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Background: This study aimed to examine glycolysis/gluconeogenesis-related

genes in hepatocellular carcinoma (HCC) and evaluate their potential roles in

HCC progression and immunotherapy response.

Methods: Data analyzed in this study were collected from GSE14520, GSE76427,

GSE174570, The Cancer Genome Atlas (TCGA), PXD006512, and GSE149614

datasets, metabolic pathways were collected from MSigDB database.

Differentially expressed genes (DEGs) were identified between HCC and

controls. Differentially expressed glycolysis/gluconeogenesis-related genes

(candidate genes) were obtained and consensus clustering was performed

based on the expression of candidate genes. Bioinformatics analysis was used

to evaluate candidate genes and screen prognostic genes. Finally, the key results

were tested in HCC patients.

Results: Thirteen differentially expressed glycolysis/gluconeogenesis-related

genes were validated in additional datasets. Consensus clustering analysis

identified two distinct patient clusters (C1 and C2) with different prognoses and

immune microenvironments. Immune score and tumor purity were significantly

higher in C1 than in C2, and CD4+ memory activated T cell, Tfh, Tregs, and

macrophage M0 were higher infiltrated in HCC and C1 group. The study also

identified five intersecting DEGs from candidate genes in TCGA, GSE14520, and

GSE141198 as prognostic genes, which had a protective role in HCC patient

prognosis. Compared with the control group, the prognostic genes all showed

decreased expression inHCC patients in RT-qPCR andWestern blot analyses. Flow

cytometry verified the abnormal infiltration level of immune cells in HCC patients.
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Conclusion: Results showed that glycolysis/gluconeogenesis-related genes

were associated with patient prognosis, immune microenvironment, and

response to immunotherapy in HCC. It suggests that the model based on five

prognostic genes may valuable for predicting the prognosis and immunotherapy

response of HCC patients.
KEYWORDS

hepatocellular carcinoma, glycolysis/gluconeogenesis, consensus clustering, overall
survival, immune microenvironments
Introduction

Liver cancer has increased in incidence worldwide, ranking

sixth for incidence and fourth for mortality among all cancers (1). It

is estimated that more than one million patients will be diagnosed

with liver cancer each year by 2025 (2). In liver cancer,

hepatocellular carcinoma (HCC) accounts for approximately 90%

of primary liver tumors and is the most common primary tumor of

the liver (3). Hepatitis B virus (HBV), hepatitis C virus (HCV),

smoking, alcohol abuse, liver disease and liver injury are all risk

factors for HCC (4). HCC patients have a poor prognosis and show

an increasing trend worldwide. Due to late diagnosis, resistance to

chemotherapy, frequent recurrence and metastasis, the 5-year

overall survival (OS) rate of HCC patients has not significantly

improved (5). The 5-year OS rate for early-stage HCC is more than

70%, while the median OS of patients with advanced HCC is 1-1.5

years (6). Therefore, it is imperative to screen and identify effective

diagnostic and therapeutic strategies for HCC to improve the

prognosis of this malignancy.

Recently, new studies have found that metabolic reprogramming

may be another hallmark of cancer, contributing to the malignant

biological properties of cancer (7). In the presence of oxygen, tumor

cells exhibit high levels of glycolysis that provide energy for the

metabolic activity of the cell, known as aerobic glycolysis or the

Warburg effect (8). High levels of aerobic glycolysis, accompanied by

massive glucose consumption and massive lactate production, confer

proliferation, invasion and drug resistance advantages in tumor cells

(9). Targeting enzymes related to glycolysis in HCCmay be a selective

therapeutic strategy (10). In addition, gluconeogenesis has a

mechanism of action to inhibit glycolysis and block the progression

of HCC (11). Although there have been studies constructing

prognostic models for predicting survival (12, 13), it is

still necessary to establish prognostic models related to

glucose metabolism.

HCC has a multilayered heterogeneity that has been studied for

many years with the aim of individualizing treatment of patients

(14). Several studies have developed predictive models combining

patient characteristics and biomarkers for HCC surveillance and

early detection (15, 16). Cancer progression is not only controlled

by cancer cells but also influenced by the tumor microenvironment

(TME) formed by surrounding nonmalignant tumor cells. In recent

years, studies have highlighted that glycolysis influences tumor
02
growth and immune escape (17). Therefore, the identification of

patient stratification and biomarkers from the perspective of the

immune microenvironment and glycolysis is of great significance to

improve the survival of HCC patients.

