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Enhanced brain structure-function tethering
in transmodal cortex revealed by high-
frequency eigenmodes

Yaqian Yang1,2, Zhiming Zheng2,3,4,5,6,7,8,9, Longzhao Liu2,3,4,5,6,7,
Hongwei Zheng6,10, Yi Zhen1,2, Yi Zheng 1,2, Xin Wang 2,3,4,5,6,7 &
Shaoting Tang 2,3,4,5,6,7,8,9

While the link between brain structure and function remains an ongoing
challenge, the prevailing hypothesis is that the structure-function relationship
may itself be gradually decoupling from unimodal to transmodal cortex.
However, this hypothesis is constrained by the underlying models which may
neglect requisite information. Here we relate structural and functional con-
nectivity derived from diffusion and functional MRI through orthogonal
eigenmodes governing frequency-specific diffusion patterns.Wefind that low-
frequency eigenmodes contribute little to functional interactions in trans-
modal cortex, resulting in divergent structure-function relationships. Con-
versely, high-frequency eigenmodes predominantly support neuronal
coactivation patterns in these areas, inducing structure-function convergence
along a unimodal-transmodal hierarchy. High-frequency information,
although weak and scattered, could enhance the structure-function tethering,
especially in transmodal association cortices. Our findings suggest that the
structure-function decoupling may not be an intrinsic property of brain
organization, but can be narrowed through multiplexed and regionally spe-
cialized spatiotemporal propagation regimes.

The structural connectome shapes and constrains signaling transmis-
sion between neuronal populations, giving rise to complex neuronal
coactivation patterns that are thought to support perception, cogni-
tion, and other mental functions1. Understanding the relationship
between structure and function is a fundamental question in
neuroscience2. With the development of network science and imaging
techniques, numerousmodels have been proposed to investigate how
the brain’s structural organization shapes its functional interaction
patterns, including statistical models, communication models, and

biophysical models3–7. A gradually emerging consensus is that func-
tional connections can be inferred by collective, high-order interac-
tions among neural elements, which transcends a simple one-to-one
mapping between structural and functional connectivity3,8. Despite
these modeling advances, the structure-function correspondence is
relatively moderate, with structural connectivity rarely accounting for
>50% of the variance in empirical functional connectivity9.

Recently, studies of regional structure-function relationships,
using varying approaches such as communication models9, statistical
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correlation10, and graph harmonic analysis11, have independently found
that the strength of structure-function coupling systematically varies
across the brain. Structure and function are tightly coupled in primary
sensorimotor areas but diverge in polysensory association areas, gra-
dually decoupling along a macroscale functional gradient from unim-
odal to transmodal cortex12. Such heterogeneous structure-function
correspondence raises the possibility that function cannot be com-
pletely predicted by structure alone, implying that the observed
structure-function decouplingmight be a natural consequence of brain
hierarchical microscale organization, including cytoarchitecture13,
intracorticalmyelination14, and laminar differentiation15. Oneprominent
account posits that the rapid evolutionary expansion of the cortical
mantle effectively releases association areas from early sensory-motor
hierarchies, resulting in great signal variance and weak structure-
function relationship in transmodal cortex16.

Thoughwidely accepted, the corollary that the structure-function
relationship may itself be decoupling in transmodal cortex seems to
contradict reality. First, it has been widely believed that the brain
network is organized under a trade-off between costminimization and
functionalitymaximization17. If structure contributed little to function,
it would be unnecessary to invest such substantial material and
metabolic resources in white matter construction in transmodal
cortex18–20. Second, structure-function divergence confers consider-
able flexibility to structural connectome organization: any wiring dia-
gram that guarantees the connection profile of unimodal cortexwould
be as good as any other in maintaining normal brain function. How-
ever, abundant empirical evidence indicates that structural connec-
tions exhibit a high level of consistency and specificity21,22. Third, the
structure and function of association areas always change simulta-
neously. The development of human advanced cognitive capabilities
was accompanied by pronounced modifications to connections link-
ing association areas23 and abnormalities in these connections were
reported to be associated with many neuropsychiatric disorders24–26.
Such covariation implies a close correspondence between structure
and function in polysensory transmodal areas.

If structure and function are indeed related, why do we observe
the decoupling relationship in transmodal cortex? A possible expla-
nation is that current models leave out requisite neurophysiological
processes and signaling patterns when linking structural and func-
tional connectivity. Neuromodulation and microstructural variations
fundamentally influence how signals are routed, transformed, and
integrated on the underlying anatomical backbone, ultimately mani-
festing as complicated functional connectivity patterns at the macro-
scale. Specifically, neuromodulation enables the static structural
network to support distinct spatiotemporal propagation regimes27

while local attributes may elicit regional heterogeneity in signaling
strategies and transmission events28. Nevertheless, most existing
models only embody several putative neurophysiological mechanisms
and tend to relate structure and function in the same way across the
brain, inherently limiting the extent to which functional connectivity
can be explained by structural connections. For instance, geometric
and topological relationships (such as Euclidean distance, path length,
and communicability) between nodes in the structural network are
common and powerful predictors in functional connectivity recon-
struction. However, these correlated predictors open the possibility of
potentially homogeneous communication patterns, potentially indu-
cing systematic deviation in structure-function coupling across
the brain.

Hence, it remains a debate whether the structure-function diver-
gence in association cortex is an inherent property of brain organiza-
tion or a limitation of existing models. Although recent evidence from
a machine learning approach demonstrates that structure-function
prediction accuracies can be significantly improved29, it does not
provide mechanistic insight into dynamical processes and activation
patterns that underlie functional interactions. Whether structure and

function are related in transmodal cortex, and if so, what mechanisms
anddynamics govern this relationship remain exciting openquestions.
Here, we aim to shed light on these questions by assessing regional
structure-function relationships using distinct frequency-specific spa-
tiotemporal patterns generated by the eigenmode approach30,31. The
role of eigenmodes as mediators of information transmission within
the brain arises naturally from the network-diffusionmodel, where the
eigenvalues closely relate to spatial complexity and persistent time of
spreading processes32–35. Specifically, eigenmodes with near-zero
eigenvalues, which are referred to as low-frequency eigenmodes,
correspond to global and persistent spreading processes whereas
eigenmodes with large eigenvalues, which are referred to as high-
frequency eigenmodes, correspond to local and transient spreading
processes. These orthogonal eigenmodes have attracted increasing
attention in recent years36–41, opening new avenues to explore
structure-function relationships. By predicting functional connectivity
profiles of individual brain regions, we demonstrate that low-
frequency eigenmodes, which are considered sufficient to capture
the essentials of the whole-brain functional network, contribute little
to functional connectivity in transmodal regions, leading to system-
atically decoupling relationships along the unimodal-transmodal gra-
dient. In contrast, high-frequency eigenmodes, which are usually on
the periphery of attention due to their association with noisy and
random dynamical patterns, preferentially contribute to functional
connectivity prediction in transmodal regions, inducing gradually
convergent structure-function relationships from unimodal to trans-
modal regions. Although the information in high-frequency eigen-
modes is weak and scattered, it could enhance the structure-function
tethering, especially in transmodal cortex. These findings indicate that
different brain regions may utilize specialized parallel spreading pro-
cesses, that is, global, persistent diffusion patterns preferentially
govern the structure-function tethering in unimodal cortex whereas
local, transient dynamical processes play dominant roles in functional
connectional profiles of transmodal cortex.

