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FOXQ1 promotes pancreatic cancer cell proliferation, tumor
stemness, invasion and metastasis through regulation of
LDHA-mediated aerobic glycolysis
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Pancreatic cancer (PC), a gastrointestinal tract malignant tumor, has a poor prognosis due to early metastasis and limited response to
chemotherapy. Therefore, identifying novel therapeutic approaches for PC is critical. Epithelial-mesenchymal transition (EMT) is known as
the vital progress in PC development, we constructed the EMT-related prognosis model to screen out that FOXQ1 probably involving in
the EMT regulation. FOXQ1 has been linked to the malignant process in a number of cancers. However, its function in PC is unknown. In
our work, the expression of FOXQ1 was elevated in PC tissues, and a high level of FOXQ1 in PC was linked to patients’ poor prognosis.
FOXQ1 overexpression promoted aerobic glycolysis and enhanced PC cell proliferation, tumor stemness, invasion, and metastasis.
Whereas, FOXQ1 silencing showed the reverse effect. Furthermore, mechanistic studies indicated that FOXQ1 promotes LDHA
transcription, and thus modulates aerobic glycolysis to enhance PC cell proliferation, tumor stemness, invasion, and metastasis by
increasing LDHA expression. Therefore, these novel data suggest that FOXQ1 may be a possible therapeutic target in PC.
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INTRODUCTION

The incidence of pancreatic cancer (PC) has grown annually by
0.5-1.0% over the past two decades [1, 2]. PC is exceedingly
aggressive and the 5-year survival rate is <10% [3]. The majority
of patients already have distant metastasis at the time of
diagnosis, making them ineligible for surgery. The mechanisms
of distant metastasis in early-stage PC and cancer recurrence
after treatment, which lead to poor prognosis, have been a hot
topic of research [4]. Epithelial-mesenchymal transition (EMT) is
a crucial mechanism in tumor cells that encourages early distant
metastasis [5]. EMT influences PC resistance to chemotherapy
and is closely linked to PC's poor prognosis [6]. EMT-related
targets for PC diagnosis and potential therapeutic strategies
have not been identified and therefore, identifying new targets is
critical to improve PC diagnosis, treatment efficacy, and patient
prognosis [7].

The transcription factor forkhead box Q1 (FOXQ1), a member of
the FOX family [8], contributes to a variety of physiological
processes, including cellular senescence [9], glucose metabolism
[10], lactate synthesis [11], and cardiac fibrosis [12]. FOXQ1 also
plays a significant role in the biological processes that contribute
to malignancy, including invasion, apoptosis, and EMT [13] in
diverse cancers, including breast cancer, rectal cancer, and

intrahepatic cholangiocarcinoma [14-18]. Nevertheless, the role
of FOXQ1 in PC has not been clarified.

Growing evidence has indicated that reprogrammed metabo-
lism may be crucial to PC development, progression, therapy, and
prognosis [19]. Glycolysis is the primary mode of energy
production that sustains cancer cell proliferation and metastasis,
even under normoxia conditions [20]. Increased glycolysis is a
common and essential feature of cancer metabolism, which is
highly dependent on improperly functioning metabolic enzymes.
Lactate dehydrogenase A (LDHA), which converts pyruvate to
lactate, enhances the glycolytic process [21]. The expression of
LDHA is unusually increased in numerous cancers and is linked to
the development of malignancy [22]. Moreover, LDHA-mediated
aerobic glycolysis influences the EMT process during carcinogen-
esis [23]. By reversing the “Warburg effect,” targeted LDH
inhibition can stop the development of tumors [24]. LDHA is
highly expressed in PC, suggesting that the development of LDH
inhibitors may be a possible route for PC treatment [25].

