
royalsocietypublishing.org/journal/rsob
Research
Cite this article: Cimmino TP, Pagano E,
Stornaiuolo M, Esposito G, Ammendola R,

Cattaneo F. 2023 Formyl-peptide receptor 2

signalling triggers aerobic metabolism of

glucose through Nox2-dependent modulation

of pyruvate dehydrogenase activity. Open Biol.

13: 230336.
https://doi.org/10.1098/rsob.230336
Received: 13 September 2023

Accepted: 20 September 2023
Subject Area:
biochemistry

Keywords:
formyl peptide receptors, NADPH oxidase,

reactive oxygen species, tyrosine kinase

receptor transactivation, glucose metabolism,

Warburg effect
Author for correspondence:
Fabio Cattaneo

e-mail: fabio.cattaneo@unina.it
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6875416.
© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Formyl-peptide receptor 2 signalling
triggers aerobic metabolism of glucose
through Nox2-dependent modulation of
pyruvate dehydrogenase activity

Tiziana Pecchillo Cimmino1, Ester Pagano2, Mariano Stornaiuolo2,
Gabriella Esposito1, Rosario Ammendola1 and Fabio Cattaneo1

1Department of Molecular Medicine and Medical Biotechnology, School of Medicine and 2Department of
Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy

TPC, 0000-0003-0545-2981; EP, 0000-0003-2872-1734; MS, 0000-0003-2200-5083;
GE, 0000-0002-4255-7312; RA, 0000-0003-1655-8028; FC, 0000-0002-5833-8333

The human formyl-peptide receptor 2 (FPR2) is activated by an array of
ligands. By phospho-proteomic analysis we proved that FPR2 stimulation
induces redox-regulated phosphorylation of many proteins involved in cel-
lular metabolic processes. In this study, we investigated metabolic pathways
activated in FPR2-stimulated CaLu-6 cells. The results showed an increased
concentration of metabolites involved in glucose metabolism, and an
enhanced uptake of glucose mediated by GLUT4, the insulin-regulated
member of GLUT family. Accordingly, we observed that FPR2 transactivated
IGF-IRβ/IRβ through a molecular mechanism that requires Nox2 activity.
Since cancer cells support their metabolism via glycolysis, we analysed glu-
cose oxidation and proved that FPR2 signalling promoted kinase activity of
the bifunctional enzyme PFKFB2 through FGFR1/FRS2- and Akt-dependent
phosphorylation. Furthermore, FPR2 stimulation induced IGF-IRβ/IRβ-,
PI3K/Akt- and Nox-dependent inhibition of pyruvate dehydrogenase
activity, thus preventing the entry of pyruvate in the tricarboxylic acid
cycle. Consequently, we observed an enhanced FGFR-dependent lactate
dehydrogenase (LDH) activity and lactate production in FPR2-stimulated
cells. As LDH expression is transcriptionally regulated by c-Myc and HIF-
1, we demonstrated that FPR2 signalling promoted c-Myc phosphorylation
and Nox-dependent HIF-1α stabilization. These results strongly indicate
that FPR2-dependent signalling can be explored as a new therapeutic
target in treatment of human cancers.
1. Introduction
G protein-coupled receptors (GPCRs) and tyrosine kinase receptors (TKRs) play
critical roles in health and disease and represent the major classes of cell surface
receptors. GPCRs bind a structurally diverse range of ligands [1] which trigger
downstream signalling via heterotrimeric G protein dissociation (Gα and Gβγ
subunits) [2]. TKRs bind growth factors which typically induce dimerization
of receptor monomers triggering trans-autophosphorylation of COOH-terminal
tyrosine residues that act as recruitment sites for intracellular adaptor proteins.
Typically, TKR-mediated signalling is a driver for cell proliferation, migration
and survival.

GPCR-mediated TKR transactivation represents a molecular mechanism
necessary to increase the number and range of cellular signalling networks,
by integrating the diversity of GPCRs and their ligands with the large signalling
networks related to TKRs [3]. Trans-phosphorylation has been implicated in
physiological and pathophysiological processes and has been observed for
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several receptor pairings in many cell types [4,5]. As involved
molecular mechanisms and signalling effectors can vary
with receptor couple [6], the GPCR/TKR interactions may
be considered attractive new targets for drug discovery
programmes.

Stimulation of several GPCR induces a low increase of
NADPH oxidase (Nox)-dependent reactive oxygen species
(ROS) concentration, that act as signalling molecules in sev-
eral cellular processes, such as phosphorylation of kinases,
activation of transcription factors and TKR transactivation
[7–14]. The classical NADPH oxidase of phagocytes consists
of five subunits: p67phox, p47phox, p40phox, p22phox and the
catalytic subunit gp91phox. Members of this family, identified
in several nonphagocytic cells, are homologues of the cataly-
tic subunit gp91phox and are named Nox1, Nox3, Nox4,
Nox5, Duox1 and Duox2. Nox2 is also known as gp91phox.
Nox activity is controlled by p47phox and p67phox regulatory
subunits, their homologues NOXO1 and NOXA1, or
DUOXA1 and 2. Moreover, the GTPase Rac modulates the
activity of several of these enzymes [15]. Nox1, Nox2, Nox3
and Nox5 are transmembrane proteins that transport elec-
trons across biological membranes to reduce oxygen to
superoxide. Nox4, Duox1 and Duox2 do not produce super-
oxide, but hydrogen peroxide [7–14]. Members of the Nox
family have been identified as the major sources of ROS gen-
eration in cancer cells [16] and, among these, Nox2 is strongly
expressed in several epithelial cancer cells, such as lung [17],
ovarian [18], breast [19], cervical [20] and prostate cells [21].
ROS that are generated by Nox enzymes in non-phagocytic
tissues are well documented second messengers in a variety
of signalling pathways in several cell types [22]. Molecular
mechanisms through which ROS modulate cell signalling
depend on their capacity to oxidize cysteine residues within
proteins, which can function as redox sensors and transdu-
cers of ROS-primed signalling [23]. Therefore, cells can
sense ROS to variable levels through the reversible oxida-
tion of cysteine residues allowing a gradual response to
intracellular ROS concentrations.

The human formyl-peptide receptor (FPR) family is clus-
tered on chromosome 19 and encodes three Class A GPCRs
involved in neutrophil chemotaxis and in innate immune
responses, through recognition of pathogen-associated mol-
ecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs) [24]. FPR2, a member of this family, is
highly expressed in myeloid cells and in cells of diverse
origin [25], as well as on the nuclear membrane of CaLu-6
and AGS cells [26]. FPR2 is activated by an array of ligands
including proteins, peptides and lipids. Most of them, besides
inducing chemotaxis, also stimulate pro-inflammatory pro-
cesses, pro-resolving or anti-inflammatory pathways [27],
depending on the nature of the agonist and on the different
receptor domains they used [28,29]. The switch between
pro-inflammatory and anti-inflammatory responses is due
to conformational changes of FPR2 upon ligand binding
[29]. The peptide WKYMVm, annexin A1 (ANXA1) and
lipoxin A4 (LXA4) are well-known anti-inflammatory FPR2
ligands [30–32]. On the other hand, serum-amyloid alpha
(SAA) and β-amyloid act as pro-inflammatory agonists on
FPR2 [33]. FPR2 contributes to detrimental effects in cancer
progression. In fact, invasion of ovarian cancer cells requires
FPR2 activation by the cathelicidin LL-37 [34], the Hp(2-20)
peptide, that efficiently binds FPR2, promotes the migration
and proliferation of gastric cancer cells [35] and ANXA1
stimulates the development and progression of astrocytoma
[36]. However, the role of FPR2 in cancer progression is still
controversial and seems related to the nature of its ligands
and of cell type, as demonstrated by the observation that
LXA4 attenuates pancreatic cell invasion [37].

