TABLE II.
Dataset | Method | DSC | IOU | MAE | F-measure | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kvasir-instrument | UNet (fully) | 0.901 | 0.756 | 0.027 | 0.862 | ||||||||
UNet ++ (fully) | 0.893 | 0.778 | 0.023 | 0.875 | |||||||||
TransUNet (fully) | 0.905 | 0.855 | 0.015 | 0.922 | |||||||||
Label ratio la | 5% | 20% | 50% | 5% | 20% | 50% | 5% | 20% | 50% | 5% | 20% | 50% | |
UNet | 0.706 | 0.730 | 0.799 | 0.435 | 0.508 | 0.606 | 0.075 | 0.055 | 0.043 | 0.609 | 0.674 | 0.755 | |
UNet++ | 0.567 | 0.736 | 0.823 | 0.440 | 0.612 | 0.720 | 0.085 | 0.041 | 0.028 | 0.440 | 0.760 | 0.837 | |
TransUNet | 0.541 | 0.753 | 0.867 | 0.252 | 0.706 | 0.845 | 0.093 | 0.029 | 0.015 | 0.402 | 0.826 | 0.916 | |
Mean Teacher | 0.605 | 0.788 | 0.892 | 0.415 | 0.689 | 0.799 | 0.065 | 0.031 | 0.020 | 0.587 | 0.816 | 0.888 | |
Deep Co-training | 0.489 | 0.764 | 0.866 | 0.292 | 0.632 | 0.735 | 0.084 | 0.045 | 0.027 | 0.452 | 0.759 | 0.840 | |
Cross Pseudo | 0.709 | 0.824 | 0.894 | 0.607 | 0.643 | 0.804 | 0.051 | 0.037 | 0.020 | 0.755 | 0.783 | 0.891 | |
Duo-SegNet | 0.403 | 0.834 | 0.861 | 0.274 | 0.701 | 0.755 | 0.081 | 0.033 | 0.026 | 0.430 | 0.824 | 0.860 | |
Min-Max Similarity (ours) | 0.776 | 0.874 | 0.925 | 0.650 | 0.768 | 0.873 | 0.043 | 0.024 | 0.013 | 0.787 | 0.868 | 0.932 | |
EndoVis’ 17 | UNet (fully) | 0.894 | 0.840 | 0.027 | 0.912 | ||||||||
UNet ++ (fully) | 0.909 | 0.841 | 0.026 | 0.914 | |||||||||
TransUNet (fully) | 0.904 | 0.826 | 0.029 | 0.905 | |||||||||
Label ratio la | 5% | 20% | 50% | 5% | 20% | 50% | 5% | 20% | 50% | 5% | 20% | 50% | |
UNet | 0.823 | 0.869 | 0.885 | 0.653 | 0.772 | 0.819 | 0.057 | 0.040 | 0.029 | 0.784 | 0.872 | 0.902 | |
UNet++ | 0.825 | 0.882 | 0.890 | 0.651 | 0.743 | 0.760 | 0.058 | 0.044 | 0.041 | 0.788 | 0.853 | 0.864 | |
TransUNet | 0.837 | 0.873 | 0.882 | 0.713 | 0.775 | 0.790 | 0.047 | 0.039 | 0.035 | 0.833 | 0.875 | 0.882 | |
Mean Teacher | 0.875 | 0.901 | 0.910 | 0.797 | 0.848 | 0.849 | 0.037 | 0.028 | 0.024 | 0.885 | 0.915 | 0.920 | |
Deep Co-training | 0.848 | 0.895 | 0.895 | 0.777 | 0.845 | 0.847 | 0.038 | 0.026 | 0.026 | 0.875 | 0.913 | 0.917 | |
Cross Pseudo | 0.886 | 0.909 | 0.913 | 0.813 | 0.850 | 0.855 | 0.029 | 0.025 | 0.021 | 0.895 | 0.919 | 0.926 | |
Duo-SegNet | 0.879 | 0.906 | 0.912 | 0.806 | 0.849 | 0.864 | 0.033 | 0.025 | 0.023 | 0.893 | 0.918 | 0.927 | |