In the current work, we explored the role and mechanism of
EMT-related gene FOXQ1 in the proliferation, tumor stemness,
invasion, and metastasis in PC. Our results showed that PC has
elevated FOXQ1 expression, which was significantly related to a
poor clinical outcome. We further found that FOXQ1 binds to the
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LDHA promoter and facilitates the transcription of LDHA. These
activities enhanced aerobic glycolysis and LDHA expression, which
promoted PC cell proliferation, tumor stemness, invasion, and
metastasis. Our findings reveal the role and mechanism of FOXQ1
in driving PC development, suggesting FOXQ1 may be a possible
treatment target for PC.

MATERIALS AND METHODS

Bioinformatics analysis

The EMT-related dataset (Supplementary Table 1) was retrieved from the
GSEA database (https://www.gsea-msigdb.org/gsea/index.jsp). The PC
RNA-seq data was downloaded from the TCGA database (https://
portal.gdc.cancer.gov/). The TCGA and GTEx data were combined using
GEPIA (http://gepia.cancer-pku.cn/index.html). The HumanTFDB website
(http://bioinfo.life.hust.edu.cn/HumanTFDB) was used to predict transcrip-
tion factor binding locations.

Sample collection

Ninety-six pairs of PC and surrounding normal pancreatic tissues were
obtained. The Ethics Committee of Guizhou Medical University approved
the collection and use of clinical specimens, and all patients provided
written consent.

Immunohistochemistry (IHC)

Tissue slices were fixed, embedded, deparaffinized, and blocked. The
sections were incubated with anti-FOXQ?1 (Proteintech, Cat No. 23718-1-
AP), anti-KI67 (Servicebio, Cat No. GB111499), anti-PCNA (Servicebio, Cat
No. GB11010), anti-N-cadherin (Cell Signaling Technology, Cat No. 13116),
anti-Vimentin (Signalway, Cat No. 33541), and anti-LDHA (Proteintech, Cat
No. 66287-1-Ig) antibodies at 4°C overnight. After washing with
phosphate-buffered saline (PBS), the sections were incubated in a
secondary antibody (Proteintech, Cat No. PR30009) for 1h at room
temperature. Hematoxylin re-staining, imaging, and DAB staining were
then performed using standard procedures. Two different pathologists
independently assessed the findings.

RNA extraction and RT-qPCR

Total RNA was extracted using Trizol (Invitrogen, Cat. No. 10296010) and
the concentration was measured with the Nano Drop ND1000. The
TransScript® Two-Step RT-PCR SuperMix (TransGen Biotech, Cat No. AT401)
was used to generate cDNA, and PerfectStart” Green gPCR SuperMix
(TransGen Biotech, Cat No. AQ601) was used for RT-qPCR. Gene expression
was calculated using the 27T method. The corresponding primer
sequences are given in Supplementary Tables 2 and 3.

Western blot

Lysis of cells was conducted with the use of RIPA buffer containing protease
and phosphatase inhibitors on ice for 20min (Thermo Fisher Scientific;
Waltham, MA, USA). After centrifugation at 12,000 rpm for 15 min at 4 °C, the
supernatant was collected and protein concentration was measured using a
BCA Kit (Biosharp, Hefei, Anhui, China). Protein (40 ug) was separated by
SDS-PAGE and electrically transferred to polyvinylidene fluoride membrane.
Specific antibodies are used to detect the blots. Antibodies and dilution ratio
of relevant proteins are given in Supplementary Table 4. All of the complete,
unedited blots are exhibited in the supplemental material.

Cell culture

Five PC cell lines (MIA PaCa-2, SW1990, CFPAC-1, PANC-1, and BxPC-3) and
HPNE cells were acquired from The American Type Culture Collection.
CFPAC-1 and SW1990 cells were cultured in IMEM (Gibco, Waltham, MA,
USA), PANC-1 and MIA-PaCa2 cells were cultivated in DMEM (Gibco), HPNE
and BXPC-3 cells were maintained in RPMI-1640 (Gibco). All cells were
grown in a medium containing 10% fetal bovine serum (FBS; Gibco) and
under a humid environment at 37 °C and 5% CO,. The mycoplasma-free
status was confirmed by STR profiling.