FPR2 stimulation triggers the activation of several protein
kinases and, in turn, the phosphorylation of several cytosolic
signalling proteins [13,25,38] involved in the modulation of
proliferation, differentiation, migration, communication, and
other critical intracellular functions [39]. FPR2-dependent
phosphorylated molecules include also non-signalling pro-
teins, such as the cytosolic subunits p47phox and p67phox of
NADPH oxidase, whose phosphorylation is required for the
full activity of the NADPH oxidase complex [12,14].

Protein kinases mediate a network of highly complex
signals. Many proteins, including TKRs [3], are phosphory-
lated and the main mechanism of regulation is represented
by the switch ‘phosphorylation/dephosphorylation’, in
which protein phosphatases (PTPases), through the reversible
oxidative inhibition of reactive cysteine residues, play a
crucial role [40–42]. We previously demonstrated that
FPR1 and FPR2 stimulation induces ROS-dependent TKR
transactivation, as well as the phosphorylation and
nuclear translocation of regulatory transcriptional factors
[9–11,14,43]. Protein kinases and PTPases act synergistically
and their impaired regulation or activation is responsible of
several human diseases. Multiple phospho-sites, identified
in both protein kinases and phosphatases, contribute decisi-
vely to expand the repertory of molecular mechanisms of
regulation or for fine-tuning of switch properties [44].

By using a phospho-proteomic approach we previously
demonstrated that FPR2 stimulation induces redox-regulated
phosphorylation of numerous proteins [38,44]. We classified
FPR2-dependent phosphorylated proteins according to their
known or putative functions and this analysis revealed that
most of them participated in metabolic processes. About
33% of the proteins of this group is involved in biosynthetic
processes and the remaining 67% of proteins is involved in
cellular metabolic processes, including primary metabolism
[38]. We also demonstrated that the binding of specific
FPR2 agonists enhances the non-oxidative phase of pentose
phosphate pathway (PPP), improves the expression of the
ASCT2 glutamine transporter and induces the de novo
synthesis of pyrimidine nucleotides [45].

Herein, we apply a metabolomic approach to analyze the
metabolic pathways activated in human CaLu-6 epithelial
carcinoma cell line, following stimulation of FPR2 with the
WKYMVm peptide or ANXA1. Obtained results prove that
the agonist-mediated stimulation of the receptor triggers
intracellular redox signalling pathways involved in glucose
uptake and aerobic metabolism of glucose typical of the
Warburg effect.
2. Material and methods
2.1. Cell culture and reagents
CaLu-6, A549 (ATTC, Manassas, VA, USA) and p22phox
Crispr/Cas9 CaLu-6 cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) supplied with 10% fetal bovine
serum (FBS) (Invitrogen Corp., Carlsbad, CA, USA) at 37°C
and 5% CO2. Cells were grown to 70% confluence, serum
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starved for 24 h and stimulated or not with 10 µMWKYMVm
(Primm, Milan, Italy) or 10 nM ANXA1 for various times, as
indicated in the figures. CaLu-6 cells were also preincubated
with WRWWWW (WRW4) (Primm, Milan, Italy) for 15 min
at a final concentration of 10 µM, or with apocynin (Sigma
Chemical, St Louis, MO, USA) for 2 h at a final concentration
of 5 mM, or with PP2 or with PP3 (Calbiochem, La Jolla, CA,
USA) for 45 min at the final concentration of 10 µM, or with
GSK1904529A (MedChemExpress, Monmouth Junction, NJ,
USA) for 2 h at the final concentration of 3 µM, or with
LY2874455 (MedChemExpress, Monmouth Junction, NJ,
USA) for 2 h at the final concentration of 5 µM, or with
AG1478 (Calbiochem, La Jolla, CA, USA) for 60 min at the
final concentration of 10 µM, or with wortmannin (Calbio-
chem, La Jolla, CA, USA) for 60 min at the final
concentration of 0.5 µM, or with LY294002 (Calbiochem, La
Jolla, CA, USA) for 60 min at the final concentration of
10 µM, before stimulation with 10 µM WKYMVm or 10 nM
ANXA1.

2.2. p22phoxcrispr/Cas9 double-nickase CaLu-6 cells
p22phoxCrispr/Cas9 cells were generated by transfecting
CaLu-6 cells with Double Nickase Plasmid or with a
Double Nickase Plasmid control (Santa Cruz Biotechnology,
Irvine, CA, USA) following the manufacturer’s instructions,
as previously described [25]. Positive selection of CaLu-6-
transfected cells was performed in medium containing puro-
mycin for 5 days. Single clones were isolated, cultured
separately, and tested by western blotting to analyze
p22phox expression (data not shown). p22phox knockout
clones were collected in order to obtain p22phoxCrispr/Cas9

CaLu-6 cells.