Results
To explore how brain function coupled with structure through dif-
ferent diffusion processes, we applied the eigendecomposition to the
structural connectome Laplacian and obtained a set of orthogonal
eigenmodes governing frequency-specific spatiotemporal patterns of
signal propagation (Fig. 1: left to middle panels). The low-frequency
and high-frequency components of these eigenmodes were extracted
to construct regional structure-function mappings via multilinear
regression models (Fig. 1: middle to right panels). Specifically, for a
given region, the dependent variable was the region’s functional con-
nection profile, which represents the set of functional connectivity of
that region to the rest of the brain. The predictor variables were low/
high-frequency eigenmodes. The regional structure-function coupling
was quantified as the goodness of fit, that is, the Pearson correlation
(R) between the predicted and empirical functional connectivity pro-
files of brain regions. Our methodology followed the eigenmode
approach with the difference that we focused on the regional
structure-function relationships estimated by the extracted low-
frequency and high-frequency components. Details of the analysis
were provided in Methods.

The relationship between structural connectome organization
and functional interaction patterns was explored through the struc-
tural and functional connectivity derived fromdiffusion and functional
magnetic resonance imaging (See Methods). The dataset comes from
the Lausanne University Hospital (LAU)42. Results were initially derived
using group-consensus structural and functional connectivity net-
works parcellated at the highest resolution (1000nodes), and then
replicated at the individual level, at another four resolutions (68, 114,
219, 448 nodes), as well as in an independently collected dataset
(Human Connectome Project HCP)43.
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Regionally heterogeneous roles of Low-frequency eigenmodes
According to previous literature36,44, a small number of low-frequency
eigenmodes are sufficient to capture the essence of the functional
connectivity matrix. This observation, however, was made on whole-
brain prediction where regional heterogeneity was neglected. It
remains unclear what role low-frequency eigenmodes play in regional
structure-function relationships.

To address this question, we estimated the regional structure-
function relationships using a multilinear regression model that only
comprise low-frequency eigenmodes (See Methods). The low-
frequency eigenmodes were composed of the first KL components
in increasing order of eigenvalues (here we set KL = 14 as a default
value; the sensitivity analysis was subsequently performed for the
robustness of results to threshold selection). The magnitude of
structure-function coupling mirrors the contribution of low-
frequency eigenmode to functional connectivity reconstruction. As
shown in Fig. 2a, the distribution of regional coupling R was broad
(from R = 0.2 to R = 0.8), suggesting highly variable roles of low-
frequency eigenmodes in local structure-function prediction. We
then examined the spatial distribution of regional coupling values
(Fig. 2b). We found weak structure-function coupling in the bilateral
inferior parietal lobule, lateral temporal cortex, precuneus, and
inferior and middle frontal gyri. Conversely, strong structure-
function coupling resided bilaterally in the visual and primary
somatosensory cortices. Aggregating node-wise coupling values by
seven resting-state networks proposed by Yeo et al. 45, we found
structure and function were gradually decoupled from the unimodal
cortex (visual and somatomotor networks) to the transmodal cortex
(default mode network), suggesting that the contribution of low-
frequency eigenmodes varies systematically across functional sys-
tems (Fig. 2c).

We further calculated the average R of each resting-state network
and compared it with the null distribution generated by randomly
permuting brain nodes’ assignments to seven resting-state networks
(10,000 repetitions). The null hypothesis is that there exist no
network-specific effects (or more technically, that network-specific
average R is not different from those generated by random permuta-
tions). The P-value was calculated as the proportion of spatially-
permutated network-specific R values that were more extreme than
the observed network-specific R, and then was corrected for multiple
comparisons. As illustrated in Fig. 2d, we found that the structure-
function coupling in visual and somatomotor networks was stronger
than the null distribution while ventral attention, limbic, and default

mode networks exhibitedweaker structure-function coupling than the
level expected by chance. Although these differences were overall
modest inmagnitude, theywere statistically significant (FDR corrected
P < 10−4), implying that the observed heterogeneous contribution of
low-frequency eigenmodes is not a trivial pattern but is potentially
circumscribed by functional systems. We also compared the distribu-
tion of well-predicted nodes whose prediction accuracies were higher
than the average level with the distribution of seven resting-state
network sizes (Fig. 2e). If low-frequency eigenmodes contribute
equally to the structure-function coupling across brain regions, these
two distributions would exhibit strong similarity. However, we
observed an apparent discrepancy between the distributions. We
found that 61% of well-predicted nodes were concentrated in visual
and somatomotor networks, which greatly exceeded the correspond-
ing network size (37%). In contrast, 27% of well-predicted nodes were
observed in default mode, limbic, and ventral attention networks,
which was much smaller than the corresponding network size (51%).
Finally, we transformed the node-wise R to its z score concerning the
null distribution of each resting-state network. Positive values indicate
that structure and function are tightly linked by low-frequency eigen-
modes whereas negative values indicate that low-frequency eigen-
modes play a poor role in predicting functional connectivity. As shown
in Fig. 2f, we observed a gradually worsening performance of low-
frequency eigenmodes in relating structure to function fromunimodal
to transmodal cortex.

Collectively, these findings suggest that the contribution of low-
frequency eigenmodes to structure-function prediction is not uniform
across the brain. The persistent, spatially slow-varying diffusion pat-
terns captured by low-frequency eigenmodes can adequately explain
functional connection profiles of unimodal regions. However, they
contribute little to the functional connectivity of transmodal regions,
leading to the observed structure-function divergence in these
regions.

Structure-function decoupling induced by low-frequency
eigenmodes
Besides the spatially heterogeneous contribution of low-frequency
eigenmodes, there exist many other systematic variations46 in brain
organization. Margulies et al.12 reported a cortical organization from
unimodal to transmodal cortex, which simultaneously corresponds to
a spectrum of increasingly abstract cognitive functions. Here, we
associated the regional structure-function relationship estimated by
low-frequency eigenmodeswith thismacroscale functional gradient to

Eigenmodes

Structural network Functional network

Node A (unimodal) Node B (transmodal)

High-frequency

Low-frequency

...
...