Cell infection and transfection

Short hairpin RNAs (shRNAs) that target FOXQ1 and the control lentivirus
were purchased from Genechem (Shanghai, China). Small interfering RNAs
(siRNAs) targeting LDHA were purchased from RiboBio (Guangzhou,
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China). FOXQ1-overexpressing plasmids and their corresponding control
plasmids were obtained from WZ Biosciences, Inc. (Shandong, China).
siRNA and plasmid transfection were performed using Lipofectamine 3000
(Invitrogen, Waltham, MA, USA). For the target sequences of sh-RNAs and
si-RNAs see Supplementary Table 5.

Cell counting Kit-8 assay

Different groups of PC cells were seeded in 96-well plates and cultured for
0, 24, 48, and 72 h (4 x 10° cells/well, with six replicate wells per group).
Next, 10 pl of CCK-8 solution (Dojindo Molecular Technologies, Inc., Japan)
was added to each well at specified intervals. Absorbance was assessed at
450 nm after 2 h of culture. Three independent replicates were examined.

Sphere formation assay

PC cells (2 x 10%/well) were cultured in DMEM-F12 with B27 (20 ui/mil),
b-FGF (20 ng/ml), EGF (20ng/ml), and 1% penicillin-streptomycin for
10-14 days. Cell spheroids were analyzed through a microscope (Olympus,
Japan).

EdU assay

On the day before the experiment, PC cells (5 x 10° cells/well) were seeded
in 24-well plates and then incubated with 10 uM EdU solution (Beyotime,
Cat No. C0071S) for 2 h. Cells were fixed with 4% paraformaldehyde and
washed with PBS, then permeabilized with 0.3% Triton X-100 and stained
using Hoechst and Apollo reaction mixtures.

Colony formation assay

The PC cells were inoculated in six-well plates for 14 days (1 x 10% cells/
well). Colonies were fixed with 4% paraformaldehyde and then stained
with 0.3% crystal violet for 30 min, respectively.

Immunofluorescence assay

PC cells seeded in 24-well plates were cultured for 24 h. The cells were
fixed with 4% paraformaldehyde and permeabilized with 0.3% Triton
X-100. After blocking the cells with 5% BSA in Triton X-100 for 1 h, cells
were incubated with primary antibody at 4 °C overnight. The cells were
then incubated with a secondary antibody at room temperature for 1 h.
Nuclei were stained with DAPI for 15 min, and a fluorescence microscope
(Zeiss, Germany) was utilized for viewing the cells. Three independent
replicates were examined, and five randomly selected microscope images
(x200 magnification) per treatment were obtained.

Wound healing assay

PC cells were plated in six-well plates (2 x 10%/well) When cell confluence
reached 95%, a linear wound was created with a 200-pl pipette tip. The
cells were then cultured for 48 h in serum-free medium. Images were
obtained using an inverted microscope at 0 and 48 h.

Migration and invasion assays

Migration and invasion experiments were conducted in Transwell
chambers (LABSELECT, Cat No. 14341). Starvation-treated cells (4 x 10%/
well) were plated in the upper chamber and 700 pl complete medium was
added to the lower chamber. 28 h later, cells in the upper chamber were
removed, and the remaining cells were fixed and stained with 4%
paraformaldehyde and 0.3% crystal violet, respectively. For invasion assay,
25 pl Matrigel (BD, Cat No. 3422356234) was applied for coating the upper
membrane. Three independent replicates were examined, and five
randomly selected microscope images (x200 magnification) per treatment
were recorded.