2.3. Metabolomic analysis by liquid chromatography–
mass spectrometry

Metabolomic analysis by LC-MS was performed in growing
and in 24 h serum starved CaLu-6 cells stimulated or not
with WKYMVm in presence or absence of WRW4. Briefly,
2 × 104 cells were plated in 48-multiwell plate and the day
after were serum-starved for 24 h before the treatments. Cell
monolayers were rinsed in cold water and then lysed in
400 µl of a 1:1 prechilled MetOH:H2O solution. The samples
were vortex-mixed, kept on ice for 20 min, and centrifuged
again at 10 000 × g, at 4°C for 10 min. The collected super-
natant was dried in a SpeedVac concentrator system
(Thermo Scientific), operated at room temperature. Dried
supernatants were reconstituted with 125 µl of methanol/
acetonitrile/water (50:25:25). Extracted metabolites were ana-
lysed using an ACQUITY UPLC system online coupled to a
Synapt G2-Si QTOF-MS (Waters Corporation, Milford, MA,
USA) in positive and negative modes in the following
settings: reverse-phase ACQUITY UPLC CSH C18 (1.7 µm,
100 × 2.1 mm2) column (Waters), 0.3 ml min−1 flow rate,
mobile phases composed of acetonitrile/H2O (60 : 40) con-
taining 0.1% formic acid and 10 mM ammonium formate
(phase A), and isopropanol/acetonitrile (90 : 10) containing
0.1% formic acid and 10 mM ammonium formate (phase
B). Peak detection, metabolite identification and quantitation
were performed as previously described [46], fitting exper-
imental data with internal standard and calibration curves.
Data analysis was conducted and heatmaps were generated
with the on-line software MetaboAnalyst (https://www.
metaboanalyst.ca), as previously reported [47,48] (electronic
supplementary material, table S1).
2.4. 2-NBDG glucose uptake assay on CaLu-6 cells
CaLu-6 cells were plated (5 × 103 per well) in a black, clear
bottom, 96-well microtiter plate (Perkin Elmer, Waltham,
USA) in a final volume of 100 µl per well of culture
medium. After 24 h the culture medium was carefully
removed and replaced with 100 µl of HBSS containing
100 µM 2-deoxyglucose (2-DG), 0.4 g l−1 BSA, and 1.3 mM
CaCl2 (in the absence of any growth factors or FBS) and
were incubated with WKYMVm at the final concentration
of 10 µM for the indicated times in presence or absence of
WRW4. Plates were incubated at 37°C for 1 h. Treatments
were performed in triplicate and the results are the mean of
three independent experiments. Medium was replaced with
the same HBSS supplemented with 100 µM 2-DG and 6 µM
2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose
(2-NBDG). Plates were incubated with the fluorescent probe
for 45 min and then washed twice in PBS. Uptake of 2-
NDBG was measured in a Perkin Elmer Envision 2105 multi-
plate reader (Perkin Elmer), using the inbuilt monochromator
and the following parameters: λ excitation 471 nm, λ emission
529 nm, and monochromator cut off 360 nm. After the
measurement of 2-NDBG, cells were fixed in 3.7% paraformal-
dehyde for 30 min to be then permeabilized in 0.1% Triton X-
100 in PBS and stained with the nuclear dye DAPI (30 µM).
This second fluorescence measurement correlates with the
total number of cells in each well and was used for normaliza-
tion. DAPI fluorescence was measured using the following
parameters: λ excitation 351 nm and λ emission 450 nm. Data
analysis for glucose uptake is reported as the ratio between
intracellular 2-NDBG fluorescence and DAPI fluorescence ±
s.d.
2.5. Protein extraction and western blot
Proteins were purified from 24 h serum-starved CaLu-6 or
p22phoxCrispr/Cas9 CaLu-6 cells stimulated or not with 10 µM
WKYMVm, in the presence or absence of selective inhibitors,
as described above. Whole lysates were obtained by scraping
cells with ice cold RIPA buffer (50 mM Tris–HCl, pH 7.4,
150 mM NaCl, 1% NP-40, 1 mM EDTA, 0.25% sodium deoxy-
cholate, 1 mM NaF, 10 µM Na3VO4, 1 mM phenyl-methyl-
sulfonyl-fluoride, 10 µg ml−1 aprotinin, 10 µg ml−1 pepstatin,
10 µg ml−1 leupeptin), as previously described [49].

Membrane lysates were purified as mentioned above [26].
Cells were lysed in hypotonic buffer containing 10 mM Tris–
HCl, 1 mM CaCl2, 150 mMNaCl, 1 mM phenyl-methyl-sulfo-
nyl-fluoride, and a protease inhibitor cocktail (10 µg ml−1

aprotinin, 10 µg ml−1 pepstatin, and 10 µg ml−1 leupeptin)
(Buffer II) and centrifuged at 400 × g for 10 min at 4°C, in
order to obtain a cytosolic and a membrane fraction. Mem-
brane fraction was incubated overnight at 4°C in constant
agitation with a buffer containing 125 mM Tris–HCl, 1 mM
phenyl-methyl-sulfonyl-fluoride, 1% Triton X100, and the
protease inhibitor cocktail (Buffer II).

Bio-Rad protein assay was used to determine protein con-
centrations (BioRAD, Hercules, CA, USA). Western blot

https://www.metaboanalyst.ca
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analysis on whole or membrane lysates was performed as
previously described [50].

Anti-tubulin (SC-8035), anti-GAPDH (SC-47724), anti
Na/K ATPase (SC-48345), anti-GLUT4 (SC-53566) and anti-
phospho-c-Myc (S62) (SC-8000-R) antibodies were purchased
from Santa Cruz Biotechnology (Irvine, CA, USA). Anti-
phospho-IGF-IR (Y1131/1146), anti-phospho-PFKFB2 (S483),
anti-phospho-FRS2 (Y436), anti-phospho-PDH (S293), anti-
phospho-LDH (Y10), and anti-phospho-c-Src (Y416) were
from Cell Signalling Technology (Denvers, MA, USA). Anti-
HIF1α (NB100–105) was from Novus Biologicals (Centennial,
CO, USA). Goat-anti-mouse (bs-0296G-HRP) and goat-anti-
rabbit (bs-0295G-HRP) were from Bioss Antibodies
(Woburn, MA, USA). Proteins were visualized by enhanced
chemiluminescence reagent (Amersham Biosciences, Little
Chalfont, Buckinghamshire, UK) and were quantified using
densitometry (Chemidoc, Bio-Rad). Each experiment with
relative densitometric quantification was separately repeated
at least three times.

2.6. Lactate assay
Lactate concentration was measured in cell culture medium
of CaLu-6 cells by Lactate-Glo Assay (Promega) following
the manufacturer’s instructions. Briefly, 1.5 × 104 cells were
seeded in 96-well plate. The day after, cells were serum-
starved for 24 h, preincubated or not with 10 µM WRW4
for 15 min and then stimulated or not with 10 µM
WKYMVm for 24 h. Five microlitres of medium was removed
for each experimental point and diluted in 95 μl of PBS. For
each experimental point, 50 µl of diluted medium was trans-
ferred to a 96-well assay plate and 50 µl of lactate detection
reagent was added. Assay plate was shaken for 1 min to
mix the reagents and incubated for 60 min at room tempera-
ture before recording luminescence. DMEM was used as a
negative control. Luminescence was read with a Synergy
H1 microplate reader (BioteK, VT, USA). Results are the
mean of three independent experiments and, in each of
these, every experimental point was analysed in triplicate.

2.7. Seahorse XF analysis
Extracellular acidification rate (ECAR) was measured by
using the Seahorse XF Glycolytic Rate Assay Kit (Agilent,
CA, USA). Calu-6 cells, cultured as described above, were
seeded in the XF-24 cell culture plates at 20 000
cells per well, allowed to attach overnight and serum-starved
for 24 h. Cells were incubated with 10 µMWKYMVm for 24 h
followed by Seahorse assay. Then, medium was changed to
Seahorse XF DMEMmedium pH 7.4 (Agilent), supplemented
with 25mM glucose, 4mM L-glutamine and 2mM pyruvate,
and allowed to equilibrate for 1 h in a CO2-free incubator at
37 °C. Real time measurement of ECAR was performed
using an XF-24 Analyzer (Agilent).

