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Abstract
Objective  To compare examination time and image quality between artificial intelligence (AI)–assisted compressed sensing 
(ACS) technique and parallel imaging (PI) technique in MRI of patients with nasopharyngeal carcinoma (NPC).
Methods  Sixty-six patients with pathologically confirmed NPC underwent nasopharynx and neck examination using a 3.0-T 
MRI system. Transverse T2-weighted fast spin-echo (FSE) sequence, transverse T1-weighted FSE sequence, post-contrast 
transverse T1-weighted FSE sequence, and post-contrast coronal T1-weighted FSE were obtained by both ACS and PI tech-
niques, respectively. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and duration of scanning of both sets 
of images analyzed by ACS and PI techniques were compared. The images from the ACS and PI techniques were scored for 
lesion detection, margin sharpness of lesions, artifacts, and overall image quality using the 5-point Likert scale.
Results  The examination time with ACS technique was significantly shorter than that with PI technique (p < 0.0001). The 
comparison of SNR and CNR showed that ACS technique was significantly superior with PI technique (p < 0.005). Qualitative 
image analysis showed that the scores of lesion detection, margin sharpness of lesions, artifacts, and overall image quality 
were higher in the ACS sequences than those in the PI sequences (p < 0.0001). Inter-observer agreement was evaluated for 
all qualitative indicators for each method, in which the results showed satisfactory-to-excellent agreement (p < 0.0001).
Conclusion  Compared with the PI technique, the ACS technique for MR examination of NPC can not only shorten scanning 
time but also improve image quality.
Clinical relevance statement  The artificial intelligence (AI)–assisted compressed sensing (ACS) technique shortens exami-
nation time for patients with nasopharyngeal carcinoma, while improving the image quality and examination success rate, 
which will benefit more patients.
Key Points 
• Compared with the parallel imaging (PI) technique, the artificial intelligence (AI)–assisted compressed sensing (ACS) 

technique not only reduced examination time, but also improved image quality.
• Artificial intelligence (AI)–assisted compressed sensing (ACS) pulls the state-of-the-art deep learning technique into the 

reconstruction procedure and helps find an optimal balance of imaging speed and image quality.
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Abbreviations
ACS	� Artificial intelligence (AI)–assisted compressed 

sensing
AI	� Artificial intelligence
AiCE	� Advanced intelligent Clear IQ Engine
CNN	� Convolutional neural network
CNR	� Contrast-to-noise ratio
CS	� Compression sensing
CT	� Computed tomography
DLR	� Deep learning reconstruction
FOV	� Field-of-view
FSE	� Fast spin-echo
HF	� Half-Fourier
MRI	� Magnetic resonance imaging
NKUC	� Nonkeratinizing undifferentiated carcinoma
NPC	� Nasopharyngeal carcinoma
PACS	� Picture Archiving and Communication System
PI	� Parallel imaging
ResNet	� Residual Neural Network
ROI	� Region of interest
SD	� Standard deviation
SI	� Signal intensity
SNR	� Signal-to-noise ration

Introduction

Nasopharyngeal carcinoma (NPC) is an endemic disease in 
Southeast Asia, especially in some southern provinces of 
mainland China [1]. Magnetic resonance imaging (MRI) is 
widely used in the diagnosis, staging, and efficacy evalua-
tion of NPC. Compared with computed tomography (CT), 
MRI can better identify early-stage NPC (stages I–II) and has 
superior sensitivity and specificity for discriminating adja-
cent soft tissue invasion, skull base invasion, cranial nerve 
invasion, and retropharyngeal lymph node involvement [2–4].