In vivo xenografts and metastasis models

Female six-week-old BALB/c nude mice (HFK Bio-Technology Co., Ltd,
Beijing, China) were distributed at random to each group (the number of
each group is 7). 2 x 10° cells were injected into the right axilla of the mice
for the xenograft model. Tumor volume was measured every week for the
next five weeks following injection, and then mice were euthanized. The
equation (Iengthxwidthz)/z was used to calculate the tumor volume.
1x10° cells were injected into the spleen for the metastasis model (the
number of each group is 5). 6 weeks later, the liver tissues were harvested
and analyzed. The Guizhou Medical University Animal Care Welfare
Committee approved all animal experiments.
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Oxygen consumption rate, extracellular acidification rate,
glucose uptake, ATP production rate, and lactic acid
production assays

PC cells (3.5 x 10* cells/well) were seeded on XF96 microplates (Seahorse,
Cat. No. 101085-004). The cell Mito Stress Test Kit (Cat No.103015-100) and
Glycolysis Stress Test Kit (Seahorse, Cat No.103020-100) were adopted to
detect the oxygen consumption rate and extracellular acidification rate by
the Seahorse XFe96 Analyzer. Glucose uptake analyzed by the Seahorse
XFe24 analyzer, ATP and lactate production were measured using the ATP
Assay Kit (Sigma, MAK190) and Lactate Assay Kit (Sigma, MAKO064).

RNA-seq

Three pairs of FOXQ1 knockdown and corresponding negative control
PANC-1 cell samples were applied to perform RNA-seq. Total RNA was
extracted from each sample using the Novaseq 6000 platform. DEGs were
defined using the following criteria: |log2FC|>1 and p < 0.05.

Chip

The SimpleChIP® Plus Sonication Chromatin IP Kit (Cell Signaling Technolo-
gies, Cat No. #56383) was exploited to conduct the ChIP assay. FOXQ1-
overexpressing PANC-1 cells (1 x 107) were fixed with 1% formaldehyde, the
reaction was stopped by 0.1 M glycine. The chromatin was fragmented into
sizes ranging from 200 to 1000bp and then incubated with anti-Flag
(Proteintech, Cat No. 20543-1-AP) or anti-lgG (Proteintech, Cat No. 30000-0-AP)
antibody. DNA was amplified by RT-qPCR or utilized for ChIP-seq.

Dual-luciferase reporter assay

PC cells were inoculated in 96-well plates (4 x 10 cells/well). The luciferase
reporter plasmid (150ng) was then co-transfected with the pGL-4.74
Renilla control plasmid (Promega, catalog number E692A) (30 ng) using
Lipofectamine 3000 (Invitrogen) reagent. 48 h later, luciferase activity was
evaluated by the Dual-Luciferase Reporter Assay Kit (Promega, Madison,
WI, USA). Three independent replicates were examined.

Statistical analysis

The data were expressed as mean + standard deviation and analyzed by
SPSS (version 23.0; IBM Corp., Armonk, NY, USA). The two-sided unpaired
Student’s t-test was applied for assessing the group differences. Survival
was examined using Kaplan-Meier curves. Correlations between FOXQ1
and LDHA were identified by Pearson correlation analysis. p <0.05 was
considered of statistical significance.

RESULTS

FOXQ1 is overexpressed in PC tissues and cells

We downloaded the data of RNA-seq of PC tissues from the TCGA
database and screened these data with EMT-related dataset from
the GESA database, and finally found that transcription factor
FOXQT1 is a differentially expressed gene associated with EMT in
PC tissues (Supplementary Fig. S1). Then we clustered the
samples, gradually adding clustering variables (k) from 2 to 9.
k =2 was determined as the optimal number of clusters and the
entire cohorts were divided into clusters A (high expression
subgroup of EMT-related genes, n=154) and B (low expression
subgroup of EMT-related genes, n=17) using a consensus
clustering algorithm. By PCA analysis, we observed a significant
difference in prognosis between PC patients in cluster A and
cluster B (P<0.01), with PC patients in cluster A having a
significantly worse prognosis than those in cluster B (Fig. 1A, B). To
further understand the EMT-related mechanisms, we analyzed the
EMT-related genes with differential expression and prognostic
relevance for clusters A and B and drew a forest plot (Fig. 1C).
Moreover, PC patients with high FOXQ1 level showed shorter
overall survival time (Fig. 1D). The mRNA level of FOXQ1 in 179 PC
tissues and 171 normal pancreatic tissues was examined by GEPIA
analysis, the finding demonstrated that PC tissues had greater
level of FOXQ1 expression than normal pancreatic tissues (Fig. 1E).
To validate the results from the bioinformatics study, we
performed immunohistochemistry assay on 96 matched pairs of
pancreatic tumor and surrounding non-tumor tissues. The results
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showed that PC tumor tissues had higher FOXQ1 levels than
nearby non-tumor tissues (Fig. 1F). FOXQ1 mRNA was more
abundant in 73.33% of PC samples in comparison with non-tumor
samples (Fig. 1G). Further, we examined the expression of FOXQ1
in five human PC cell lines (SW1990, MIA PaCa-2, BxPC-3, PANC-1,
and CFPAC-1) and the telomerase-immortalized human pancreatic
duct derived (HPNE) cell. The results denoted that both the mRNA
and protein levels of FOXQ1 were increased in PC cells than in the
HPNE cell (Fig. 1H, I). These findings suggest that FOXQ1, an EMT-
related target, is highly expressed in both PC tissues and cells.