Analytical approaches through multi omics can comprehensively

assess phenotypic heterogeneity in tumor samples, playing an

important role in tumor marker screening and mechanistic

studies (18, 19). In this study, we explored the important roles

of metabolic reprogramming related genes in HCC patient

stratification and prognosis based on high-throughput

sequencing data. Further evaluation of the immune status of

patients to evaluate the correlation of glycolysis and immune

environment may help to reveal the pathogenesis and potential

therapeutic avenues for HCC. This study suggests that our

constructed glycolysis related multi prognostic model is an

important component for HCC personalized therapy. The

flowchart is shown in Figure 1.
Materials and methods

Data collection and differential analysis

Expression profile and survival data in the GSE14520 dataset

were obtained from tissue samples of 247 HCC patients and 239

normal controls (NC) (20). Expression profile in the GSE76427

dataset were obtained from 115 primary tumors tissues and 52

adjacent non-tumor tissues of HCC patients (21). Expression profile

in the GSE174570 dataset were obtained from 57 paired tumors

tissues and adjacent non-tumor tissues of HCC patients (22).

Expression profile and survival data in the GSE141198 dataset

were obtained from tumors tissues of 148 HCC patients (23). In

addition, expression, survival and somatic mutation data of 373

HCC patients and 50 normal controls were obtained from The

Cancer Genome Atlas (TCGA) database (https://portal.gdc.

cancer.gov/). Genes in four metabolic pathways (citrate cycle

TCA cycle, fatty acid metabolism, glycerolipid metabolism, and

glycolysis/gluconeogenesis) were collected from Molecular

Signatures Database (MSigDB) (24). PXD006512 was collected

from PRIDE database (25), including proteomic data with 124

paired tumors tissues and adjacent non-tumor tissues of HCC

patients. Single-cell RNA sequencing (scRNA-seq) data were
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collected from GSE149614 for 10 HCC patients with tumor and

non-tumor liver (26).

Differential analysis between HCC and controls were assessed

using limma package in R (27) for GSE14520, GSE76427,

GSE174570, and PXD006512, and using DEseq2 package in R

(28) for TCGA, then differentially expressed genes (DEGs) and

differentially expressed proteins (DEPs) were obtained with |logFC

(log fold change)|> 1 and P < 0.05.
Identification of metabolic pathways with
prognostic significance

Gene Set Enrichment Analysis (GSEA) gene set (29) was used to

evaluate the activation of four metabolic pathways in HCC. The

scores of four metabolic pathways were calculated separately with

gene set variation analysis (GSVA) (30), and the effect of the median

score on patient OS was analyzed by Kaplan-Meier (K-M) curves.

Subsequently, DEGs in metabolic pathways with prognostic

significance were screened out as candidate genes.
Consensus cluster analysis

Candidate genes were used to perform consensus cluster

analysis using ConsensusClusterPlus package in R (31). HCC

samples were therefore clustered as different clusters. The K-M

curves were used to analyze and compare the OS of different

clusters. DEGs between clusters in GSE14520, GSE141198, and

TCGA were obtained with P < 0.05. Somatic mutation was

calculated to evaluate the tumor mutation burden (TMB) in
Frontiers in Immunology 03
different clusters using Maftools (32). The stromal score, immune

score, ESTIMATE score, tumor purity, and glycolysis/

gluconeogenesis in TCGA were assessed between different clusters

using GSVA.
Co-expression and enrichment analysis

Weighted gene co-expression network analysis (WGCNA) was

performed to construct co-expression networks in TCGA for

intersecting DEGs between clusters in GSE14520, GSE141198,

and TCGA using WGCNA package in R (33). Correlations

between pairs of genes were first calculated using gene expression

profiles and transformed into adjacency matrices. Then the optimal

b was set such that the connections between genes in the network

obeyed a scale-free network distribution, and the adjacency matrix

was transformed into a topological overlap matrix. Hierarchical

clustering trees were subsequently constructed, with different

branches (colors) representing different modules. Correlations

between modules and clinical trait were calculated by

Pearson correlation.

Enrichment analysis was used to identify the Gene Ontology

(GO) analysis, and Kyoto Encyclopedia of Genes and Genomes

(KEGG) in which module genes were involved using clusterProfiler

package in R (34). Significant pathways were determined by P < 0.05.
Assessment of immune cell infiltration

CIBERSORT (35) was used to determine the immune cell

infiltration based on the gene expression data in TCGA. The
FIGURE 1

The flowchart of this study. CyTOF, Single‐cell‐scaled time‐of‐flight; GSEA, Gene Set Enrichment Analysis; GSVA, Gene set variation analysis; IHC,
immunohistochemical; K-M, Kaplan-Meier; RT-qPCR, Real-time quantitative polymerase chain reaction; TCGA, The Cancer Genome Atlas; WB,
Western blot; WGCNA, Weighted gene co-expression network analysis.
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proportion of infiltrating immune cells was estimated by LM22

signal between HCC and control or between different clusters.

Tumor Immune Dysfunction and Exclusion (TIDE; http://

tide.dfci.harvard.edu/) was utilized to predict the responsiveness

of samples in different clusters to immunotherapy.
Identification of molecular subtypes

Univariate Cox regression was used to analyze the prognostic

role of candidate genes in GSE14520, GSE141198, and TCGA.