2.8. Statistical analysis
Statistical analyses were evaluated by unpaired t-test to com-
pare the mean of two independent groups of experiments or
by one-way analysis of variance (ANOVA). GraphPad Prism
7 (GraphPad Software Inc., San Diego, CA, USA) was used to
compare more than two experiments. All data reported are
representative of at least three or more independent
experiments and are expressed as means ± standard error
mean (SEM). A p value of less than 0.05 was considered to
be statistically significant.
3. Results
3.1. FPR2 stimulation induces glucose uptake and

increases concentration of metabolites involved in
glucose metabolism

We started profiling the metabolic response of CaLu-6 cells
upon stimulation with WKYMVm. Compared to untreated
cells, we observed an increased concentration of metabolites
involved in glucose metabolism, such as glucose 6-phosphate,
fructose 1,6-bis-phosphate (F1,6BP), glyceraldheide 3-phos-
phate (GA3P) and lactate (figure 1a). This increase was
prevented by the preincubation with the FPR2 antagonist
WRW4 (figure 1a), suggesting that FPR2 stimulation activated
glucose oxidation via glycolysis. In this metabolic pathway,
glucose is catabolized to pyruvate with production of 2 mol-
ecules of ATP and reduction of 2 mol of NAD+ to NADH
per mole of glucose. Pyruvate, in aerobic conditions, is trans-
ported into mitochondria, where pyruvate dehydrogenase
complex (PDC) catalyses its oxidative decarboxylation into
acetyl-coenzyme A (CoA). This can feed the tricarboxylic
acid (TCA) cycle and, in turn, the mitochondrial electron trans-
port chain to produce energy. Pyruvate can be also reduced to
lactate by a reaction catalysed by lactate dehydrogenase
(LDH), and in our metabolomic analysis we interestingly
observed that level of lactate increased in FPR2-stimulated
cells (figure 1a). In cancer cells, this reaction defines the aerobic
utilization of glucose typical of the Warburg effect [51].

Therefore, we evaluated the ability of the FPR2 agonist to
stimulate glucose uptake in CaLu-6 cells. Treatment with
10 µM WKYMVm significantly increased glucose consump-
tion in a time-dependent manner, when compared to
control cells (figure 1b); this effect was prevented by pre-incu-
bation with WRW4, before FPR2 stimulation (figure 1c). This
result strongly suggests that WKYMVm-induced glucose
uptake occurs through FPR2 activation. Enhanced glucose
utilization is a known hallmark of cancer cells, which need
glucose for energy production. Glucose uptake is mediated
by members of transmembrane glucose transporter family,
which include facilitative glucose transporters (GLUTs),
sodium-glucose co-transporters (SGLTs), and transporters of
the SWEET family, largely represented in plants [52]. The
GLUT family includes 14 known transporters which are
divided into three classes according to their structure.
GLUT1 is upregulated in cancer by Src, Ras, Myc and Akt
[53–56], and it is repressed by the tumor suppressor p53
[57]. GLUT4 is the insulin-regulated member of this family
[58,59] and it is expressed in several cancer cells [60–62].

We analysed incorporation of GLUT1 and GLUT4 onto
cell surface and observed that WKYMVm stimulation for
different time spans induces GLUT4, but not GLUT1 (data
not shown), membrane localization (figure 1d ), which was
prevented by WRW4 (figure 1e). In several experimental sys-
tems GLUT4 transport to the plasma membrane is regulated
by the insulin-stimulated phospatidylinositol 3-kinase
(PI3K)/Akt signalling pathway [63].
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exposed to 100 µM 2-NDBG and incubated with WKYMVm at final concentration of 10 µM for the indicated times, in the presence or absence of WRW4. Uptake of
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3.2. FPR2 signalling induces Nox2-dependent IGF-IRβ
and/or IRβ transactivation

Intracellular signalling cascades triggered by FPR2 include
the activation of several protein kinases, TKRs and PTPases
[3,11,14,25,38,43,64]. As a result of FPR2-mediated TKR
transactivation, cytosolic phospho-tyrosine residues of TKRs
provide docking sites for recruitment and triggering of the
STAT3, PLC-γ1/PKCα and PI3K/Akt pathways in different
cell lines [11,14].

Since GLUT4 is the insulin-regulated member of glucose
transporter family, we analysed the ability of FPR2 to transac-
tivate insulin-like growth factor-I receptor β (IGF-IRβ) and/or
insulin receptor β (IRβ). Three tyrosine residues within the
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Figure 2. NADPH oxidase-dependent ROS generation modulates FPR2-mediated IGF-IR trans-phosphorylation and GLUT4 membrane translocation. (a–d ) FPR2-
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kinase domain (Y1131, Y1135 and Y1136) are the major autop-
hosphorylation sites of IGF-IRβ [65], which are necessary for
kinase activation [66]. IRβ shares significant structural and
functional similarity with IGF-IRβ, including the presence
of an equivalent tyrosine cluster (Y1146, Y1150, Y1151). We
used a monoclonal phospho-antibody able to detect both
phosphorylated IGF-IRβ and/or IRβ and observed that
FPR2 stimulation induces time-dependent IGF-IRβ and/or
IRβ transactivation (figure 2a). Pre-treatment with WRW4,
before WKYMVm stimulation, prevents IGF-IRβ/IRβ
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tyrosine phosphorylation (figure 2b), thus indicating that it
depends on FPR2 activation.

In CaLu-6 cells FPR2 stimulation triggers Nox2 activation
[14,25,38] and in several experimental systems the molecular
mechanisms responsible for FPR2-dependent TKR trans-
phosphorylation require Nox2 activity [11,14]. Therefore, we
next preincubated CaLu-6 cells with apocynin, which pre-
vents both p47phox translocation and its interaction with
p22phox [67,68], before FPR2 stimulation and we observed
that the pretreatment prevents IGF-IRβ/IRβ transactivation
(figure 2c). By CRISPR/Cas9-based genome editing, we
obtained a Calu-6 cell line expressing a non-functional form
of p22phox (p22phoxCrispr/Cas9) [25]. Significantly, stimulation
of these cells with WKYMVm failed to induce IGF-IRβ/IRβ
phosphorylation (figure 2d ), showing further evidences
that ROS are signalling intermediates in TKR activation
[69–72]. Since FPR2-mediated IGF-IRβ/IRβ transactivation
depends on Nox2 activity (figure 2c,d) we investigated
the role of Nox2 in GLUT4 membrane translocation.
We preincubated Calu-6 cells with the Nox-specific inhibitor
apocynin, before WKYMVm stimulation (figure 2e) and
we incubated p22phoxCrispr/Cas9 cells with the FPR2 agonist
(figure 2f ). The results show that blockade of Nox2
function prevents FPR2-induced GLUT4 translocation,
suggesting that both FPR2-dependent glucose uptake and
insulin receptor trans-phosphorylation are modulated by
ROS generation.
3.3. FPR2 signalling induces glucose oxidation in the
glycolytic pathway

Cancer cells increase glucose uptake and metabolism via
glycolysis to meet the bioenergetic demands of rapid cell div-
ision [73]. Glycolysis is regulated at several steps via multiple
mechanisms but the critical control point is the irreversible
reaction catalysed by the 6-phosphofructo-1-kinase (PFK1)
enzyme that converts fructose 6-phosphate (F6P) to F1,6BP.
In our metabolomic analysis we observed an increase of
F1,6BP in FPR2-stimulated cells (figure 1a). PFK1 is an allo-
steric enzyme regulated by fructose-2,6-bisphosphate
(F2,6BP), the key activator of glycolysis, and by a variety of
other metabolites. Intracellular F2,6BP levels are regulated
by the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase (PFKFB2) enzyme that shows both kinase
activity, which converts F6P to F2,6BP, and phosphatase
activity, which catalyses the remotion of a phosphate in
F2,6BP to generate F6P [74]. PFKFB exists as four isoenzymes
(PFKFB1–4), the products of separate genes each with a dis-
tinct activity [74–76]. PFKFB2 is mainly expressed in lung,
brain and heart [76,77], and its regulation by phosphorylation
leads to an increase in F2,6BP concentration and thus to an
enhanced glycolysis [78]. In human, the two main activating
phosphorylation sites identified in PFKFB2 are Ser466 and
Ser483 residues [78].