FOXQ1 facilitates PC proliferation and stemness in vitro and
in vivo

Stable FOXQ1 knockdown PC cell lines (PANC-1 and CFPAC-1 cells)
were generated, and the sh-FOXQ1#1 and sh-FOXQ1#2 targets
were chosen by RT-qPCR and western blot assays (Supplementary
Fig. S2). The role of FOXQ1 in proliferation was examined by CCK-
8, colony formation, and EdU staining assays. Knockdown of
FOXQ1 decreased the capacity of cell proliferation in PANC-1 and
CFPAC-1 cells (Fig. 2A-C). We also performed a suspension sphere-
formation assay to determine FOXQ1's contribution to tumor
stemness and found that the FOXQT1 silencing groups exhibited
decreased sphere formation efficiency (Fig. 2D).

To determine if FOXQ1 has contributed to the malignant
activity of PC in vivo, we generated subcutaneous tumor nude
mouse models. For the subcutaneous tumor model, mice were
injected with control or FOXQ1-silenced PANC-1 cells. The results
showed that mice injected with FOXQ1-silenced PANC-1 cells
exhibited significantly smaller tumors compared with the control
group mice (Fig. 2E-G). IHC assay revealed decreased expression
of FOXQ1, Ki-67, PCNA, Vimentin, N-Cadherin, and LDHA in tumors
from the FOXQ1-silenced group (Fig. 2H, I). All of the above
implies that FOXQ1 may promote PC cell proliferation and
stemness in vitro and in vivo.

FOXQ1 promotes PC invasion and metastasis in vitro and

in vivo

The capacity of FOXQ1 on PC invasion and metastasis was explored
further. The result of the immunofluorescence assay demonstrated
that the FOXQ1 knockdown group PC cells expressed a lower level
of the mesenchymal-related proteins Vimentin and N-Cadherin and
a higher level of the epithelial-related protein E-Cadherin compared
with the control group (Fig. 3A and Supplementary Fig. S3).
Moreover, wound healing and Transwell assays demonstrated that
downregulating FOXQ1 decreased PC cell's capacity for migration
and invasion (Fig. 3B, C). The result of the western blot displayed
analogous findings with immunofluorescence assay (Fig. 3D). To
determine if FOXQ1 contributes to the malignant activity of PC
in vivo, liver metastasis nude mouse models were generated. The
results indicated that FOXQI-silenced groups showed weaker
metastasis ability compared with the control group (Fig. 3E, F).
These findings suggest that FOXQ1 aggravates PC cell invasion and
metastasis in vitro and in vivo.