...

Fig. 1 | Method pipeline. Through the Laplacian eigendecomposition of the
structural network, we obtained a series of orthogonal eigenmodes governing
frequency-specific spatiotemporal patterns of signal propagation. The low-
frequency and high-frequency components were respectively extracted to predict

regional functional connection profiles via a multilinear regression model. The
strength of structure-function coupling was measured as the Pearson correlation
coefficient R between predicted and empirical connectivity profiles.
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examine whether coupling heterogeneities vary along the unimodal-
transmodal hierarchy.

We derived the functional gradient following themethod in ref. 12
and correlated it with the node-wise coupling values. Briefly, we
applied diffusion map embedding47, a nonlinear dimensionality
reduction approach, to the functional connectivity matrix, generating
a transitionmatrix thatwas subjected to eigendecomposition. Thefirst
eigenvector of this matrix was what we referred to as a macroscale
functional gradient, characterizing a hierarchical organization that
situated unimodal and transmodal cortex on opposite extremes
(Fig. 3a). As shown in Fig. 3b, we found a negative correlation between
structure-function coupling R and the functional gradient (Pearson
ρ = −0.557). To examine whether such anticorrelation is a meaningful
feature of the empirical structural connectome, we generated two
types of null models. The first one kept the structural connection
topology fixed but randomly rotated nodes’ spatial positions48. The
secondonepreserved theoriginal spatial embedding but incorporated
no structural information except the degree sequence. As shown in
Fig. 3c, d, the correlation coefficient between the coupling R and the
functional gradient in the empirical data was significantly lower than
those generated by the two null models (P < 10−4, 10,000 simulations).
This observation suggests that structure-function decoupling from

unimodal to transmodal cortex is a nontrivial pattern induced by low-
frequency eigenmodes.More specifically, if we link brain structure and
function only through spreading processes sustained by low-
frequency eigenmodes, the resulting structure-function relationships
will become increasingly divergent along the unimodal-transmodal
hierarchy.

Information in high-frequency eigenmodes
Although whole-brain functional connectivity can be efficiently cap-
tured by a few low-frequency eigenmodes, the correspondence
between structure and function is far from perfect. It remains amatter
of debate whether structure-function divergence in transmodal
regions is an inherent property of brain organization or a consequence
of neglecting information requisite for precise prediction.

To test the latter possibility, we first examined whether eigen-
modes apart from low-frequency components made significant con-
tributions to functional brain connectivity. We applied each
eigenmode to whole-brain structure-function prediction and trans-
formed the prediction accuracy R into a z score relative to the null
distribution generated by the corresponding pseudo-eigenmode. The
pseudo-eigenmodes are the phase-randomization of empirical eigen-
modes while preserving the original spatial frequency, and have been

vis sm da fpn va lim dmn

0
-1.96

1.96

f

0.3

0.2

0.1

0

0.3

0.2

0.1

0

0.3

0.2

0.1

0

0.3

0.2

0.1

0

0.3

0.2

0.1

0

0.3

0.2

0.1

0

0.3

0.2

0.1

0

0.5 0.6 0.7 0.45 0.550.5 0.45 0.550. 5 0.45 0.550. 5

0.45 0.550.50.45 0.550.5 0.45 0.550.5

Fr
eq

ue
nc

y

vis sm da fpn

va lim dmn

Empirical
Null

R

d

14%

4%

9%

5%

7%
33%

2 %

27%

Well-predicted node

8
28%

10%

13%6%6%

22%

15%37%

51%

Network size

z

vis

vis

sm

sm
da

da

fpn

fpn

va

va

lim

dmn

dmn
61%

lim

e

0.2 0.3 0.4 0.5 0.6 0.7 0.8

dmn
lim
va

fpn
da
sm
vis

R

c
0.82

0.20

R

b

R

C
ou

nt

a
200

150

100

50

0
0.2 0.4 0.6 0.8

Fig. 2 | Heterogeneous contribution of low-frequency eigenmodes in regional
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togram of node-wise structure-function coupling R estimated by low-frequency
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max range (whiskers). d For each RSN, the network-specific mean R (red) was
calculated and then compared with the null distribution (blue) generated by ran-
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(10,000 repetitions). e The distribution of well-predicted nodes whose R values are
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recently applied to build null benchmarks in49–51. We found that a large
number of eigenmodes with large eigenvalues significantly outper-
form the corresponding pseudo-eigenmodes in structure-function
prediction, although the prediction accuracy decreased steeply from
low-frequency to high-frequency domains (Supplementary Fig. S1).
This observation suggests that high-frequency eigenmodes may con-
tain weak but valuable information for structure-function coupling.

We then investigated how regional functional connectivity
emerges from the underlying structure substrate through transient,
geometrically complex diffusion patterns captured by high-frequency
eigenmodes. The high-frequency eigenmodes were selected in des-
cending order of eigenvalues (here we set KH =434 as a default value;
the sensitivity analysiswas subsequently performed for the robustness
of results to threshold selection). We used a multilinear regression
model with high-frequency eigenmodes as predictors for regional
prediction (See Methods). The magnitude of the structure-function
coupling R reflects the contribution of high-frequency eigenmodes. In
Fig. 4a, we showed that the R values varied from 0.25 to 0.73, sug-
gesting heterogeneous roles of high-frequency eigenmodes across the
brain cortex. Furthermore, the spatial distributionofR values indicates
a systematic variation in the strength of structure-function coupling
(Fig. 4b). Structure and function are closely aligned in prefrontal and
paracentral cortices but decoupled in visual and primary somatosen-
sory cortices, exhibiting a coupling pattern inverse to that induced by
the low-frequency eigenmodes. Aggregating accuracy R by seven
functional systems, we found the default mode network exhibited the
strongest structure-function coupling while the visual network exhib-
ited the weakest structure-function coupling (Fig. 4c).

Similarly, to examine whether the regionally heterogeneous con-
tribution of high-frequency eigenmodes is system-specific, we com-
pared the average R of each functional network with the null
distribution generated by randomizing nodes’ assignments (10,000
repetitions). As shown in Fig. 4d, we found that the structure-function
coupling in ventral attention and default mode networks was higher
than the null distribution while the dorsal attention and visual net-
works exhibited weaker structure-function coupling than the level
expected by chance. These differences were overall modest but sta-
tistically significant (FDR corrected P < 10−4), implying that the
observed heterogeneous contribution of high-frequency eigenmodes
is a nontrivial pattern determined by the partition of functional sys-
tems. We further compared the distribution of well-predicted nodes
with the distribution of functional network size to rule out the influ-
ence of differences in network size. We found that the proportion of
well-predicted nodes in ventral attention and default mode networks
was much higher than the corresponding network size (59% >41%)
whereas the reverse was true for the dorsal attention and visual net-
works (3% <21%) (Fig. 4e).Mapping coupling z scores back to individual

brain regions, we found that strong structure-function correspon-
dence was concentrated in transmodal regions (Fig. 4f). This obser-
vation suggests that the diffusion patterns captured by high-frequency
eigenmodes preferentially contribute to the interpretation of func-
tional interactions in transmodal regions.