Forest plot was plotted with hazard ratio (HR) and 95%

confidence interval (CI). Genes that significantly affected patients’

overall survival were identified as prognostic genes. Nomogram was

generated using rms package in R. The calibration curves were

established to illustrate the agreement between the nomogram-

predicted and the observed probabilities of HCC. Then a risk score

was calculated and the HCC samples in TCGA were divided into

high- and low-risk groups according to the median risk score. OS in

different groups was predicted by K-M curve. The receiver

operating characteristic (ROC) curves was generated by

survivalROC package in R to evaluate time-dependent OS of

HCC patients.
Validation in proteomic data

Multivariate Cox regression was used to analyze the prognostic

role of candidate genes in protein level of PXD006512. Proteins that

significantly affected patients’OS were used to calculate a risk score.

The HCC samples in PXD006512 were divided into high- and low-

risk groups according to the median risk score. OS in different

groups was predicted by K-M curve. The ROC curves were also

generated by survival ROC package in R to evaluate time-dependent

OS of HCC patients.
Application of single-cell data

To filter out low-quality cells, cells with more than 8000 or fewer

than 200 expressed genes were removed. Single cell sequencing data

were normalized using a standardized data algorithm, and variable

genes were filtered using the FindVariableFeatures function. Highly

variable genes of top 2000 were selected to perform clustering analysis

using unified manifold approximation and projection (UMAP).

Marker genes for cell types were collected from known cell specific

marker genes.
Sample collection

A total of 30 paired tumors tissues and adjacent normal tissues

from HCC patients were collected in the First Affiliated Hospital of

Xinjiang Medical University. Peripheral blood samples of 10 HCC

patients and 10 healthy volunteers were also collected in the First

Affiliated Hospital of Xinjiang Medical University. Samples in this
Frontiers in Immunology 04
study were obtained with approval by Ethics Committee of the First

Affiliated Hospital of Xinjiang Medical University (NO. K202304-

20), and consent were obtained for all participants.
Real-time quantitative polymerase
chain reaction

Tumors tissues and normal tissues samples were used to extract

total RNA using was TRIzol reagent (Invitrogen, CA, USA).

Complementary DNA was obtained through reverse-transcribe

using total RNA with PrimeScript™ RT reagent Kit (Takara,

Dalian, China). Expression of target genes were detected using

RT-qPCR with SYBR® Premix Ex Taq™ II kit (Takara). b-actin is

used as an internal reference gene to calculate the relative

expression level of genes using 2−DDCt method. Primers used in

this study is shown in Table S1.
Western blot analysis

Tumors tissues and normal tissues samples were homogenated

in RIPA lysis buffer with PMSF on ice. Proteins were extracted and

then quantified with BCA protein assay kit (Beyotime, Shanghai,

China). Then 20 µg proteins were separated on SDS–

polyacrylamide gel electrophoresis and transferred onto

polyvinylidene fluoride membranes. After blocking with 5% skim

milk at room temperature for 2 h, membranes were incubated with

primary antibodies (anti-ADH1B, anti-ALDOB, anti-ADH1A, anti-

FBP1, anti-ADH6, and anti-b-actin; ABclonal Technology, Wuhan,

China) at 4°C for overnight, respectively. Subsequently, membranes

were incubated with HRP-linked secondary antibodies and detected

with an ECL chemiluminescence kit (Beyotime). Quantification of

proteins was performed by normalized to b-actin using

ImageJ software.
Immunohistochemical and multiplex
immunohistochemistry staining

For immunohistochemical (IHC) staining, tissues were

embedded in paraffin after fixed in 4% paraformaldehyde and

sectioned at 4 mM. After antigen retrieval at high temperature,

sections were incubated with sheep serum albumin for blocking

antigen. Sections were then incubated with primary antibodies

(anti-ADH1B, anti-ALDOB, anti-ADH1A, anti-FBP1, and anti-

ADH6; ABclonal Technology) for overnight. Secondary antibody

was applied for 30 min. After added the diaminobenzidine solution,

sections were stained with hematoxylin. The images were visualized

by XSP-C204 biomicroscope.

Additionally, sections were stained with anti-mouse CD14

monoclonal antibody (Proteintech, Wuhan, China) for 15 h, then

incubated with FITC-conjugated goat anti-mouse IgG (Proteintech)

for 1 h. After washing with solution for 4 times, sections were

incubated with sheep serum albumin for blocking antigen. Then

sections were stained with anti-rat FOXP3 polyclonal antibody
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(Absin, Shanghai, China) for 15 h, then incubated with Cy3-

conjugated goat anti-rat IgG (Proteintech) for 1 h. Nuclei were

counterstained with DAPI. The images were visualized by XSP-

C204 biomicroscope.
Flow cytometry assay

Peripheral blood samples of HCC patients and normal controls

were collected and incubated with antibodies (BD Biosciences, CA,

USA), including anti-CD14-ECD, anti-CD4-APC, anti-CD45RO-

PE, anti-CD25-FITC, anti-CD127-APC, anti-CXCR5-PC5.5, and

anti-CD68-PC7. After incubation for 18 min, cells were incubated

with red blood cell lysate (BD Bioscience). After washing with PBS,

cell population was gated and analyzed by BD FACSFortessa (BD

Biosciences). Data were analyzed by Kaluza (v2.0).
Data processing of mass cytometry