We analysed FPR2-induced PFKFB2 phosphorylation by
using an anti-phospho specific antibody and observed
that either WKYMVm or ANXA1 trigger time-dependent
PFKFB2 Ser483 phosphorylation (figure 3a,c), which was com-
pletely prevented by preincubation with WRW4 (figure 3b,d ).
Notably, the extent of PFKBP2 Ser483 phosphorylation
appears to be sustained for longer times in cells stimulated
with WKYMVm compared to ANXA1. Probably, these
differences could be associated with the different nature of
the agonists and thier different binding site in FPR2.

Since Ser483 residue of PFKFB2 is a target of Akt [78,79],
we preincubated cells with wortmannin or LY294002 before
WKYMVm stimulation and observed that these treatments
prevented FPR2-induced PFKFB2 activation (figure 3e).

We analysed the role of other cell surface receptors,
besides FPR2, involved on the activation of PI3K/Akt cas-
cade and, in turn, in PFKFB2 Ser483 phosphorylation. To
this aim we preincubated cells with GSK1904529A, that
blocks IGF-IR autophosphorylation and downstream signal-
ling [80], or LY2874455, a potent selective pan-FGFR
inhibitor [81], or AG1478, a selective EGFR inhibitor [82],
before WKYMVm stimulation. Western blot analysis
showed that only FGFR inhibition prevents FPR2-induced
PFKFB2 Ser483 phosphorylation (figure 3f ), thus suggesting
a cross-talk between FPR2 and FGFR in these cells. FGFR1–
4 belong to the FGFR family of TKRs [83,84]. Ligand binding
to FGFRs results in phosphorylation at Tyr196, Tyr306, Tyr349,
Tyr392 and Tyr436 residues of the adaptor/scaffold phospho-
protein FGF receptor substrate 2 (FRS2) [85,86] and
subsequent activation of PI3K/Akt pathway [87]. In immu-
noblot experiments we observed that WKYMVm
stimulation induced a time-dependent phosphorylation of
FRS2 at Tyr436 residue (figure 3g) which was prevented by
the FPR2 antagonist (figure 3h).

These results demonstrate that FPR2 signalling directs
cells towards the glycolytic pathway by promoting kinase
activity of the bifunctional enzyme PFKFB2 through FGFR/
FRS2- and Akt-dependent phosphorylation.
3.4. FPR2 signalling prevents the entry of pyruvate
in the tricarboxylic acid cycle

PDC is at the centre of aerobic metabolism of carbohydrates.
It converts pyruvate into acetyl-CoA and thereby modulates
the entry of glucose-derived carbons into the TCA cycle,
thus regulating the flow of energy in mammalian cells
[88,89]. PDC is composed of three catalytic enzymes and of
their respective regulatory proteins [90]. PDC activity is
under the control of pyruvate dehydrogenase kinase
(PDHK) and pyruvate dehydrogenase phosphatase (PDP),
through a reversible phosphorylation–dephosphorylation
cycle [91,92]. Pyruvate dehydrogenase is a heterotetrameric
enzyme composed of two alpha (PDHA1) and two beta
(PDHB1) subunits. PDHA1 is phosphorylated by PDHK1-4
and dephosphorylated by PDP1 and PDP2. The phosphoryl-
ation at Ser293, Ser300 and Ser232 residues on PDHA1
decreases PDC activity and contributes to tumour metabolic
reprogramming toward glycolysis in hypoxia, by inhibiting
acetyl-CoA formation and the entry in the TCA cycle
[91,93–95]. We observed that FPR2 stimulation by
WKYMVm or ANXA1 induced a comparable PDHA1 phos-
phorylation kinetics at Ser293 residue (figure 4a,c) that was
prevented by preincubation with WRW4 (figure 4b,d ). Simi-
lar results were obtained in A549 lung cancer cell line
expressing FPR2 [96] (electronic supplementary material,
figure S1).

The PI3K signalling pathway regulates glucose metab-
olism [97,98] and induces, among other things, Thr346

phosphorylation and activation of PDHK1 [99]. Active
PDHK1 phosphorylates PDHA1 that, in turn, phosphorylates
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Figure 3. FPR2 signalling triggers FGFR1- and Akt-dependent glucose oxidation. (a–d ) FPR2 stimulation induces PFKFB2 activation. (a) CaLu-6 cells were serum-
deprived for 24 h and stimulated for 5, 10, 15, 30 or 60 min with WKYMVm or (c) with ANXA1. (b,d ) Cells were preincubated with WRW4 before stimulation. (e–h)
PFKFB2 phosphorylation depends on Akt activation and FGFR1 transactivation. (e) Cells were stimulated with 10 µM WKYMVm, or preincubated with wortmannin or
LY294002, or ( f ) with GSK1904529A or LY2874455 or AG1478, before stimulation. (g,h) FPR2 signalling induces the activation of the scaffold phosphoprotein FRS2.
(g) Serum-starved CaLu-6 cells were stimulated for increased times with WKYMVm as indicated, or (h) incubated with the FPR2 antagonist before stimulation. Fifty
micrograms of whole lysates was resolved on 10% SDS-PAGE and immunoblotted with (a–f ) an anti-pPFKFB2(Ser483) antibody (α-pPFKFB2(Ser483)), or with (g,h)
an anti-pFSR2(Tyr436) antibody (α-pFSR2(Tyr436)). An anti-GAPDH antibody (α-GAPDH) was used as a control for protein loading. Data are representative of four
independent experiments. *p < 0.05 compared to unstimulated cells. §p < 0.05 compared to WKYMVm-stimulated cells.
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Figure 4. FPR2 signalling prevents pyruvate dehydrogenase activity. (a,c) FPR2 stimulation induces time-dependent PDH phosphorylation. Serum-deprived CaLu-6
cells were (a) stimulated with WKYMVm or (c) with ANXA1 for different times. (b,d ) Cells were preincubated with the FPR2 antagonist before stimulation. (e) PDH
phosphorylation is prevented by PI3K inhibitors. Cells were preincubated with the indicated concentrations of wortmannin or LY294002 before WKYMVm stimulation.
( f ) FPR2-mediated IGF-IR transactivation is required for PDH phosphorylation. Cells were exposed to inhibitors of IGF-IR (GSK1904529A), or FGFR (LY2874455), or
EGFR (AG1478) before FPR stimulation. (g,h) PDH phosphorylation depends on NADPH oxidase activity. (g) CaLu-6 cells were preincubated with the indicated
concentration of apocynin before stimulation. (h) CaLu-6-controlCrispr/Cas9 cells (CTR) and p22phoxCrispr/Cas9 ( p22phoxCrispr) cells were serum-starved for 24 h and
then stimulated with WKYMVm. Fifty micrograms of whole lysates was resolved on 10% SDS-PAGE and hybridized with an anti-pPDH(Ser293) antibody (α-
pPDH(Ser293)). An anti-GAPDH antibody (α-GAPDH) was used as a control for protein loading. Data are representative of three independent experiments.
*p < 0.05 compared to unstimulated cells. §p < 0.05 compared to WKYMVm-stimulated cells.
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and inactivates PDC. We preincubated cells with wortmannin
or LY294002, before WKYMVm stimulation, and observed
that this treatment prevents FPR2-induced PDHA1 phos-
phorylation at Ser293 residue (figure 4e). Binding of insulin,
growth factors, and cytokines to cell surface receptors also
triggers PI3K activation. We preincubated cells with specific
inhibitors of IGF-IRβ/IRβ, FGFR and EGFR and in western
blot analysis we observed that only GSK1904529A prevented
FPR2-induced PDHA1 Ser293 phosphorylation (figure 4f ),
strongly suggesting that it depended on the activation of
insulin receptors.