Min-Max Similarity (ours) | 0.909 | 0.931 | 0.940 | 0.861 | 0.890 | 0.899 | 0.023 | 0.018 | 0.017 | 0.925 | 0.942 | 0.947 | |
ART-NET | UNet (fully) | 0.894 | 0.752 | 0.029 | 0.859 | ||||||||
UNet ++ (fully) | 0.908 | 0.799 | 0.023 | 0.888 | |||||||||
TransUNet (fully) | 0.904 | 0.823 | 0.019 | 0.903 | |||||||||
Label ratio la | 5% | 20% | 50% | 5% | 20% | 50% | 5% | 20% | 50% | 5% | 20% | 50% | |
UNet | 0.660 | 0.713 | 0.812 | 0.521 | 0.510 | 0.679 | 0.072 | 0.062 | 0.038 | 0.685 | 0.676 | 0.809 | |
UNet++ | 0.717 | 0.761 | 0.866 | 0.590 | 0.600 | 0.743 | 0.053 | 0.051 | 0.030 | 0.742 | 0.750 | 0.852 | |
TransUNet | 0.685 | 0.764 | 0.841 | 0.628 | 0.633 | 0.733 | 0.047 | 0.043 | 0.032 | 0.773 | 0.775 | 0.846 | |
Mean Teacher | 0.747 | 0.835 | 0.889 | 0.614 | 0.726 | 0.814 | 0.051 | 0.033 | 0.021 | 0.761 | 0.841 | 0.897 | |
Deep Co-training | 0.726 | 0.820 | 0.875 | 0.629 | 0.714 | 0.811 | 0.049 | 0.033 | 0.021 | 0.772 | 0.833 | 0.895 | |
Cross Pseudo | 0.759 | 0.824 | 0.874 | 0.629 | 0.708 | 0.797 | 0.047 | 0.035 | 0.023 | 0.772 | 0.829 | 0.887 | |
Duo-SegNet | 0.738 | 0.771 | 0.833 | 0.608 | 0.664 | 0.729 | 0.048 | 0.039 | 0.032 | 0.756 | 0.798 | 0.843 | |
Min-Max Similarity (ours) | 0.784 | 0.869 | 0.917 | 0.652 | 0.758 | 0.843 | 0.045 | 0.029 | 0.017 | 0.790 | 0.863 | 0.915 | |
RoboTool | UNet (fully) | 0.786 | 0.617 | 0.088 | 0.763 | ||||||||
UNet ++ (fully) | 0.807 | 0.656 | 0.068 | 0.792 | |||||||||
TransUNet (fully) | 0.808 | 0.672 | 0.063 | 0.804 | |||||||||
Label ratio la | 5% | 20% | 50% | 5% | 20% | 50% | 5% | 20% | 50% | 5% | 20% | 50% | |
UNet | 0.516 | 0.661 | 0.730 | 0.413 | 0.505 | 0.558 | 0.133 | 0.105 | 0.093 | 0.584 | 0.671 | 0.716 | |
UNet++ | 0.500 | 0.691 | 0.734 | 0.397 | 0.527 | 0.568 | 0.152 | 0.098 | 0.087 | 0.561 | 0.690 | 0.724 | |
TransUNet | 0.516 | 0.718 | 0.732 | 0.497 | 0.549 | 0.559 | 0.123 | 0.087 | 0.090 | 0.664 | 0.709 | 0.717 | |
Mean Teacher | 0.575 | 0.742 | 0.784 | 0.443 | 0.637 | 0.679 | 0.137 | 0.074 | 0.061 | 0.614 | 0.773 | 0.809 | |
Deep Co-training | 0.519 | 0.714 | 0.752 | 0.397 | 0.593 | 0.636 | 0.143 | 0.080 | 0.068 | 0.568 | 0.744 | 0.777 | |
Cross Pseudo | 0.559 | 0.711 | 0.758 | 0.429 | 0.593 | 0.641 | 0.147 | 0.083 | 0.069 | 0.601 | 0.745 | 0.781 | |
Duo-SegNet | 0.586 | 0.701 | 0.746 | 0.488 | 0.556 | 0.647 | 0.117 | 0.086 | 0.070 | 0.656 | 0.715 | 0.786 | |
Min-Max Similarity (ours) | 0.646 | 0.781 | 0.831 | 0.544 | 0.697 | 0.750 | 0.104 | 0.058 | 0.046 | 0.705 | 0.821 | 0.857 |