Single‐cell‐scaled time‐of‐flight (CyTOF) mass cytometry data

was collected from Mendeley Database (https://doi.org/10.17632/

jxsz3hdsyg.2) with accession numbers: CRA001276 (36). Which

including thirteen groups of tumor (T), and normal (N) specimens

from HCC patients. Cluster analysis was performed on CD45

positive cells using t-distributed stochastic neighbor embedding

(tSNE), and subsequent manual gating was performed using FlowJo

v10.5.3. Treg was identified using CD4+CD3+CD25+CD127low,

monocyte was identified using CD3-CD16-CD4+HLA-DR

+CD45RO+CD11a+CD49d+.
Statistical analysis

R version 3.6.1 was used for bioinformatics analysis. GraphPad

Prism 7.0 was used for statistical analysis and graphing. Data of

experiment are expressed as mean ± SD for triplicate experiments.

Statistical test was performed using Student’s t test. P < 0.05 was

considered statistically significant.
Results

Prognostic significance of
metabolic pathways

To evaluate the metabolic pathways in HCC, GSEA was

performed. The results showed that citrate cycle TCA cycle, fatty

acid metabolism, glycerolipid metabolism, and glycolysis/

gluconeogenesis were all activated in HCC in TCGA (Figure 2A),

GSE14520 (Figure 2B), GSE76427 (Figure 2C), GSE174570

(Figure 2D). K-M curves showed that patients with high-score of

glycolysis/gluconeogenesis had better OS compared to low-score of

glycolysis/gluconeogenesis (Figures 2E, F, G). Unfortunately, the

other three metabolic pathway scores did not significantly affect the

OS of HCC patients.
Frontiers in Immunology 05
Differentially expressed glycolysis/
gluconeogenesis‐related genes

To identify differentially expressed glycolysis/gluconeogenesis‐

related genes, the DEGs between HCC and controls were identified.

A total of 2493 DEGs in TCGA (Figure 3A), 2958 DEGs in

GSE14520 (Figure 3B), 3927 DEGs in GSE76427 (Figure 3C), and

583 DEGs in GSE174570 (Figure 3D). There were 62 glycolysis/

gluconeogenesis‐related genes were obtained and intersection

analysis revealed 13 differentially expressed glycolysis/

gluconeogenesis‐related genes in HCC to be considered as

candidate genes (Figure 3E). The expression of candidate genes in

paired tumors tissues and adjacent non-tumor tissues of

GSE174570 showed that BPGM was significantly higher expressed

in HCC than in controls, and HK3, ENO3, ALDH1B1, ALDH9A1,

ADH6, ADH1A, ADH1B, PCK1, ALDOB, FBP1, ALDH2, and

PCK2 were significantly lower expressed in HCC (Figure 3F).

Importantly, the aberrant expression of candidate genes was

validated in additional data (Figure S1).
Consensus clustering identified
two clusters

Based on the expression of 13 candidate genes, consensus

cluster analysis was performed to discriminate HCC patients in

TCGA. The greatest increase in the area under the cumulative

distribution function (CDF) curves at k = 2 resulted in the best

clustering (Figures 4A–C). Therefore, we obtained two clusters:

C1 group and C2 group. The expression of 13 candidate genes

in C1 and C2 was shown in Figure 4D. Patients in C1 group

had a significantly worse OS than those in C2 group

(Figure 4E). Interestingly, the same clustering results were also

obtained in the GSE14520 and GSE141198 datasets, with

patients in C1 group had a worse prognosis than those in C2

(Figure S2). Additionally, TP53 was found to be mutated most

frequently in C1 and CTNNB1 in C2 among somatic mutations

(Figure S3).

Next, the differentially expressed genes between C1 and C2

groups were identified. There were 9999 differentially expressed

genes in TCGA (Figure S4A), 5870 differentially expressed genes in

GSE14520 (Figure S4B), 9885 differentially expressed genes in

GSE141198 (Figure S4C). A total of 914 differentially expressed

genes were the intersection of three datasets (Figure 5A). Network

topology analysis of soft threshold power reveals b=6 was the

optimal value to construct the co-expression network (Figure 5B).

Then seven modules were obtained (Figure 5C). Correlation

analysis showed that brown module was greatest positive

correlation was with C2 and negative correlation with C1

(Figure 5D). The enrichment analysis found that brown module

genes were mainly involved in organic acid metabolic process, small

molecule metabolic process, and carboxylic acid metabolic process

of biological processes (Figure 5E). In the KEGG pathways,

metabolic pathways, valine, leucine and isoleucine degradation,

and tryptophan metabolism were mainly enriched by brown

module genes (Figure 5F).
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Immune and immunotherapy
in two clusters

To investigate whether glycolysis/gluconeogenesis was

associated with immune microenvironment, we explored the

stromal score, immune score, ESTIMATE score, and tumor

purity in C1 and C2 in TCGA. Results showed that immune

score, and tumor purity were significantly higher in C1 than C2,

while glycolysis/gluconeogenesis was lower in C1 than C2

(Figure 6A). Then the abundances of immune cells in each
Frontiers in Immunology 06
sample were measured using the CIBERSORT (Figure 6B).