Structure-function convergence in transmodal cortex induced
by high-frequency eigenmodes
To investigate how local structure-function relationships estimated
by high-frequency eigenmodes vary along the unimodal-transmodal
hierarchy, we associated the regional coupling pattern with the
macroscale functional gradient. As shown in Fig. 5a, we found these
two measures were positively correlated (Pearson ρ = 0.513), sug-
gesting that structural and functional connectivity are increasingly
coupled from unimodal to transmodal regions under transient and
spatially complex diffusion processes captured by high-frequency
eigenmodes. To assess the significance of this spatial correlation, we
compared the empirical correlation coefficient with a null distribu-
tion generated by spatial permutation with spatial autocorrelation
preserved (Fig. 5b). We found that the empirical correlation coeffi-
cient was significantly larger than the null values (P<10�4, 10,000
simulations). We also constructed a null model by rewiring network
edges while preserving the degree sequence, which disrupts the
network topology (Fig. 5c). As one might expect, the empirical
correlation coefficient was significantly higher than those generated
by the null model (P<10�4, 10,000 simulations), suggesting that
such increasing convergence between structure and function from
unimodal to transmodal cortex is a nontrivial pattern of the
empirical connectome.

Regional structure-function coupling at the individual level
To improve the signal-to-noise ratio, we initially performed our ana-
lysis on group-average structural and functional networks. In this
section, we sought to understand the regional patterns of structure-
function coupling estimated by low-frequency and high-frequency
eigenmodes from the perspective of individual subjects.

For low-frequency eigenmodes, we conducted the fitting proce-
dure for every subject, which returns amatrix of coupling Rwhose size
is [69 subjects × 1000 region] (fMRI data were missing for one parti-
cipant; Fig. 6a). As in previous sections, we found considerable varia-
bility across regions (one-way ANOVA R; F(999) = 11.9; P < 10−15),
confirming the regionally heterogeneous roles of low-frequency
eigenmodes in local structure-function prediction. To visualize the
spatial distribution of these results, we averaged over subjects and
plotted the mean structure-function coupling R for each region
(Fig. 6b). We found that the magnitude of structure-function coupling
varied systematically across the cortex, with primary unimodal
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cortices exhibiting the higher prediction accuracies than transmodal
association cortices. To assess whether the contributions of low-
frequency eigenmodes were concentrated within specific functional
systems, we aggregated these R values by seven functional networks
and compared the network-specific mean R with the null distribution
generated by a spatially-constrained permutation model (spin test;
10,000permutations). As illustrated in Fig. 6c,we found that the visual
network had significantly higher structure-function coupling relative
to the null distribution while ventral attention, frontoparietal, and
default mode networks exhibited lower R values than the level
expected by chance (FDR corrected P < 10−4). Considering the inter-
individual heterogeneity, we also provided the distributions of
network-specificmeanRover all subjects (Supplementary Fig. S2a) and
repeated the analysis for every subject. The network-specific effects
were significant at a single subject level (See Supplemental section
“Analysis of individual subjects” for more details). We further corre-
lated the regional coupling Rwith the unimodal-transmodal functional
gradient for each subject, comparing the empirical correlation coeffi-
cients against those obtained using a spatially-constrained permuta-
tion model (1000 permutations) and against those generated by
randomly rewiring network edges with degree sequence preserved
(1000 permutations). We found that the correlation between the
regional R and functional gradient was overall negative although these
correlation coefficients were considerably variable across subjects
(Pearson ρ = −0.297 ±0.168; Supplementary Fig. S2b and Fig. S3).

For high-frequency eigenmodes, the structure-function coupling
estimated at the individual level yielded amatrix containing R of every
region and subject, which was reported in Fig. 6d. Consistent with the
previous section,weobserved regionally heterogeneous contributions
of high-frequency eigenmodes to structure-function prediction (one-
way ANOVA R; F(999) = 15.7; P < 10−15). Averaging regional R across
subjects, we observed relatively weak structure-function coupling in
unimodal primary and particularly in visual regions, and relatively
strong coupling in transmodal association regions (Fig. 6e). To
examine whether the contributions of high-frequency eigenmodes are
system-specific, we aggregated these R values by seven functional
networks, comparing the network-specificmeanRwith those obtained
by the spatially-constrained permutation model (spin test; 10,000
permutations). As illustrated in Fig. 6f, we found that regions with
lower R values were prominent in the visual and dorsal attention net-
works whereas regions with higher R values were affiliated with the
limbic, frontoparietal, and default mode networks (FDR corrected
P < 10−4). We also took into account inter-individual heterogeneity and
plotted the distribution of network-specific mean R over all subjects
(Supplementary Fig. S2c). Compared to the null distributions gener-
ated using a subject-specific spatially constrained permutationmodel,
the observed network-specific effects were still statistically significant
(See Supplemental section “Analysis of individual subjects” for more
details). Furthermore, we found that the regional coupling R and
functional gradient were overall positively correlated at a single
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individual level (Pearson ρ = 0.254 ±0.157; Supplementary Fig. S2d
and Fig. S4).

We further estimated the standard deviation of coupling R
estimated by low-frequency and high-frequency eigenmodes for
every region across all subjects (Supplementary Fig. S5). Interest-
ingly, we found that regions with great inter-individual variations
were overall concentrated in the visual and somatosensory cortex
whereas structure-function coupling in prefrontal, lateral temporal,
and inferior parietal cortex was relatively consistent across subjects.
Note that, for low-frequency eigenmodes, this spatial pattern is very
similar to the spatial distribution of regional coupling R (Pearson
ρ = 0.79), and when transforming the standard deviation to the
coefficient of variation, this trend did not persist (Pearson ρ = 0.05;
P = 0.09), suggesting that the regional heterogeneity in inter-
individual variability observed in the case of low-frequency eigen-
modes may be attributable to a floor effect. In contrast, for high-
frequency eigenmodes, the negative association between inter-
individual variation in structure-function coupling and the
unimodal-transmodal functional gradient was still statistically sig-
nificant (Pearson ρ = −0.53; P < 10−5).