Although the advantages of MRI are noticeable, the time-
consuming feature of MRI can lead to patients’ fatigue and 
motion artifacts, reducing the quality of images. K-space 
under-sampling is currently the main method for reduc-
ing MRI scan time [5]. There are three main approaches 
to perform k-space under-sampling, including Half Fourier 
(HF) imaging, parallel imaging (PI), and compression sens-
ing (CS) [6]. The HF technique is based on the Hermitian 
conjugate symmetry of the k-space. Only half of the k-space 
data are acquired in the phase encoding direction under ideal 
conditions, and the other half can be calculated and filled 
according to the conjugate symmetry of the k-space [7–9]. 
The deficiency of HF is that Gibbs artifacts are generated 
and signal-to-noise ratio (SNR) of an image decreases inevi-
tably. The PI technique relies on the use of a receiver coil 
array to collect under-sampled k-space data and on special-
ized algorithms to reconstruct the complete field-of-view 

(FOV) images [10, 11]. PI is a commonly used acceleration 
tool in clinical applications, while image quality at high-
acceleration factors may be reduced by noise amplification 
and under-sampled artifacts. The CS technique provides a 
new approach to recover imaging data from under-sampled 
k-space through the exploitation of sparsity. A small num-
ber of signals acquired by incoherence sampling are recon-
structed with a high-probability using a reconstruction algo-
rithm, and finally higher quality MR images are obtained by 
the Fourier transform [12–14].

In recent years, CS has been widely used as a new under-
sampled k-space method. However, its insufficient sparsity 
may lead to noise-like aliasing artifacts when excessive 
acceleration factors are employed. Therefore, some MR ven-
dors have introduced deep learning reconstruction (DLR) to 
improve image quality [15–17], such as the Advanced intel-
ligent Clear IQ Engine (AiCE) developed by Canon Medi-
cal Systems Corporation [18]. A new acceleration method, 
namely artificial intelligence (AI)–assisted compressed sens-
ing (ACS), was developed by United Imaging Intelligence 
(UII) and United Imaging Healthcare (UIH), incorporating 
CS, HF, and PI to innovatively introduce deep learning neural 
networks as AI modules into the reconstruction process [19].

MRI is the most appropriate method for localization 
and qualitative and staging diagnosis of NPC [20–23]. 
T2-weighted fast spin-echo (FSE), T1-weighted FSE, and 
contrast-enhanced T1-weighted FSE are key sequences in 
MRI of NPC [24]. Conventional MRI scans of NPC are 
dominated by FSE sequences with PI [25], and in some 
sequences, a combination of fat suppression is required to 
determine whether the tumor has bone marrow infiltration 
of the skull base [26, 27]. In addition, the MRI of NPC must 
be scanned in combination with the nasopharynx and neck to 
facilitate clinical staging. The longer total time of MRI scans 
due to the combined nasopharyngeal and neck scan and the 
adoption of FSE sequences with a longer time, resulting in 
failure of some patients in completion of the examination 
because of intolerance. The present study aimed to apply 
the innovative ACS technique to FSE sequences to explore 
the capabilities of ACS in improving the time and quality 
of MRI of NPC.

Methods

Study population

The study was approved by the institutional review board of 
our hospital (Approval No. B2020-417). From August 2021 
to December 2021, a total of 72 patients with confirmed or 
suspected NPC underwent nasopharynx and neck examina-
tion using a 3.0-T MR system. The inclusion criteria were 
as follows: (1) newly diagnosed, untreated patients with 
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NPC; (2) patients who aged  ≥ 18 years old. The exclusion 
criteria were as follows: (1) no pathological confirmation 
of NPC; (2) poor patient compliance, incomplete data, or 
severe motion artifacts. Finally, 66 patients who were patho-
logically diagnosed with NPC were included in this study. 
Patients’ characteristics are presented in Table 1.

MRI acquisition

All MRI measurements were performed on a 3.0-T MR 
machine (uMR790; United Imaging Healthcare Co., Ltd) 
with a head and neck combined coil. Transverse T2-weighted 
FSE sequences and transversal, sagittal, and coronal plane 
T1-weighted FSE images were obtained before contrast 
injection. After the injection of gadopentetate dimeglumine 
at a dose of 0.1 mmol/kg, T1-weighted transverse, sagittal, 
and coronal sequences (with fat saturation) were obtained 
using parameters similar to pre-injection imaging.