Macrophage M2, and CD4+ memory resting T cells were the

most abundance in HCC. By comparing immune cell infiltration

between HCC and controls, we found that CD4+ naive T cells, CD4

+ memory activated T cells, follicular helper T cells (Tfh),

regulatory T cells (Tregs), macrophage M0, myeloid dendritic cell

resting, myeloid dendritic cell activated, and mast cell activated

were higher infiltrated in HCC, while plasma B cells, gamma delta T

cells, monocyte, macrophage M2, mast cell resting, eosinophil, and

neutrophil were lower infiltrated in HCC (Figure 6C). Besides,
A B

D

E F G

C

FIGURE 2

Identification of metabolic pathways with prognostic significance. Gene set enrichment analysis of citrate cycle TCA cycle, fatty acid metabolism,
glycerolipid metabolism, and glycolysis/gluconeogenesis in TCGA (A) GSE14520 (B), GSE76427 (C), GSE174570 (D). Kaplan Meier survival analysis
based on glycolysis/gluconeogenesis score in TCGA (E) GSE14520 (F), GSE141198 (G). H, high expression; L, low expression; HR, hazard ratio; CI,
confidence interval.
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memory B cell, CD4+ memory activated T cell, Tfh, Tregs,

macrophage M0, myeloid dendritic cell resting, and neutrophil

were higher infiltrated in C1, while monocyte, and mast cell

activated were lower infiltrated in C1 (Figure 6D). CD4+ memory

activated T cell, Tfh, Tregs, and macrophage M0 were all higher

infiltration in HCC and C1 group.

Furthermore, differences in effects for patients in C1 and C2

receiving checkpoint inhibitors were predicted and found that the

C1 group had a higher proportion of potential responders than the

C2 group (Figure 6E). The responses to immunotherapies of

receiving anti-PD-1 or anti-CTLA-4 were compared in C1 and

C2 with the SubMap analysis (Figure 6F). It was found that HCC
Frontiers in Immunology 07
patients in C1 may be more sensitive for responses to anti-PD-1 and

anti-CTLA-4.
Identification of prognostic genes based
on candidate genes

Five intersecting DEGs were identified from candidate genes

significantly affected OS in TCGA (Figure 7A), GSE14520

(Figure 7B), and GSE141198 (Figure 7C) by univariate Cox

regression analyses. ADH1A, ADH1B, ADH6, ALDOB, and FBP1 as

prognostic genes all had a protective role in HCC patient prognosis
A B

D

E F

C

FIGURE 3

Identification of candidate genes associated with glycolysis/gluconeogenesis. Volcano plot of DEGs in TCGA (A), GSE14520 (B), GSE76427 (C), and
GSE174570 (D). FC, fold change. (E) Intersection of DEGs in four datasets and glycolysis/gluconeogenesis‐related genes. TCGA, The Cancer Genome
Atlas. (F) Differential expression of candidate genes in HCC and normal tissues of GSE174570. ***P < 0.001.
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(HR<1). The nomogram was constructed for OS in HCC patients, and

showed promising accuracy in predicting prognoses (Figure 7D). The

calibration curves showed a robust calibration of nomogram

(Figure 7E). The results of correlation analysis showed that

prognostic genes and Treg or macrophage were negatively correlated,

prognostic genes and monocyte was positively correlated (Figure 7F).

We then obtained two subtypes (high- and low-risk groups) in

TCGA based on median risk score (Figure 7G). Prognostic genes

were all lowly expressed in the high-risk group and highly expressed

in the low-risk group. Area under the ROC curve (AUC) values of

median risk score in 12-, 36- and 60-month were 0.66, 0.66 and

0.63, respectively (Figure 7H). Importantly, HCC patients in the

high-risk group had a worse prognosis than those in the low-risk

group (Figure 7I).

To determine the prognostic role of candidate genes in protein

levels, the proteomic data in PXD006512 was analyzed. There were

5714 DEPs between HCC and controls (Figure 8A). Interestingly,

the protein levels of the candidate genes were all lower expressed in

HCC compared to controls (Figure 8B). Univariate Cox regulation

analysis confirmed that ADH1A, ADH1B, ADH6, and ALDOB had

protective effects on HCC (Figure 8C). A risk prognostic model was

also established by median risk score prognostic genes to divide

HCC samples into high - and low-risk groups (Figure 8D). Protein

levels of prognostic genes were also lower expressed in high-risk

group compared to low-risk group. AUC values of median risk
Frontiers in Immunology 08
score in 12-, 36- and 60-month were 0.79, 0.78 and 0.81,

respectively (Figure 8E). HCC patients in the high-risk group had

a worse prognosis than those in the low-risk group (Figure 8F).
Integrated prognostic genes in
single-cell level

Unsupervised cluster analysis was performed 34 clusters were

established through UMAP from cells of all samples (Figure 9A).