Collectively, these results suggest that the contribution of low-
frequency eigenmodes is not uniformacross thebrain but concentrated
on the primary unimodal regions, resulting in structure-function
decoupling along the unimodal-transmodal gradient. Conversely,
high-frequency eigenmodes preferentially contributed to the inter-
pretation of functional profiles in transmodal association regions,
inducing gradually convergent structure-function relationships from
unimodal to transmodal regions. Both of these results are consistent
with those obtained from group-average data. Furthermore, compar-
able spatial patterns of structure-function coupling were also with
underdifferent low/high-frequency thresholds (Supplementary Fig. S6),
spatial resolutions (Supplementary Fig. S7), data acquisition (HCP;
Supplementary Fig. S8), aswell as themethodof functional connectivity
reconstruction (partial correlation; Supplementary Fig. S9). See Sup-
plemental section “Sensitivity analyses” for more details.

Enhanced structure-function tethering via introducing high-
frequency eigenmodes
As a final step, we sought to shed light on two questions: Can high-
frequency eigenmodes compensate for the critical information
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neglected in previous structure-function predictions? If so, how is this
information distributed in high-frequency eigenmodes?

Firstly, we focused on the structure-function coupling estimated
by prediction models with and without high-frequency eigenmodes.
Considering many high-frequency eigenmodes, we used LASSO
regression, which generates a sparse prediction model by penalizing
regression coefficients to reduce the risk of overfitting. Briefly, for
each brain region, we employed nested parameter optimization to
tune the regularization parameters (which is strictly limited to the
training set), and evaluated the performance by Pearson correlation
between predicted and empirical functional connectivity profiles in
the remaining test set. The brain regions were divided into two
groups based on whether their function gradient values were larger
than zero, yielding a unimodal group of 590 and a transmodal group
of 410. We found that the prediction accuracy in both unimodal and
transmodal groups improved with the addition of high-frequency
eigenmodes (two-sided paired t-test, P < 10−4; Fig. 7a), suggesting
that high-frequency eigenmodes provide supplementary information
for structure-function tethering. We also found that the prediction
improvement in the transmodal group was overall greater than that
in the unimodal group and that the top 10% of brain regions with the
highest percentage increases were mostly located in the inferior
parietal cortex, insula, cingulate, and prefrontal cortex (Fig. 7b).
These results indicate that the information in high-frequency eigen-
modes is biased to functional connections in transmodal regions.

Further, to address the second question, we quantified the per-
centage increases in prediction accuracy along with the progressive
addition of high-frequency eigenmodes. The high-frequency eigen-
mode added at each step was randomly selected and the adding pro-
cess was repeated 10 times. The mean and the standard deviation of
the percentage increase in R were illustrated in Fig. 7c. We found that
the prediction accuracy in both unimodal and transmodal groups
increased steadily as high-frequency eigenmodes were added gradu-
ally, suggesting that the information requisite for structure-function
prediction is uniformly distributed across high-frequency eigenmodes.
It is noteworthy that the growth curve of the transmodal group is
steeper than that of the unimodal group, which consolidates the pre-
ference of high-frequency eigenmode for interpreting functional
interaction in transmodal regions.

Discussion
The imperfect correspondence between structure and function in
macroscale brain networks is an ongoing challenge in network
neuroscience2. The prevailing hypothesis is that structure and function
may be gradually untethered along a macroscale functional gradient
spanning from unimodal areas to transmodal areas3. In this work, we

revisit this hypothesis on the grounds that typically predictionmodels
may neglect signal propagation patterns that are critical for functional
interactions in transmodal cortex. To gain a deeper understanding of
how functional connectivity emerges from the underlying anatomical
substrate, we take into account distinct networked diffusion processes
by decomposing the structure connectome into frequency-specific
diffusion patterns captured by orthogonal eigenmodes30,31. Con-
cordant with previous findings9–11, a gradual decoupling between
structure and function along unimodal-transmodal hierarchy is
reproduced based on low-frequency eigenmodes which are reported
as prominent predictors of whole-brain functional connectivity. Next,
we show that apart from low-frequency eigenmodes, high-frequency
eigenmodes also significantly contribute to structure-function pre-
diction, even though the information they contain is weak and scat-
tered. Unexpectedly, these high-frequency eigenmodes reverse the
decoupling pattern between structure and function across the brain,
inducing increasingly convergent structure-function relationships
along the unimodal-transmodal hierarchy. Finally, we show that high-
frequency eigenmodes could enhance the strength of structure-
function coupling, especially in transmodal association cortex.

Our work contributes to understanding the link between struc-
tural and functional connectivity from a parallel communication per-
spective. The structure-function relationship has been fruitfully
investigated by formulating models of potential communication
dynamics, ranging from centralized forms such as the shortest path to
decentralized forms such as the random walk52. However, the corre-
lation of typical predictors such as path length5, navigation53, and
communicability54 mirrors the homogeneity of potential signal pro-
pagation patterns which may drive systematic deviations in structure-
function alignment. A key challenge lies in aggregating heterogeneous
communication dynamics in a simple and unified framework and
articulating their roles in functional interactions among neuronal ele-
ments. In our work, a variety of possible diffusion processes (ortho-
gonal eigenmodes) were gleaned from the eigendecomposition of the
structural Laplacian, with distinct eigenvalues reflecting different fre-
quencies of spatiotemporal patterns of spreading processes34,55.
Interregional functional interactions can be interpreted by activating
these frequency-specific networked persistent modes in appropriate
proportion. Thismethodology is in linewith recent biophysicalmodels
which suggest the coexistence of a set of self-sustained, stimulus-
selective activity states, with each one storing a memory item for
optimal preparation for stimulus processing56,57. Studies investigating
temporal dynamics of interregional synchrony also suggest that
frequency-specific interactions, which form transient frequency-
specific networks, modulate cortical computations and information
transformation in the brain58,59.
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For the present analysis, we focus on low-frequency and high-
frequency eigenmodes that cover two fundamentally different types of
diffusion patterns, one sustaining persistent and widespread spread-
ing processes while the other capturing faster andmore geometrically
complex spreading processes32,55. A rich literature supports the notion
that brain activity is preferentially expressed in low frequencies11 and
argues that a small number of low-frequency eigenmodes are sufficient
to reconstruct the functional network34,36. However, this perspective
was largely based on the whole-brain prediction where structure-
function relationships are assumed to be uniform across the cortex.
We show that low-frequency eigenmodes contribute little to structure-
function prediction in transmodal areas. In contrast, high-frequency
eigenmodes, which are typically associated with noisy and random
activation patterns60,61, promote the interpretation of functional con-
nectional profiles in these areas. These findings advance the under-
standing of the roles of different-frequency eigenmodes in structure-
function prediction, emphasizing the importance of high-frequency
eigenmodes that used to be on the periphery of attention in eigen-
mode analyses. The significant contribution of low-frequency and
high-frequency patterns highlights multiplexed strategies and multi-
ple mechanisms involved in interregional communication62–64, sug-
gesting that synchrony among neuronal populations may result from
the aggregation of global, persistent, and local, transient spatio-
temporal patterns. Physiological signals fromdistributedbrain regions
compete and cooperate in different frequency bands, manifesting as
distinct synchronization patterns to serve flexible cognitive
behaviors65–67. Thesevarious and abundant frequency-specificpatterns
allow neuronal elements to share and transmit information through
dynamical reconfiguration onmultiple timescales, potentially relaxing
the restriction on the material and energy cost of the structural
connectome52,68. Our findings gain valuable insight into how flexible
flow of information is achieved, opening the possibility to address the
major unsolved question that how static structural connectome sup-
ports fast and flexible reconfiguration of functional networks51.