FOXQ1 activates metabolism-related pathways and promotes
PC cell aerobic glycolysis in vitro

We next conducted RNA-seq to discern differentially expressed
genes (DEGs) in FOXQ1-control and silenced PANC-1 cells using
the Jlog2 FC| > 1 and P < 0.05 criteria (Fig. 4A, B). KEGG enrichment
analysis revealed that the DEGs were enriched in the metabolic
pathway (Fig. 4C). To support their powerful capability for
invasion, proliferation, and metastasis, cancer cells convert from
anaerobic to aerobic glycolysis. Thus, we extrapolated that FOXQ1
might be in relation to the regulation of aerobic glycolysis, which
influences the prognosis of PC. The impact of FOXQ1 on PC cell
glycolysis was investigated through the Seahorse XF extracellular
flux analyzer. We discovered that FOXQ1 knockdown decreased
glycolysis and glycolysis capacity (Fig. 4D), while enhanced ATP
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cells. I Western blotting analysis of FOXQ1 expression in the indicated cells. Scale bar: 100 um; *p < 0.05; **p < 0.01.
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synthesis and maximum respiration (Fig. 4E) in PC cells.

Furthermore, by detecting the cellular energy metabolism in PC
cells we found that the glucose uptake, ATP production, and
lactate production decreased after FOXQ1 knockdown (Fig. 4F-H).
These results suggest that in vitro aerobic glycolysis and PC
development may partially be increased by FOXQT.
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FOXQ1 activates the transcription of LDHA

Based on the results of KEGG-enrichment analysis, three genes
(including ALDH3A2, DLAT and LDHA) were identified after
taking intersections in the sets of DEGs in metabolic pathways,
pyruvate metabolism and glycolysis/gluconeogenesis pathways
(Fig. 5A). The correlation of FOXQ1 with ALDH3A2, DLAT and
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Fig. 5 FOXQ1 activates the transcription of LDHA. A The intersection of pyruvate metabolism, glycolysis/gluconeogenesis, and differentially
expressed genes (DEGs) in metabolic pathways is shown as a Venn diagram. B Correlation analysis of LDHA and FOXQ1 in PC using the GEPIA
database. C Relative expression of LDHA in PC acquired from the GEPIA database. D Overall survival curve of PC patients with differential
LDHA expression from the GEPIA database. E LDHA expression level was assessed in 96 pairs of PC (T) and corresponding adjacent (N) tissues
by IHC assay. F Representative images of IHC assay for FOXQ1 and LDHA expression in successive slices of PC tissues. The expression of 40
samples was tested using Pearson’s chi-squared method. G and H Western blot (G) and RT-gPCR (H) analysis of LDHA expression in the
indicated cells, respectively. I FOXQ1 binding motif predicted by TFDB. J Potential FOXQ1 binding locations in the LDHA promoter.
K Diagrammatic representation of primers for LDHA areas. L Analysis of FOXQ1 enrichment on the LDHA promoter via ChIP-PCR. IgG served as
the negative control. M Schematic of dual-luciferase reporter vectors. N Luciferase assays using the wild-type (Wt) and mutant (Mut) LDHA

reporters in the indicated cells. Scale bar: 100 ym, *p < 0.05; **p < 0.01.

LDHA in PC was analyzed using the GIEPA database, and the
results showed that LDHA was most closely related to
FOXQ1(R=0.21, p=0.0049) (Fig. 5B and Supplementary
Fig. S4). The mRNA level of LDHA in 179 PC samples and 171
normal pancreatic tissues was investigated by GEPIA, and the
result exhibited that the expression of LDHA was elevated in PC
(Fig. 5C). In addition, PC patients with high LDHA levels
presented shorter overall survival time (Fig. 5D). The protein
expression level of FOXQ1 and LDHA were examined in PC
samples by IHC assays. And the results denoted that PC tissues
showed higher FOXQ1 and LDHA protein levels than that in the
nearby non-tumor tissues (Fig. 5E). Moreover, FOXQ1 high-
expressing specimens showed a significantly high level of LDHA
expression (Fig. 5F). Western blotting and RT-gPCR results
demonstrated that FOXQ1 knockdown attenuated LDHA expres-
sion in PC cells (Fig. 5G, H). We then matched the FOXQ1
binding sequences acquired from the TFDB database with the
promoter region sequences of LDHA and discovered that the
LDHA promoter may contain six FOXQ1 binding sites (Fig. 5I, J).
With the probable transcriptional start site and binding sites
included, PCR primers for about 160-bp region were designed
(Fig. 5K). According to ChIP-PCR data, FOXQ1 could directly bind
to the LDHA promoter’s regions (Fig. 5L). To clarify the
transcriptional activity of FOXQT, plasmids containing the
promoter sequences of wild-type (Wt) and individual binding
site mutants (Mut) were transfected into FOXQ1 overexpressing
and control cells (Fig. 5M). Upregulation of FOXQ1 increased
LDHA promoter activity, according to the dual-luciferase
reporter assay. However, this effect was absent in the mutation
of the FOXQ1 binding site (Fig. 5N). Together, these findings
suggest that FOXQ1 could directly bind to the promoter region
of LDHA to enhance its expression.