According to specific marker genes, we identified the following 11

major cell types: B cells, CD8+ T cells, CD45-LYZ+ cells,

endothelial, epithelial, fibroblast, macrophages, monocytes,

natural killer (NK), NK T cells, and Treg (Figures 9B, C).

Interestingly, NK T cells, and CD45-LYZ+ cells were more

expressed in HCC samples, NK more expressed in normal

samples (Figure 9D). ADH1A, ADH1B, ADH6, and ALDOB were

mainly expressed in monocytes, FBP1 was mainly expressed in

monocytes and macrophages (Figure 9E).
Validation of prognostic genes and
immune cells

RT-qPCR detection showed that decreased mRNA levels of

ADH1B, ALDOB, ADH1A, ADH6, and FBP1 in HCC compared
A B

D

E

C

FIGURE 4

Identification of two HCC groups using consensus clustering analysis in TCGA based on candidate genes. (A) The relative change in area under
cumulative distribution function (CDF) curve from k = 2 to 10. (B) The CDF curves from k = 2 to 10. (C) Heatmap of two clusters according to the
consensus clustering matrix. (D) Expression heatmap of candidate genes in C1 and C2 groups. (E) Kaplan–Meier curves for OS of HCC patients in C1
and C2 groups. HR, hazard ratio; CI, confidence interval.
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with controls (Figure 10A). The expression trend of prognostic

genes was also decreased at the protein level in HCC (Figure 10B).

We further confirmed that the expression of prognostic

genes was lower in HCC than in the control group using IHC

staining (Figure 10C).

The proportion of monocytes and Treg showed increased in

HCC by flow cytometry detection (Figure 10D). Then, immune cells

were visualized and analyzed based on CyTOF data (Figure 11A).

According to the expression patterns of different immune cell
Frontiers in Immunology 09
surface markers (Figure S5), monocyte and Treg cells were

identified significantly enriched in normal (Figure 11B), and

tumor (Figure 11C). It is found that monocyte and Treg cells

were increased from normal to tumor according to the cell

density map (Figure 11D). Importantly, the multiplex

immunohistochemistry staining was performed to detect the

expression of marker protein of monocytes (CD14) and Treg

(FOXP3). As shown in Figure 11E, the abundance of monocytes

and Treg in tumor were higher than that in control group.
A

B D

E F

C

FIGURE 5

Co-expression network analysis in TCGA. (A) Intersection of differentially expressed genes between C1 and C2 groups in TCGA, GSE14520, and
GSE141198 datasets. (B) Analysis of soft thresholding power (b) in WGCNA. (C) Clustering tree of seven co-expression modules. (D) Correlation
between modules and clinical traits. Red represents positive correlation and green represents negative correlation. (E) GO terms enriched by brown
module genes. BP, biological progression; CC, cellular composition; MF, molecular function. (F) KEGG pathways enriched by brown module genes.
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Discussion

With the development of high-throughput sequencing

technologies are being generated, which can be used to gain a

better understanding of the underlying biology of HCC and to

identify potential targets for diagnosis and therapy. In HCC, the
Frontiers in Immunology 10
process of glycolysis is often dysregulated and leads to increased

glucose consumption and lactate production (37). Gluconeogenesis

then exhibits anti-tumor effects in hepatocellular carcinoma (38).

This study showed that several metabolic pathways were activated

in HCC and may plays a significant role in HCC development and

progression. The focus of this study is to discuss a study that
A B

D

E F

C

FIGURE 6

Immune cell infiltration and immunotherapy in C1 and C2 of TCGA. (A) Differences in estimate scores and glycolysis/gluconeogenesis for C1 and C2
groups. GSVA, gene set variation analysis. (B) Percentage abundances of different immune cells in each sample of HCC determined by CIBERSORT.
(C) Differences in immune cell infiltration in HCC and controls. (D) Differences in immune cell infiltration in C1 and C2 groups. (E) Distribution of the
TIDE value in C1 and C2 groups for immunotherapy response. CTL, cytotoxic T lymphocytes; TIDE, tumor immune dysfunction and exclusion;
MDSC, myeloid-derived suppressor cells; CAF, cancer-associated fibroblasts; TAM, tumor-associated macrophages; MSI, microsatellite instability.
(F) Therapeutic responses to anti-PD-1 and anti-CTLA-4 in C1 and C2 groups. *P<0.01, **P<0.01, ***P<0.001.
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identified differentially expressed glycolysis/gluconeogenesis-

related genes in HCC and their association with immune

microenvironment and patient prognosis.

The study found that patients with high scores for glycolysis/

gluconeogenesis had better OS compared to those with low scores for

glycolysis/gluconeogenesis. This suggests that glycolysis/

gluconeogenesis may be a potential prognostic biomarker for HCC

(39, 40). However, the scores for the other three metabolic pathways

(citrate cycle/TCA cycle, fatty acid metabolism, and glycerolipid

metabolism) did not significantly affect the OS of HCC patients.