Furthermore, our findings suggest regionally heterogeneous
contribution of different-frequency eigenmodes in predicting func-
tional interactions. Persistent and global diffusion patterns described
by low-frequency eigenmodes predominantly explain functional con-
nectional profiles of primary unimodal regions. Transient and geo-
metrically complex diffusion processes captured by high-frequency
eigenmodes instead support functional interactions in transmodal
association cortex. These systematic variations in the prediction per-
formance of different diffusion patterns may be induced by latent
microstructural configurations and hierarchical organizing principles
in the brain, including morphometric similarity, transcription profiles,
and laminar differentiation14,15,28. The organization of primary areas is
strongly constrained by molecular gradients and early activity
cascades69. Information is step-wise progressively transformed along
serial and hierarchical pathways70. Such consistent hierarchical prop-
erty of unimodal cortex may thus elicit widespread and persistent
spreading processes that can be captured by low-frequency eigen-
modes. In contrast, the rapid expansion of the cerebral cortex deta-
ches polysensory association areas from the canonical sensory-motor
hierarchy, resulting in noncanonical circuit organization that lacks
consistent laminar projection patterns16,71. Such variation in con-
nectivity patterns may alter the way signals are generated, trans-
formed, and integrated, potentially eliciting fundamentally different
propagation patterns in association areas72,73. The association cortex is
configured to bridge widely distributed functional systems and inte-
grate diverse information from multiple sources74–76. Transient and
geometrically complex spreading processes captured by high-
frequency eigenmodes may enable transmodal cortex to participate
in different communication events in a spatially and temporallyprecise
manner, facilitating efficient information routing and flexible state
switching in cognitive behaviors. Ourfindings are also corroboratedby

the previous work which suggests that primary sensory and motor
networks are closely associated with low-frequency connectome har-
monics while higher-order cognitive networks match a broader range
of frequency spectrum55.

Low-frequency and high-frequency eigenmodes respectively
induce gradually divergent and convergent structure-function rela-
tionships along the unimodal-transmodal gradient. These two reverse
coupling patterns offer an alternative perspective for understanding
the link between structure and function, that is, structural and func-
tional connectivitymay be tightly tethered but currentmodels neglect
requisite communication dynamics for precise prediction. With the
assistance of high-frequency eigenmodes, the tethering between
structure and function is enhanced in both unimodal regions and
transmodal regions. In particular, the 10% highest increases in the
strength of structure-function coupling appear in the inferior parietal
cortex, insula, cingulate, and prefrontal cortex, suggesting that
structure-function divergence in transmodal areas may be narrowed
by additional information. This is in accordancewith the recent study29

which exploits a machine learning approach to achieve a substantially
closer structure-function correspondence than previously implied.
Although the information in high-frequencyeigenmodes is prone tobe
obscured by background noise and the exact mechanism underlying
structure-function association requires further exploration, our find-
ings open an opportunity to improve the understanding of structure-
function tethering. Considering the steady and continuous growth of
prediction accuracy with the increasing number of added high-
frequency eigenmodes, the information is expected to be uniformly
distributed in the high-frequency domain. Meanwhile, the growth
curve of transmodal areas is steeper than that of unimodal areas,
suggesting that high-frequency patterns have a propensity to explain
neuronal coactivation in transmodal cortex. These results provide
references for future work on distilling information from high-
frequency eigenmodes to adequately capture the structure-function
relationship.

There are some limitations to our work. First, although we have
demonstrated the role of high-frequency eigenmodes in enhancing
structure-function tethering, it is still difficult to extract useful infor-
mation quickly and accurately due to the large amount of noise in high
frequencies. Meanwhile, recent studies have demonstrated that
regional structure-function alignments varywith individual differences
(e.g., age, gender, and cognitive traits)77–81. Understanding how these
individual differences affect regional structure-function coupling
estimated by different diffusion processes is an exciting issue that
requires further investigation, with potential implications for the
diagnosis and treatment of brain disorders. Moreover, we represent
functional interactions among neuronal elements simply as static and
dyadic connectivity networks, neglecting the possibility of temporal
dynamics82,83 and high-order interactions84. Future work could inves-
tigate structure-function coupling with more nuanced models enri-
ched with dynamic and high-order interactions.

Methods
Data acquisition
The analyses were performed in two independent datasets. The main
dataset was collected by Department of Radiology, University Hospital
Center and University of Lausanne (LAU)42. The dataset was collected
from a cohort of 70 healthy participants (27 females, 28.8±9.1 years
old). Informed content approved by the Ethics Committee of Clinical
Research of the Faculty of Biology andMedicine, University of Lausanne
was obtained from all participants. Diffusion spectrum images (DSI)
were acquired on a 3-Tesla MRI scanner (Trio, Siemens Medical, Ger-
many) using a 32-channel head-coil. Theprotocolwas comprisedof (1) a
magnetization-prepared rapid acquisition gradient echo (MPRAGE)
sequence sensitive to white/gray matter contrast (1-mm in-plane reso-
lution, 1.2-mm slice thickness), (2) a DSI sequence (128 diffusion-
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weighted volumes and a single b0 volume, maximum b-value 8000 s/
mm2, 2.2× 2.2× 3.0mm voxel size), and (3) a gradient echo EPI
sequence sensitive to blood oxygen level-dependent (BOLD) contrast
(3.3-mm in-plane resolution and slice thickness with a 0.3-mm gap, TR
1920ms, resulting in 280 images per participant). The supplementary
analyses were performed in the dataset from the Human Connectome
Project (HCP)43. This dataset consisted of 56 participants. Informed
content, including consent to share de-identified data, approved by the
Washington University institutional review board was obtained from all
participants. For more details regarding acquisitions see ref. 85.