FPRs and activated growth factor receptors increase intra-
cellular ROS generation by activating Nox enzymes or by
increasing Nox expression [100,101]. Notably, ROS also modu-
lates Akt activation and MAPK signalling pathways, as well as
the activity of several redox-sensitive transcription factors
[102,103]. We analysed the role of Nox in PDHA1 regulation
and observed that FPR2-induced PDHA1 Ser293 phosphoryl-
ation was prevented upon preincubation of cells with the
Nox-specific inhibitor apocynin (figure 4g) and in the p22phox
Crispr/Cas9 cells (figure 4h) stimulated with WKYMVm.

These results prove that FPR2 signalling induces IGF-
IRβ/IRβ-, PI3K/Akt- and Nox-dependent inhibition of PDC
and, in turn, promotes the aerobic glycolysis pathway for
energy production.
3.5. WKYMVm stimulation actives lactate
dehydrogenase A and enhances lactate production

Lactate dehydrogenase A (LDH-A) catalyses lactate formation
frompyruvate and ensures the regeneration ofNAD+,which is
needed as an electron acceptor in glycolysis [104]. In several
human cancer cells LDH-A is activated by phosphorylation
at Tyr10 residue, which correlates with activation of multiple
oncogenic tyrosine kinases commonly increased in cancer
[105]. By western blot experiments we showed that FPR2 sig-
nalling triggered by WKYMVm or ANXA1 induced time-
dependent Tyr10 LDH-A phosphorylation (figure 5a,c), that
was prevented by the FPR2 antagonist (figure 5b,d). Similar
results were obtained in A549 lung cancer cell line (electronic
supplementary material, figure S2).

The oncogenic receptor tyrosine kinase FGFR1 directly
phosphorylatesLDH-AatTyr10 residue, thuspromoting the for-
mation of an active, tetrameric LDH-A complex [105,106]. Since
we proved that FPR2 stimulation induces FGFR transactivation
(figure 3d), we analysed the role of this oncogenic receptor in
LDH-A activation and, by immunoblot experiments, we
observed that WKYMVm-induced LDH-A phosphorylation at
Tyr10 residue was prevented by preincubation with the pan-
FGFR inhibitor LY2874455 (figure 5e). However, other onco-
genic tyrosine kinases, such as Src, phosphorylate LDH-A at
Tyr10 residue [107]. Therefore, we preincubated cells with PP2,
an ATP-competitive inhibitor of the Src protein tyrosine kinases
family, orwithPP3, a negative control for theSrc kinase inhibitor
PP2, andwe observed that Src inhibition prevents LDH-Aphos-
phorylation at Tyr10 residue (figure 5f ). Src can be recruited to
active FGFR1 through the adaptor protein FRS2 at the plasma
membrane [108,109]. Since Src activity is regulated by phos-
phorylation on Tyr416 residue in the kinase domain, we
analysed Src phosphorylation levels in WKYMVm-stimulated
cells preincubated or not with the pan-FGFR inhibitor. By
western blot analysis with a phospho-specific antibody we
observed that LY2874455 prevents Tyr416 phosphorylation of
Src (figure 5g). Furthermore, in line with the FPR2-dependent
LDH-A activation, we found that this correlates with an FPR2-
dependent increased production of lactate (figure 5h). Taken
together these results show that in CaLu-6 cells FPR2 signalling
triggers FGFR1- and Src-dependent LDH-A activation, thereby
promoting lactate production in CaLu-6 cells.

3.6. FPR2 stimulation induces HIF-1 and c-Myc
activation

LDH-A expression is regulated by c-Myc and hypoxia indu-
cible factor-1 (HIF-1) [110]. These two transcriptional factors
cooperate to induce a transcriptional programme for hypoxic
adaptation [111], as well as to improve the metabolic needs of
cancer cells, by increasing glucose absorption and its conver-
sion to lactate. Hypoxic signalling pathways are implicated in
a plethora of physiological processes and they are centrally
involved in hyperproliferative disease processes [112]. The
central axis of hypoxic signalling is the activation of HIF-1,
which consists of an oxygen-regulated HIF-1α subunit and
a constitutively expressed HIF-1β subunit. Under normoxic
conditions, HIF-1α is hydroxylated on two proline residues
by prolyl hydroxylases, leading to its rapid proteasomal
degradation. By contrast, hypoxic conditions inhibit HIF-1α
degradation leading to its stabilization and nuclear transloca-
tion [113]. In the nucleus, HIF-1α dimerizes with HIF-1β and
binds to cis-acting hypoxia response elements (HREs) in sev-
eral target genes, including those involved in glucose uptake,
glycolytic enzyme synthesis, lactate generation and secretion
[114]. Therefore, we first evaluated the ability of FPR2 to
induce HIF-1α stabilization and, in immunoblot experiments
performed on whole protein extracts of CaLu-6 cells, we
observed a time-dependent accumulation of this protein
(figure 6a), which was prevented by WRW4 (figure 6b).
Nox-dependent ROS generation is involved in hypoxic sig-
nalling in primary lung cells and, in turn, in HIF-1α
stabilization [112]. In agreement, we observed that Nox inhi-
bition by apocynin (figure 6c) or by CRISPR/Cas9-based
p22phox editing (figure 6d ) prevents HIF-1α accumulation in
FPR2-stimulated CaLu-6 cells.