This suggests that these pathways may not be as strongly associated

with HCC progression as glycolysis/gluconeogenesis.

Additionally, 13 candidate genes in HCC were all downregulated

expression in HCC patients. Notably, two patient groups (C1 and C2)

were identified based on the expression of candidate genes. The
Frontiers in Immunology 11
patients in C1 had a worse prognosis than those in C2. The different

most frequently mutated genes in each cluster were also identified,

which is the critical mechanism of tumorigenesis (41, 42). Patients in

C2, characterized by lower expression of the 13 candidate genes, may

have a higher probability of responding to checkpoint inhibitors

compared to those in C1, which is consistent with the observation

that patients in C2 had a better OS than those in C1. These results

could have important implications for the development of

personalized treatment strategies for HCC patients (43, 44).

The study also performed WGCNA to identify co-expression

network for DEGs between C1 and C2. Correlation analysis

revealed that the brown module had the greatest positive

correlation with the C2 group and a negative correlation with the

C1 group. Enrichment analysis on the brown module genes showed

that they were mainly involved in metabolic pathways. Recently,
A B

D E F

G IH

C

FIGURE 7

Identification of prognostic genes and construction of molecular subtypes. Univariate Cox regression analyzed prognostic role of candidate genes
for HCC patients in TCGA (A), GSE14520 (B), and GSE141198 (C). (D) Nomograms for predicting overall survival in patients with HCC. (E) Calibration
curves for predicting overall survival of the nomogram. (F) Correlations between immune cells and prognostic genes. Red represents positive
correlation and blue represents negative correlation. (G) The HCC patients in TCGA were divided into high- and low-risk groups according to the
median risk score. (H) ROC curves of median risk score for 12-, 36- and 60-month OS of HCC patients. AUC, area under the ROC curve. (I) Kaplan–
Meier survival curves of high- and low-risk groups. H, high-risk group; L, low-risk group. HR, hazard ratio; CI, confidence interval.
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many studies have found that the enzymes and metabolites of

tryptophan metabolism are widely involved in the regulation of the

immune system (45–47).

The role in metabolism on immunoregulation has attracted

more attention. Many glycolysis related genes were found to be
Frontiers in Immunology 12
aberrantly expressed, and they play important roles in the

development and recurrence of HCC (48). The expression of key

enzymes involved in gluconeogenesis, is downregulated in HCC

cells, leading to decreased glucose production (49). The

accumulation of lactate, the main product of glycolysis, can affect
A B

D

E

F

C

FIGURE 8

Evaluation of prognostic genes in PXD006512. (A) Volcano plot of differentially expressed proteins between HCC and controls. Red represents
upregulation and green represents downregulation. (B) Protein expression levels of candidate genes. ***P<0.001. (C) Univariate Cox regression
analysis of candidate genes for prognosis of HCC patients. (D) The HCC patients were divided into high- and low-risk groups according to the
median risk score. (E) ROC curves of median risk score for 12-, 36- and 60-month OS of HCC patients. AUC, area under the ROC curve. (F) Kaplan–
Meier survival curves of high- and low-risk groups. H, high-risk group; L, low-risk group. HR, hazard ratio; CI, confidence interval.
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tumor-related immune responses (50). Studies have shown that

glycolysis-related gene signature can predict the survival and

immune status of HCC (51). Then CIBERSORT was used to

measure the abundance of immune cells in each sample and

found several types of immune cells abnormally infiltrated in

HCC and C1 group. Similar to HCC group, the immune level in

C1 increases while the level of glycolysis decreases.
Frontiers in Immunology 13
These findings suggest that glycolysis/gluconeogenesis may play a

role in modulating the immune microenvironment in HCC (52).

Specifically, the C1 group showed a more active immune response

and higher infiltration of certain types of immune cells, which may be

relevant for developing new therapeutic strategies targeting the

immune system in HCC. Tregs are significantly elevated in the

peripheral blood of HCC patients and represent an independent risk
A B

D

E

C

FIGURE 9

Single-cell analysis reveals major cell types and expression of prognostic genes. (A) Uniform manifold approximation and projection (UMAP) plots of
different cell clusters. (B) Average expression and distribution of marker genes in all samples. (C) UMAP plots of annotated major cell types based on
specific marker genes. NK, Nature killer. (D) UMAP clustering of HCC and normal samples. (E) UMAP plots of prognostic genes expression in cell
types.
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factor for prognosis (53). In addition, tumor associated neutrophils

recruit macrophages and T regulatory cells that negatively regulate

adaptive immunity, promoting progression through the CCL17

pathway (54, 55). With significantly increased Tfh and macrophages

M0 in HCC, patients have a worse prognosis (56).
Frontiers in Immunology 14
Cox regression analyses revealed ADH1A, ADH1B, ADH6,

ALDOB, and FBP1 had protective role in HCC patient prognosis.