Structural and functional network reconstruction
For LAU, the initial signal processing of MPRAGE, DSI, and fMRI BOLD
data was performed using the Connectome Mapper pipeline86. Gray
and white matter were segmented from the MPRAGE volume and
divided into 68 brain regions following Desikan–Killiany atlas87. These
regions were further subdivided into 114, 219, 448, and 1000
approximately equally sized nodes according to the Lausanne anato-
mical atlas using the method proposed by88. DSI data were recon-
structed following the protocol described by89. Structural connectivity
matrices for individual participantswere estimatedusingdeterministic
streamline tractography on reconstructed DSI data, initiating
32 streamline propagations per diffusion direction for each white
matter voxel90. The measure of structural connectivity between pairs
of regions was fiber density, defined as the normalized number of
streamlines between two brain regions91. A group-average structural
connectivity matrix was estimated using a consensus approach pre-
serving the density and the edge-length distribution of the individual
participant matrices92–94. Functional networks were reconstructed
using fMRI data from the same individuals. fMRI volumes were cor-
rected for physiological variables, including regression of white mat-
ter, cerebrospinal fluid, and motion. fMRI time series were lowpass
filtered (temporal Gaussian filter with full-width half maximum equal
to 1.92 s). The first four volumes were discarded and motion “scrub-
bing” was performed95. fMRI data were parcellated according to the
same atlas used for structural networks. Functional connectivity
matrices for individual participants were constructed by estimating
the Pearson correlation between the fMRI time series of each pair of
brain regions. Note that fMRI data were missing for one individual and
we obtained functional connectivity matrices for 69 participants. A
group-average functional connectivity matrix was constructed by: (1)
concatenating the regional fMRI time series from all participants, (2)
estimating the Pearson correlation between each pair of brain regions,
and (3) thresholding. In the thresholding operation, 276 points from
the concatenated times series were randomly sampled to estimate a
correlation matrix. This process was repeated 1000 times, generating
1000 bootstrapped matrices. From these bootstrapped samples,
confidence intervals for the correlation magnitude were estimated for
each pair of brain regions. In the group-average functional con-
nectivity matrix, only the functional connectivity between pairs of
brain regions whose correlations were consistently positive or nega-
tive was retained, and functional connectivity between the remaining
pairs of brain regions was set to zero.

For HCP, all acquisitions were preprocessed according to HCP-
minimal preprocessing guidelines85. Glasser’s multimodal
parcellation96 was used to divide the cortex into 360 regions. Indivi-
dual structural networks were derived from diffusion-weighted ima-
ging using the MRtrix3 package [http://www.mrtrix.org/]. The
operations included multi-shell multi-tissue response function esti-
mation, constrained spherical deconvolution, and tractogram gen-
eration with 107 output streamlines. The measure of structural
connectivitywas the number offibers between pairs of regions divided
by the sum of the volumes of the two regions. A group structural
network was estimated by averaging all individuals’ structural net-
works. Functional volumes were spatially smoothed with a 5mm

isotropic Gaussian kernel and the first 10 volumes were discarded.
fMRI time series were detrended and six head motion parameters,
average cerebrospinal fluid, and white matter signal were regressed
out. fMRI time series were band-pass filtered (0.01–0.15 Hz). fMRI data
were parcellated according to the same atlas used for structural net-
works. Individual functional connectivity matrices were constructed
by estimating the Pearson correlation between the fMRI time series of
each pair of brain regions. A group-average functional connectivity
matrix was estimated as the average connectivity between pairwise
regions across individuals.

Laplacian eigenmodes
To generate a dissociation of distinct diffusion processes, we per-
formed the eigendecomposition of the structural Laplacian. Specifi-
cally, we expressed the structural connectome as an undirected,
weighted adjacency matrix A. Then, the structural Laplacian can be
defined as

L=D� A ð1Þ

where D represents the diagonal weighted degree matrix. Following
ref. 61, the structural Laplacian was normalized as L0 =L=λmax to pre-
clude the influence of network sizes and densities, where λmax indi-
cated the largest eigenvalues of L. Through the eigendecompositionof
the normalized structural Laplacian L0U=UΛ, we obtained a set of
orthogonal eigenmodes ukϵU, k = 1, . . . ,N, that correspond to distinct
spatiotemporal patterns of signal propagation32,55. Their eigenvalues
λkϵΛ are closely related to persistent time and spatial complexity of
spreading processes. Specifically, eigenmodes with near-zero eigen-
values sustain global and persistent diffusion patterns while eigen-
modes with large eigenvalues capture geometrically complex
spreading processes that delay quickly. Benefiting from their ortho-
gonality, eigenmodes have been used as a parsimonious basis in the
prediction of resting-state functional connectivity34.

Regional structure-function prediction
The eigenmode approach is considered a powerful tool for structure-
function prediction due to its appealing feature of representing the
relationship simply and explicitly36. Functional connectivity matrix F
can be interpreted as the aggregation of activating networked persis-
tent modes captured by eigenmodes in appropriate proportion31, that
is,

F̂=UCUT =
XN

k = 1

ckuku
T
k ð2Þ

where C is a diagonal matrix with elements ck to be estimated.
The above formulation can also be derived from the network-

diffusion model32

dx tð Þ
dt

= � βLx tð Þ ð3Þ

where x(t) denotes the time evolution of neural activity and parameter
β corresponds to the decay rate. It has the analytical solution
x tð Þ= e�βLtx0, where x0 denotes the initial configuration of the diffu-
sion process. Under the hypothesis that the configuration at a critical
time tcrit evolving from an initial configurationwith only region i active
is simply the set of functional connectivity between region i and all
other regions (i.e., the ith column of the functional connectivity
matrix)33,36, the whole-brain functional connectivity matrix can be
estimated as

F̂= exp �βLtcrit
� � ð4Þ

Article https://doi.org/10.1038/s41467-023-42053-4

Nature Communications |         (2023) 14:6744 10

http://www.mrtrix.org/


By eigendecompositing the matrix L into L=UΛUT, the above
equation can be rewritten as F̂=Ue�βΛtcritUT. When generalizing
unknown parameters e�βΛtcrit as a diagonal matrix C, we obtained the
same formulation

F̂=UCUT =
XN

k = 1

ckuku
T
k ð5Þ

For regional structure-function prediction, we introduced regio-
nal heterogeneity and expressed the functional connectivity profile of
a given node i as a weighted combination of eigenmodes, that is,

F̂i =Ub
i =

XN

k = 1

bi
kuk ð6Þ

where F̂i indicates the ith column of the F̂ and bi = ðbi
1, . . . ,b

i
NÞ

T
is a

vector of parameters that needs to be estimated.
This formulation can also be derived from the network-diffusion,

that is,

F̂i =UC
iU

T
ei =

XN

k = 1

cikuikuk =Ub
i ð7Þ

where ei denotes the cardinal unit vector in the ith direction
andbi = ðbi

1, . . . ,b
i
NÞ

T
is the parameter vector.