FPR2 localizes also in nuclear fractions of CaLu-6 and
AGS cells and nuclear FPR2 activation prompts a decreased
Gαi-FPR2 association and triggers ERKs, c-Jun and c-Myc
activation [26]. In response to a growth-stimulatory signal,
c-Myc protein is phosphorylated at Ser62 residue, which
results in its stabilization [115]. Interestingly, by western
blot analysis performed in WKYMVm-stimulated CaLu-6
cells with an anti-Myc(pSer62) antibody, we detected a
time-dependent increase of Myc phosphorylation
(figure 6e), which was prevented by FPR2 antagonist
pretreatment (figure 6f ).

These results demonstrate that FPR2 signalling controls
HIF-1 and c-Myc activation, which are involved in the tran-
scriptional regulation of genes involved in the metabolism
of glucose.

3.7. FPR2 stimulation improves energetic metabolism of
CaLu-6 cells

We further evaluated the effect of FPR2 stimulation on glu-
cose metabolism in lung cancer CaLu-6 cells by using
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Figure 5. FPR2 stimulation induces LDH activity and an enhanced production of lactate. (a–d ) FPR2 stimulation induces time-dependent LDH phosphorylation.
Growth-arrested CaLu-6 cells were stimulated with (a) WKYMVm or (c) ANXA1 for 5, 10, 15, 30 or 60 min, or (b,d ) preincubated with WRW4. (e) LDH activity
depends on FPR2-dependent FGFR1 transactivation. Serum-starved cells were preincubated with the FGFR pan-inhibitor LY2874455, at the indicated concentration,
before WKYMVm stimulation. (e–g) FGFR1-recruited Src phosphorylates LDH. ( f ) Cells were preincubated with PP2 or PP3, or (e,g) with LY2874455, at the indicated
concentrations before stimulation. Fifty micrograms of whole lysates was resolved on 10% SDS-PAGE and incubated with (a–f ) an anti-pLDH(Tyr10) antibody (α-
pLDH(Tyr10)), or with (g) anti-pSrc(Tyr416) (α-pSrc(Tyr416)). An anti-GAPDH antibody (α-GAPDH) was used as a control for protein loading. Data are representative
of five independent experiments. (h) Representive bar graphs of lactate concentration measured in cell culture media. CaLu-6 cells were serum-starved for 24 h,
preincubated with WRW4 and then stimulated with WKYMVm. The media from cell cultures were collected and lactate concentration was measured by using a
commercial kit following manufacturer’s instructions. Results are the mean of three independent experiments and in each separated experiment every point was
analysed in triplicate. *p < 0.05 compared to unstimulated cells. §p < 0.05 compared to WKYMVm-stimulated cells.
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Figure 6. FPR2 activation by WKYMVm induces Nox-dependent HIF-1α stabilization and c-Myc phosphorylation. (a,b) FPR2 signalling triggers time-dependent
accumulation of HIF-1α. (a) Serum-starved CaLu-6 cells were stimulated with WKYMVm for the indicated times, or (b) preincubated with WRW4 before stimulation.
(c,d ) FPR2-dependent HIF-1α stabilization requires Nox2 activity. (c) Cells were preincubated with apocynin, before exposure to WKYMVm. (d ) CaLu-6-controlCrispr/Cas9

cells (CTR) and p22phoxCrispr/Cas9 ( p22phoxCrispr) cells were serum-starved for 24 h and then stimulated for 12 h with WKYMVm. (e,f ) FPR2 signalling triggers time-
dependent c-Myc phosphorylation. (e) Cells were incubated for increased times with the FPR2 agonist, as indicated, or ( f ) exposed to WRW4 before stimulation. Fifty
micrograms of whole lysates was electrophoresed on 10% SDS-PAGE and incubated with (a–d ) an anti-HIF1α antibody (α-HIF1α), or (e,f ) with an anti-p-c-Myc(Ser62)
(α-p-c-Myc(Ser62)). An anti-GAPDH antibody (α-GAPDH) was used as a control for protein loading. Western blot data are representative of five independent experiments.
*p < 0.05 compared to unstimulated cells. §p < 0.05 compared to WKYMVm-stimulated cells.
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Seahorse XF glycolytic rate assay. This assay provides accu-
rate measurements of glycolytic rates for basal conditions
and compensatory glycolysis following mitochondrial inhi-
bition. The calculated rates account for contribution of CO2

to extracellular acidification derived from mitochondrial/
TCA cycle activity and are directly comparable to lactate
accumulation data. Firstly, we measured the real time
extracellular acidification rate (ECAR) in serum-starved cells
stimulated or not with WKYMVm for 24 h. Kinetic data
showed a significant increase of the ECAR in FPR2-stimu-
lated cells (figure 7a). In addition, the proton efflux rate
(PER) value provides a more accurate measurement of extra-
cellular acidification (pmol H+min−1), by calculating the total
proton efflux derived from glycolytic and mitochondrial
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Figure 7. Seahorse analysis of WKYMVm-stimulated CaLu-6 cells. Extracellular acidification rate (ECAR) (a) and proton efflux rate (PER) (b) were measured in Calu-6
cells treated for 24 h with 10 µM WKYMVm (red line) or vehicle (blue line). Basal ECAR and PER measurements were followed by sequential treatment (dotted
vertical lines) with rotenone plus antimycin A (Rot/AA) and 2-deoxyglucose (2DG). Bar graphs represent (c) basal and (d ) compensatory PER produced from gly-
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acidification. Consistent with ECAR, PER was significantly
enhanced upon WKYMVm exposure in CaLu-6 cells com-
pared to unstimulated cells (figure 7b). Furthermore,
inhibition of mitochondrial respiration by rotenone and anti-
mycin A (Rot/AA) was used to calculate the glycolytic
proton efflux rate (glycoPER), thus estimating the proton
efflux derived from glycolysis. Our results showed that
FPR2 stimulation, measured after blockade of mitochondrial
electron transport chain, significantly upregulated glycoPER
in both basal (figure 7c) and compensatory glycolysis
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(figure 7d ). In addition, WKYMVm stimulation significantly
increased mitochondrial basal respiration compared to
untreated CaLu-6 cells, as suggested by oxygen consumption
rate (OCR) measurement (figure 7e,f ). Previously we demon-
strated that FPR2 stimulation significantly improves the
expression of the glutamine transporter ASCT2, which corre-
lates with an increase of glutamine uptake [45]. Glutaminase
converts glutamine in glutamate that is transaminated in
alpha-ketoglutarate. This fuels the TCA to generate ATP
and citrate contributing to mitochondrial respiration and
thus to an increase of OCR. Notably, FPR2-stimulated cells
showed significant changes in both OCR and ECAR com-
pared to unstimulated cells, suggesting a switch towards a
more energetic phenotype (figure 7g).