LDHA is critical for FOXQ1-mediated PC progression

In order to find out whether LDHA has a pivotal role in the PC
progression mediated by FOXQ1, siRNA of LDHA (si-LDHA) and 2-
deoxy-p-glucose (2-DG, the glycolysis inhibitors, 100 mM) were
added into the FOXQ1 overexpressing PC cells. We found that
inhibiting LDHA and glycolysis significantly reversed PC cell
proliferation (Fig. 6A, C, D), stemness (Fig. 6B), invasion, and
metastasis capacity augmented by FOXQ1 (Fig. 7A-C). Addition-
ally, suppression of LDHA and glycolysis prevented the FOXQ1-
enhanced extracellular acidification and oxygen consumption
(Fig. 6E, F). Meanwhile, the effects of FOXQ1 on glucose uptake,
ATP production, and lactate production in PC cells were restored
by knocking down LDHA or the application of glycolysis inhibitors
(Supplementary Fig. S5). Immunofluorescence (Fig. 7D) and
western blotting analysis (Fig. 7E) confirmed that the level of
Vimentin, N-Cadherin and E-Cadherin was partly reverted when
downregulation of LDHA and glycolysis. Thus, it could be
concluded that LDHA may be necessary for PC development
mediated by FOXQ1.

DISCUSSION
PC is extremely aggressive, most PC patients show locally
advanced disease (30-35%) or metastasis (50-55%) at the time
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of diagnosis [3, 26]. Despite the major advancements in PC
prevention, detection, and therapy, efficient biomarkers and
therapeutic approaches have not yet been discovered [7, 27].
Aerobic glycolysis (the Warburg effect) and EMT are significant
contributors to the malignant activities of PC cells. A better
understanding of the epithelial dynamics and metabolic state
during metastasis is crucial for designing effective therapies for
metastatic cancer including PC [28]. Aberrant activation of EMT,
which is a critical mechanism in tissue repair and organ
development [29], is a key factor in promoting distant metastasis
and treatment resistance in cancer cells [30].

In this study, we screened the PC database and identified the TF
FOXQT1, which is highly correlated with EMT, by bioinformatics
analysis. FOXQ1 (namely HFH1), a member of the FOX gene family,
is a sequence-specific TF [14]. A pan-cancer investigation revealed
that the expression of FOXQ1 was connected to the activation and
inactivation of 33 pathways in 12 tumors [13]. Many studies have
shown a correlation between FOXQ1 and cancer stem cells. For
example, miR-4319-mediated FOXQ1 inhibition suppressed EMT
and prevented cancer stemness in hepatocellular carcinoma [31].
In PC, FOXQ1 overexpression promotes cancer stem cell resistance
to radiotherapy [32].

We discovered that FOXQ1 is highly expressed in PC tissues and
cell lines. Furthermore, there was a strong correlation between
high FOXQ1 expression with poor clinical prognosis in PC patients.
Additionally, our findings demonstrated that elevated FOXQ1
expression boosts PC cell proliferation, tumor stemness, invasion,
and metastasis both in vitro and in vivo. Immunoblotting and
immunofluorescence assays showed an expression correlation
between FOXQ1 and the EMT-related proteins. Overall, our data
support that FOXQ1 could be a valuable prognostic marker and
therapeutic target in PC.