Multilinear model
We constructed two multilinear regression models, using low-
frequency and high-frequency eigenmodes as predictors, to predict
the functional connectivity profile of each brain region. Since the
eigenvalues encode the natural frequencies of the spatiotemporal
patterns captured by corresponding eigenmodes34,55, we extracted the
eigenmodes in increasing and descending order of eigenvalues to
constitute the low-frequency and high-frequency components,
respectively. Considering that there is nogeneralmethod todetermine
the threshold KL and KH , we chose a default value (KL = 14, KH =434),
which falls within the range of typical thresholds used in previous
literature11,36,97, and performed the sensitivity analyses to confirm the
robustness of results to threshold selection (Supplementary Fig. S6).

For a given node i, the multilinear models were expressed as

F̂
L
i =b

i,L
1 u1 +U

Lb
i,L ð8Þ

F̂
H
i =bi,H

1 u1 +U
Hb

i,H ð9Þ

where UL = ðu2, . . . ,uKL
Þ and UH = ðuKH

, . . . ,uNÞ are low-frequency and
high-frequency predictor variables. The first eigenmode u1 was
isolated to constitute constant terms as it represents a trivial
homogeneous pattern (constant across the brain). The dependent
variable is the ith column of functional connectivity matrix.
Parameters bi,L

1 , bi,H
1 , bi,L = ðbi

2, . . . ,b
i
KL
ÞT , and bi,H = ðbi

KH
, . . . ,bi

NÞ
T
can

be estimated using ordinary least squares method (OLS). Local
structure-function correspondence is quantified as the goodness of
fit, which is computed as the Pearson correlation coefficient R
between predicted and empirical functional connectivity profiles of
brain regions.

Hypothesis tests and null models
Throughout the paper, we conducted three main hypothesis tests to
examine the regional pattern of structure-function coupling estimated
by low/high-frequency eigenmodes. First, to examine whether
structure-function coupling is network-specific, we constructed a null
model that randomly permutated nodes’ assignment to seven func-
tional networks (10,000 repetitions). This model embodies a null

hypothesis that the observed average strength R of structure-function
coupling in each network does not depend on the partition. The P-
value was calculated as the proportion of simulated test statistics that
are more extreme than the observed test statistic, and then corrected
formultiple comparisons. The secondonewasconstructed to examine
whether the spatial pattern of structure-function coupling is corre-
latedwith themacroscale functional gradient spanning fromunimodal
to transmodal cortex. We applied a spin test, a widely used spatial
permutation test with spatial autocorrelation preserved48. The last one
was to examine whether the spatial correspondence between
structure-function coupling and the functional gradient depends on
network topology. The null model was constructed by randomly
swappingpairs of edges,which destroyed the topological organization
of the empirical structural connectome while preserving the degree
sequence.

Model comparison
To determine whether high-frequency eigenmodes supplement
information from low-frequency eigenmodes to yield improved pre-
dictions, we compared the performance of prediction models com-
prising only low-frequency eigenmodes and those comprising both
low-frequency and high-frequency eigenmodes. Given the large num-
ber of high-frequency eigenmodes, we performed least absolute
shrinkage and selection operator (LASSO) regression, which may
eliminate unimportant variables by penalizing regression coefficients.
First, we randomly split individual subjects into a training set consist-
ing of 80% of subjects and a test set consisting of the remaining 20%
(100 repetitions). To select regularization parameters, we employed
nested parameter optimization which is strictly limited to the training
set. That is, we applied another 80–20 split (20 repetitions) to the
training set, where we trained models with different regularization
parameter on 80% of the training set (using group-average SC and FC
matrices) and assessed the performance on the remaining 20% of the
training set (using group-average SC and FCmatrices), with the model
performance evaluated by the Pearson correlation coefficient between
predicted and empirical functional connectivity profiles. We then
selected the regularization parameter with the best performance to
train a LASSO model on all training samples and constructed the
prediction model based on the preserved features. We strictly limited
the parameter selection and training procedure to the training set and
then compared the performance of predictionmodelwith andwithout
high-frequency features on the test set. In the above procedure, we
used the R package (v.4.2.2) glmnet to implement LASSO regression98.
We also considered the potential of eigenmode switching (e.g., a
structural eigenmode ranked 900th in the training set might be
ranked 901st in the test set) and aligned the order of eigenmodes in
training and test sets by minimizing their angles to corresponding
eigenmodes of group-consensus SC matrix derived from averaging all
individuals34.

As a control, we performed phase-randomization of empirical
eigenmodes while preserving the original spatial frequency (10 × 100
repetitions), generating three null benchmarks that correspond to
prediction models comprising phase-randomized low-frequency
eigenmodes, comprising phase-randomized high-frequency eigen-
modes, and comprising empirical low-frequency and phase-
randomized high-frequency eigenmodes. The results were illustrated
in Supplementary Fig. S10, which suggests that high-frequency
eigenmodes brought significantly more value than noise. Finally, in
addition to the main analysis of LASSO regression only for high-
frequency eigenmodes (which preserved all low-frequency eigen-
modes in the model comparison), we performed LASSO regression
separately for low-frequency model, high-frequency model, and low-
high combined model in supplementary analyses, which may result in
the elimination of low-frequency features. As illustrated in Supple-
mentary Fig. S11, the results were largely unchanged. We also
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replicated the analyses using different choices high-frequency
thresholds (Supplementary Fig. S12). The results were largely
unchanged.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Lausanne (LAU) dataset is publicly available at https://zenodo.org/
record/2872624#.YTR9lI4zaUl. TheHumanConnectomeproject (HCP)
dataset is publicly available at https://db.humanconnectome.org/with
the acceptance of HCP Open Access Data Use Terms. The cortical
segmentation according to the Desikan-Killiany atlas could be imple-
mented in FreeSurfer (http://surfer.nmr.mgh.harvard.edu). Lausanne
anatomical atlases, including different spatial resolutions, are available
at https://github.com/connectomicslab/connectomemapper3. Source
data are provided with this paper.

Code availability
For HCP, the diffusion and functional data were processed with the
MRtrix3 package [http://www.mrtrix.org/] and SPM8 [https://www.fil.
ion.ucl.ac.uk/spm/].Matlab (R2020a) andR (version4.2.2) code for the
main results of this paper is publicly available at https://github.com/
yaqiany/scfccoupling-high and https://zenodo.org/record/8255376.
The original code of the spin test is publicly available at https://github.
com/spin-test/spin-test99.
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