Taken together, these data clearly demonstrate that FPR2
stimulation enhances energetic metabolism of Calu-6 cells.
l.13:230336
4. Discussion
By using a metabolomic approach, we have analysed meta-
bolic pathways activated in FPR2-stimulated CaLu-6 cells, a
human lung cancer cell line. Metabolic data reveal that FPR2
stimulation increases cellular concentration of metabolites
involved in glucose metabolism, such as glucose 6P, F1,6BP,
GA3P and lactate. We prove that FPR2 stimulation enhances
glucose uptake in a time-dependent manner by increasing
GLUT4 cellular membrane localization through insulin recep-
tor-dependent PI3K/Akt signalling cascade. FPR1 stimulation,
another member of the FPR family expressed in a range of tis-
sues and cell types [116], also enhances glucose uptake and
GLUT4 translocation via Akt activation [117]. Furthermore,
the FPR1 agonist formyl-methionyl-leucyl-phenilalanine
(fMLP) peptide induces GLUT1 and GLUT5 membrane
translocation in human monocytes [118] and stimulates
2-deoxyglucose uptake in macrophage in association with an
increase of GLUT3 on the membrane [119]. GLUT4 is the insu-
lin-regulated member of transmembrane glucose transporter
family and consistently we show that WKYMVm stimulation
triggers FPR2- and Nox2-dependent IGF-IRβ/IRβ trans-phos-
phorylation. GPCRs and TKRs are not to be only considered
as distinct signalling units; indeed GPCR-mediated TKR trans-
activation is a proven molecular mechanism able to increase
the number and range of cellular signalling networks. IGF-
IR is transactivated by GABAB, thrombin, metabotropic
glutamate, neurotensin and angiotensin II (AngII) type
receptors [120–124]. In this paper, we provide the first demon-
stration that FPR2 functionally transactivates IGF-IR in a
human cancer cell line.

We prove that FPR2 signalling directs cells towards the gly-
colytic pathway by promoting Akt- and FGFR-dependent
kinase activity of the bifunctional enzyme PFKFB2. Several
GPCRs form heterocomplexes with FGFRs and control the
cell fate [125–133]. Our data reveal for the first time in epithelial
cancer cells a cross talk between FPR2 and FGFR1, aswell as the
activation of the scaffold phosphoprotein FSR2, which acts as a
docking protein downstream to phosphorylated FGFR1.

Pyruvate arising from glycolysis can be converted in
acetyl-CoA by an oxidative decarboxylation catalysed by
PDH, or in lactate by an oxidoreduction reaction catalysed
by LDH. In cancer cells the production of lactate and H+

ions plays crucial roles in: (i) synthesis of NAD+ necessary
to sustain the increased rate of glycolysis; (ii) acidification
of the tumour microenvironment, thus reducing the viability
of normal cells and favouring the infiltration of neoplastic
cells [134]; and (iii) binding to specific receptors on target
cells, such as GPR81, thus activating intracellular signalling
cascades, lactate uptake, mitochondrial metabolism, angio-
genesis and tumour growth [135–137]. We demonstrate that
FPR2 signalling triggers PDHK1-mediated PDHA1 phos-
phorylation at Ser293. Therefore, by suppressing the
oxidative decarboxylation of pyruvate, phosphorylated
PDHK1 shuts off oxidative phosphorylation, maintains
tumour cell proliferation in severe hypoxia conditions, and
switches cancer metabolism towards glycolysis. We also
reveal an increase of LDH-A activity that is involved in lac-
tate production and that significantly contributes to the
Warburg effect [138,139]. Cancer cells reprogramme their
metabolism to support survival, growth and proliferation,
and they synthesize large amounts of lactate independently
of the oxygen availability. Since the oxidation of glucose to
lactate generates 2 ATPs per molecule of glucose, whereas
oxidation of pyruvate in TCA and oxidative phosphorylation
generate up to 36 ATPs, the Warburg effect has been pro-
posed as a mechanism to support the biosynthetic
requirements of cancer cells. In fact, carbon atoms derived
from the increased glucose consumption can be used for ana-
bolic processes needed to support cell proliferation, such
as de novo synthesis of nucleotides, lipids, and proteins
[140–143]. This implies that cancer cells are in greater need
of reducing equivalents in the form of NADPH, which is
necessary for reductive biosynthesis. Increased glucose
uptake allows an enhanced synthesis of NADPH in the oxi-
dative branch of PPP which also provides ribose-5P for the
synthesis of nucleotides. Accordingly, in our metabolomic
analysis we observed an increase of NADPH production
via PPP and the activation of the multifunctional enzyme
CAD that participates in the three initial speed-limiting
steps of the de novo synthesis of pyrimidine nucleotides in
mammals [45]. The regeneration of NAD+ from NADH in
the reaction catalysed by LDH represents another mechanism
that accounts for the biosynthetic function of the Warburg
effect. In this scenario NADH is consumed to regenerate
NAD+, to keep glycolysis active in cancer cells and to allow
the biosynthesis of serine from 3-phosphoglycerate. Serine
is required for many biosynthetic and signalling pathways
and provides a carbon unit into the folate-dependent biosyn-
thesis of purine nucleotides [144].

We prove that FPR2 signalling induces HIF-1 stabilization
and c-Myc activation. Interestingly, these two transcriptional
factors cooperate to regulate LDH-A expression and to
activate hexokinase 2 and PDK1, resulting in enhanced
conversion of glucose to lactate [145]. HIF-1 is also a
determinant for GLUT4-mediated glucose uptake [146].

Nox2-dependent ROS generation plays also a crucial role in
the molecular mechanisms that we herein describe. In fact, we
show that ROS cellular levels regulate (i) GLUT4 membrane
localization; (ii) FPR2-mediated IGF-IRβ/IRβ transactivation;
(iii) PDHphosphorylation; and (iv)HIF1α stabilization.Accord-
ingly, in skeletalmuscle fibres, Nox2 regulates glucose transport
capacity throughGLUT4 andAngII-mediated IGF-1R transacti-
vation [147,148]. Furthermore, some evidence suggests that ROS
inhibition prevents PDH phosphorylation [149] and that ROS
may activate PDKs [150]. Nox-derived ROS can also enhance
HIF activation [151,152]. In fact, the increase in ROS generation
observed in cells overexpressing Nox1 is associated with the
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activation of HIF-1-dependent target gene expression [153], and
Nox4 activation by thrombin increases HIF-2α protein levels
[154]. Interestingly, Nox4 is a transcriptional target of HIF-1α
[155]. However, further studies in models of lung cancer
should be performed in order to extend the knowledge on the
role of FPR2 in metabolic reprogramming.
5. Conclusion
The emerging view of metabolic regulation in cancer cells is
that signal transduction networks participate in a substantial
reorganization of metabolic activities. Since Warburg’s early
observations, much information on glucose metabolism in
cancer cells has been understood, but the integration between
signalling pathways and cellular metabolism is still unclear.
This study provides new insights into the molecular mechan-
isms by which FPR2-induced/TKR signalling and Nox2-
dependent ROS generation regulate glucose metabolism in
CaLu-6 cancer cells. FPR2 stimulation triggers intracellular sig-
nalling cascades that induce TKR transactivation, insulin-
dependent glucose uptake, the activation of regulatory glyco-
lytic enzymes, the promotion of aerobic glycolysis for energy
production, instead of mitochondrial oxidative phosphoryl-
ation, and both an enhanced LDH activity and lactate
production (figure 8). Therefore, FPR2 signalling and Nox2
regulatory subunits are promising therapeutic targets to be
explored for the treatment of human cancers.
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