Transverse T2-weighted FSE sequence, transverse 
T1-weighted FSE sequence, post-contrast transverse 
T1-weighted FSE sequence, and post-contrast coronal 

T1-weighted FSE with fat suppression were experimen-
tal sequences, which were obtained by both ACS and PI 
techniques, respectively. The periods of examinations were 
recorded for all patients. The parameters (TR, TE, ETL, etc.) 
used in the ACS sequences and PI sequences of the same 
patient are consistent; details of parameters of ACS and PI 
sequences are listed in Table 2.

ACS

ACS incorporates CS, PI, HF, and AI to provide an 
improved MR acceleration solution. It innovatively intro-
duces AI module based on deep neural networks. The goal 
of the AI module in ACS is to learn the features of fully 
sampled high-quality images without reconstruction arti-
facts, converting the obtained full k-space data into the 
image space, as the target output. The AI module is trained 
based on the designed Residual Neural Network (ResNet), 
which is widely used in the convolutional neural network 
(CNN) [17, 28–30]. The structure of the network consists of 
two convolutional operations and a skip connection. A long 
skip-over connection between the input and output of the 
network is added to learn the residual between the fully sam-
pled and under-sampled images to improve the convergence 
rate during learning. To further improve the quality of the 
reconstructed images, a least-squares generative adversarial 
network training strategy is used [31]. The network design 
is shown in Fig. 1. The under-sampled images provide the 
information really obtained during the scanning process. 
The prior knowledge of the input data is maintained by the 
important Data Consistency Checking model in the internal 
network, while the parameters in the Feature Detection and 
Image Optimization processes will be optimized during the 
training phase until the prediction of the network reaches the 
optimal state. During the training phase of the AI model, a 
great number of full k-space data were collected and retro-
spectively under-sampled and converted to the image space 
as input. “This FDA-approved deep learning assisted recon-
struction method was trained based on two million fully 
sampled slices previously acquired with phantom (2%) and 
volunteers (98%)” [31].

The compressed AI module is integrated into the iterative 
reconstruction program of the compressed sensing frame-
work to get the final images. ACS follows the principle of 
compressed sensing and uses the learning ability of AI mod-
ule at the same time. This effective combination fulfills the 
advantages of deep learning and also enables the AI module 
is controllable.

Quantitative image analysis

The quantitative image analysis was performed on a 
workstation (uWS-MrR005; United Imaging Healthcare 

Table 1   Patients’ characteristics

Abbreviations: SD, standard deviation; NKUC, nonkeratinizing undif-
ferentiated carcinoma

Characteristics Values

Number of patients (%) 66
Mean age ± SD (range); years 44 ± 11 (18–64)
Gender
  Male 44 (66.7%)
  Female 22 (33.3%)
Histological type
  NKUC 66 (100%)
T stage
  T1 7 (10.6%)
  T2 6 (9.1%)
  T3 42 (63.6%)
  T4 11 (16.7%)
N stage
  N0 1 (1.5%)
  N1 30 (45.5%)
  N2 18 (27.2%)
  N3 17 (25.8%)
M stage
  M0 61 (92.4%)
  M1 5 (7.6%)
AJCC stage
  I 2 (3%)
  II 8 (12.1%)
  III 30 (45.5%)
  IV 26 (39.4%)
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Co., Ltd.). The images generated by both ACS and PI 
techniques were required to measure the signal inten-
sity (SI) and the standard deviation (SD) by placing in 
regions of interest (ROIs). ROIs were placed on two sets 
of images of transverse T2-weighted FSE sequence, trans-
verse T1-weighted FSE sequence, post-contrast transverse 
T1-weighted FSE sequence, and post-contrast coronal 
T1-weighted FSE with fat suppression sequence. Then, 
the following data were measured at the largest lesion in 
both sets of images: The SI of the lesion, the SI of the 
lateral pterygoid muscle (ROI should be placed on the 
image of the contralateral lateral pterygoid muscle if the 

ipsilateral lateral pterygoid muscle has been invaded), the 
SD at the four corners (the top-left, top-right, bottom-left, 
and bottom-right corners) of background in the same layer 
image. The SNR and the CNR were calculated using the 
following formula [32]:

where S is the SI lesion, SD is the mean standard deviation 
of the SI at the four corners of background noise, and d is 
the slice thickness.