Unlike a large collection of solid tumors, PC tissue contains a
significant amount of fibrotic inflammatory stroma, which fosters a
hypoxic and nutrient-deficient environment for cancer cells [5]. PC
cells have the capacity to undergo ‘metabolic reprogramming’ to
aerobic glycolysis, and to meet their high energy needs and
develop proliferation, tumor stemness, invasion, and metastasis
activities [19, 33]. Thus, discovering novel molecular pathways of
aerobic glycolysis in PC has enormous therapeutic significance for
PC therapy.

Through RNA-seq, we discovered that FOXQ1 is strongly
linked to metabolism-related pathways in PC cells, including
pyruvate metabolism and glycolysis/gluconeogenesis metabo-
lism. We also confirmed that low FOXQ1 expression inhibits
aerobic glycolysis in PC cells. Furthermore, screening and
validation assays revealed that FOXQ1 may activate the LDHA
transcription by directly interacting with its promoter region.
Nowadays, LDHA is reported to be an intracellular enzyme that
completes the glycolytic cycle by reversibly converting pyruvate
to lactate and NADH to NAD [34], it possesses the greatest
affinity among the LDH family members to convert pyruvate to
lactate [35]. The expression level of LDHA in PC tissues is
correlated with clinicopathological characteristics: LDHA is
overexpressed during pancreatic carcinogenesis and exhibits
greater expression in more aggressive tumors [25]. Furthermore,
there is a consistent relationship between high blood LDH levels
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Fig.6 LDHA is essential for FOXQ1-mediated PC cell proliferation, stemness, and aerobic glycolysis in vitro. Small interfering RNA of LDHA
(si-LDHA) and 2-DG (glycolytic pathway inhibitors) were added to PANC-1 and CFPAC-1 cells infected with lentivirus that overexpressed
FOXQ1. A CCK-8 evaluation of cell proliferation of each group. B Sphere formation experiment. C Colony formation assay of each group. D EdU
staining images of the indicated cell groups. E ECAR assay of the indicated cell groups. F OCR assay of the indicated cell groups. Scale bar:
100 um; *p < 0.05; **p < 0.01.
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Fig. 7 LDHA is essential for FOXQ1-mediated PC cell invasion and metastasis in vitro. Small interfering RNA of LDHA (si-LDHA) and 2-DG
(glycolytic pathway inhibitors) were added to PANC-1 and CFPAC-1 cells infected with lentivirus that overexpressed FOXQ1. A Wound healing
assay of PANC-1 and CFPAC-1 cell groups. B, C Representative images of the Transwell assay in the indicated cells. D Immunofluorescence
assay was performed to detect the EMT-related protein expression in PANC-1 and CFPAC-1 cell groups. E Western blotting experiment to
detect the level of N-Cadherin, E-Cadherin, Vimentin, FOXQ1, and LDHA. Scale bar: 100 ym; *p < 0.05; **p < 0.01.
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Fig. 8 Schematic diagram of this study. An illustration of how FOXQ1 regulates LDHA-mediated aerobic glycolysis to promote PC cell
proliferation, invasion, and metastasis was produced using BioRender.com (Agreement number: LZ25VCU6AY).

and worse OS in patients with unresectable PDAC. A meta-
analysis of 18 studies found that increased pretreatment serum
lactate dehydrogenase values were related to poor OS [36]. In
addition, serum LDH level is recognized as an independent and
significant predictive factor following palliative treatment with
gemcitabine in patients with advanced PDAC [37].

To sum up, our experimental studies show that FOXQI

promotes the transcription of LDHA, then upregulates the level
of aerobic glycolysis, thus facilitating PC cell proliferation, tumor
stemness, invasion, and metastasis (Fig. 8). Therefore, FOXQ1 may
be a possible therapeutic target in PC.
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