Expression of five prognostic genes were confirmed by proteomic

data. The correlation between these prognostic genes and immune

cells showed and negatively correlated with Tregs or macrophages
A

B

D

C

FIGURE 10

The levels of prognostic genes and immune cells were verified in HCC patients and normal controls. (A) The mRNA levels of prognostic genes in
HCC and controls detected by RT-qPCR. (B) Protein expression of prognostic genes in HCC and controls detected by western blotting. (C) Protein
expression of prognostic genes in HCC and controls detected by IHC staining. (D) The proportion of neutrophil, monocytes, CD4+ memory
activated T cell, Tfh, Treg, and macrophages M0 detected by flow cytometry. ***P<0.001. HCC, hepatocellular carcinoma; NC, normal control;
Tfh, follicular helper T cells; Treg, regulatory T cells.
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and positively correlated with monocytes. Next, two subtypes (high-

and low-risk groups) were obtained based on the median risk score.

The risk score model based on the expression levels of these genes

could be useful in clinical practice for risk stratification and

personalized treatment for HCC patients.

scRNA-seq helps elucidate the existence of tumor heterogeneity,

which is common at the molecular and clinical levels in HCC (57).

There were 11 major cell types in samples based on single-cell data.
Frontiers in Immunology 15
We also found that the prognostic genes ADH1A, ADH1B, ADH6,

and ALDOB were mainly expressed in monocytes, while FBP1 was

mainly expressed in both monocytes and macrophages. In HCC

patients, higher ADH1A expression is associated with good survival

and a lower invasive disease state (58, 59). Aberrant loss of ALDOB

and upregulation of glycolysis in HCC tumor cells (60). FBP1 is a rate

limiting enzyme in gluconeogenesis, which is downregulated in HCC

patients and associated with poor prognosis (61). These findings
A B

D
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C

FIGURE 11

Detection of immune cells in HCC and normal groups. (A) tSNE plots showing CyTOF data from normal and tumor region. Identification of
monocyte and Treg cells in normal (B) and tumor (C). (D) The proportion of monocyte and Treg cells in tumors and normal. (E) Representative
images of immunohistochemistry staining for respective markers of monocyte and Treg cells in tumor (T) and normal (N).
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suggest that different cell types may have different roles in the

development and progression of HCC and may be affected

differently by the expression of specific genes.

There are several limitations of these results that should be

taken into account. The sample size of some datasets is relatively

small, which may limit the statistical power and generalizability of

the findings. We only focused on the metabolic and immunological

features of HCC, and the clinical relevance and applicability of the

findings need to be evaluated. The study did not investigate the

impact of potential confounding factors such as age, sex, and

comorbidities, which may affect the accuracy of the results. The

study did not investigate the genetic and epigenetic mechanisms

underlying the molecular and immunological features of HCC, and

further studies are needed to elucidate these mechanisms.
Conclusion

This study identified two distinct molecular subtypes (C1 and

C2) associated with glycolysis/gluconeogenesis of HCC, which

showed significant differences in gene expression patterns,

immune microenvironment, and clinical outcomes. The study

identified a novel five prognostic genes (ADH1A, ADH1B,

ADH6, ALDOB, and FBP1) that were significantly associated

with OS in HCC patients, they were mainly expressed in

monocytes and macrophages. Overall, these findings highlight the

importance of considering the molecular subtypes and immune

microenvironment of HCC for developing personalized treatment

strategies and improving patient outcomes.
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SUPPLEMENTARY FIGURE 1

Expression heatmap of candidate genes in TCGA, GSE14520, GSE76427, and

GSE174570 datasets.

SUPPLEMENTARY FIGURE 2

Identification of two HCC groups using consensus clustering analysis based
on candidate genes. The relative change in area under cumulative distribution

function (CDF) curve from k = 2 to 10 in GSE14520 (A) and GSE141198 (E). The
CDF curves from k = 2 to 10 in GSE14520 (B) and GSE141198 (F). Heatmap of

two clusters according to the consensus clustering matrix in GSE14520 (C)
and GSE141198 (G). Kaplan–Meier curves for OS of HCC patients in C1 and C2
groups in GSE14520 (D) and GSE141198 (H). HR, hazard ratio; CI,

confidence interval.

SUPPLEMENTARY FIGURE 3

Somatic mutations of samples in C1 and C2. (A) Characteristics of TMB for C1

samples in TCGA. (B) Characteristics of TMB for C2 samples in TCGA. TMB,

tumor mutation burden.

SUPPLEMENTARY FIGURE 4

Identification differentially expressed genes between C1 and C2 groups. (A)
Volcano plot of differentially expressed genes in TCGA. (B) Volcano plot of
differentially expressed genes in GSE14520. (C) Volcano plot of differentially

expressed genes in GSE141198. Red represents upregulated expressed genes

and green represents downregulated expressed genes.

SUPPLEMENTARY FIGURE 5

tSNE plots showing expression of surface molecules in normal and

tumor region.
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