyclization modes, we screened a small selection of mutants of ERED from 

Gluconobacter. (GluER). We found that GluER-T36A-W66A can react with many kinds of 

substrates to primarily afford the desired lactam product.29 When GluER-T36A-W66A is 

used for the model 5-exo-trig cyclization, the desired product is formed in 82% conversion 

with a >19:1 ratio of products favoring the desired cycloadduct.30

Next, we expanded our study to investigate the formation of six (δ) and seven (ε) 

member lactams. We postulated that the larger ring size would increase the kinetic barrier 

to cyclization, resulting in more hydrodehalogenated product.31 The barriers to rotation 

abound the amide C–N bond was calculated to be 13.97 and 13.36 kcal/mol for the 

substrate that would form the six and 7-membered rings, respectively, similar to the 

value calculated for the 5-membered ring substrate. The barrier to cyclization for the 

6-membered ring is 7.72 kcal/mol, slightly decreased by comparison to the 5-membered 

ring formation. Cyclization to form the 7-membered ring δ-lactam has a barrier of 9.07 kcal/

mol.10,11,12 When these substrates were tested using the organotin method, both afforded the 

hydrodehalogenated product primarily.15 These results are consistent with relative rates of 

cyclization by comparison to amide bond rotation being responsible for product outcome. 

The metal hydride method was again ineffective, affording a >20:1 of hydrodehalogenated 

product by comparison to lactam.18,32,33 The photoredox method showed an increase in 

hydrodehalogenated product over the lactams for both 6 and 7-exo-trig cyclizations.20,32,33 

Finally, the photoenzymatic reaction using GluER-T36A-W66A afforded product at >20:1 

ratio of lactam to hydrodehalogenation amide, indicating superior product selectivity across 

all three ring sizes.30,32,33

Finally, we investigated the synthesis of ζ-lactams via an 8-exo-trig ζ-cyclization. This 

substrate is unique as it has a higher activation barrier for cyclization (calculated 

by DFT to be 14.68 kcal/mol) than the other substrates tested.10,11,12 Surveying the 

traditional methods, we observe very little lactam product from organotin, metal hydride, 

and photoredox methods, consistent with cyclization being significantly slower than 

radical termination.15,18,20,34 Interestingly, GluER-T36A-W66A formed a 2:1 ratio of the 

hydrodehalogenated product to lactam.30,34 While this enzyme would require further protein 

engineering to achieve better product ratios, it highlights the opportunity for an enzyme to 

facilitate a reaction that would be challenging using small molecule methods.
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In conclusion, we surveyed four strategies for amide radical cyclization and found the 

photoenzymatic method to provide the highest yields of the desired product. This study 

highlights the opportunity of enzymes to address challenges in chemical synthesis beyond 

enantioselectivity. We hope this study can be of value to practitioners interested in utilizing 

radical cyclizations for chemical synthesis.
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6.20 (m, 1H), 3.34 (dt, J = 8 and 40 Hz, 2H), 2.93 (dd, J = 8 and 24 Hz, 3H), 2.25 (p, J = 7 
Hz, 2H), 2.09 (d, J = 6 Hz, 3H), 1.49 (m, 4H).13C- NMR (126 MHz, CDCl3) δ 170.40, 137.66, 
137.29, 131.12, 130.34, 128.50, 126.95, 125.98, 50.26, 47.21, 36.20, 33.23, 30.36, 30.00, 27.90, 
26.93, 21.99, 21.29.IR: (cm-1) : 3023, 2829, 2856, 1637, 1491, 1433, 1397, 1184, 964, 743, 602, 
468 HR-MS [M+1]: calculated 232.1695, found 232.1689. 8-exo-lactam. 1H-NMR (400 MHz, 
CDCl3) δ 7.29 (m 2H), 7.22 (m, 3H), 3.68 (m, 1H), 3.29 (dt, J = 4, 48 Hz, 1H), 2.94 (s, 3H), 
2.75 (dd, J = 7 and 13 Hz, 1H), 2.50 (m, 3H), 2.16 (m, 1H), 1.75 (m, 3H), 1.51 (m, 1H), 1.18 
(m, 2H).13C-NMR (126 MHz, CDCl3) δ 174.09, 161.27, 140.32, 129.33, 128.29, 126.03, 49.17, 
43.14, 41.36, 38.92, 33.28, 28.41, 21.88.IR: (cm−1) 2922, 1634, 1453, 1423, 1396, 1236, 1137, 
764, 527, 432. HR-MS[M+1]: calculated 232.1695, found 232.1692
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Figure 1. 
A. Challenges in Amide Cyclization B. Traditional Solutions C. Tested Methods.
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Figure 2. 
Survey of the 5-exo-trig Cyclization A. DFT Calculations B. Method Yields and Product 

Selectivity.
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Figure 3. 
Survey of the 6 and 7 exo-trig cyclization’s
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Figure 4. 
Survey of the eight exo-trig cyclization
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