(1)SNR =
0.66 × S

SD
×

√

10

d

Fig. 1   The AI module in ACS mitigates reconstruction artifacts at high acceleration levels

Table 2   MRI sequences and parameters

ACS, AI-assisted compressed sensing; PI, parallel imaging; Tra T2WI, transverse T2-weighted image; Tra T1WI, transverse T1-weighted image; 
Cor T1WI, coronal T1-weighted image

Sequence 
parameter

Tra T2WI FSE 
ACS

Tra T2WI 
FSE PI

Tra T1WI FSE 
ACS

Tra T1WI 
FSE PI

Post-contrast 
Tra T1WI 
FSE ACS

Post-contrast 
Tra T1WI 
FSE PI

Post-contrast 
Cor T1WI 
FSE ACS

Post-contras 
Cor T1WI 
FSE PI

Fov (mm) 240 × 240 240 × 240 240 × 240 240 × 240 240 × 240 240 × 240 280 × 240 280 × 240
TR/TE (ms) 4800/120 4800/120 662/8.16 662/8.16 789/8.12 789/8.12 576/10.82 576/10.82
Matrix 384 × 269 384 × 269 384 × 307 384 × 307 384 × 307 384 × 307 352 × 226 352 × 226
ETL 28 28 2 2 2 2 4 4
Bandwidth 

(Hz)
260 260 280 280 250 250 250 250

Average 1 1 1 1 1 1 1.2 1.2
Number slices 40 40 40 40 40 40 24 24
Spatial resolu-

tion
0.89 × 0.63 

× 5
0.89 × 0.63 

× 5
0.78 × 0.63 

× 5
0.78 × 0.63 

× 5
0.78 × 0.63 

× 5
0.78 × 0.63 

× 5
1.06 × 0.8 × 2 1.06 × 0.8 

× 2
Acquisition ACS PI ACS PI ACS PI ACS PI
Accelerating 

factors
2.25 2 2.25 2 2.25 2 2.5 2

Fat suppres-
sion

No No No No No No Yes Yes
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To calculate the CNR, the following formula was applied:

where SItissue1 and SItissue2 are the SI of the lesion and the 
lateral pterygoid muscle, respectively; SD is the mean stand-
ard deviation of the signal intensity at the four corners of 
background noise.

MRI of the neck is particularly important in the evalua-
tion of lymph node metastasis in NPC. The evaluation of the 
SI in the lower neck region was performed by measuring the 
SNR of the trapezius muscle. ROIs were placed on the two 
image sets (ACS and PI) of the trapezius muscle from the 
post-contrast coronal T1-weighted FSE with fat suppression 
sequence to obtain the SI of the trapezius muscle. When 
the SD at the four corner signals of background noise was 
measured, the mean and the SD were calculated. The SNR 
of the trapezius muscle was calculated using Eq. (1).

Qualitative image analysis

The qualitative image analysis was carried out using the 
Picture Archiving and Communication System (PACS) 
(Centricity™ PACS; GE Medical Systems). All the imag-
ing analyses were performed by two radiologists (H.L. 
and C.M.X.) who had 18 and 34 years of experience in 
the diagnosis of NPC. Two readers were individually 
blinded to patients’ clinical data and evaluated lesion 
detection, margin sharpness of lesions, artifacts, and 
overall image quality using a 5-point scoring system. 
In the present study, the lesion detection was scored as 
follows: 1, poor, almost invisible; 2, fair, lesions were 
partially visible; 3, moderate, lesions could be detected, 
while they were unclear; 4, good, lesions could be 
detected, and anatomical details were relatively clear; 5, 
excellent, lesions were easily detected, and anatomical 
details were very clear. The margin sharpness of lesions 
was rated as follows: 1, unreadable; 2, extremely blur; 3, 
moderately blur; 4, mildly blur; 5, no blur. The artifacts 
were scored as follows: 1, unreadable; 2, severe artifact; 
3, moderate artifact; 4, mild artifact; 5, no artifact. The 
overall image quality was scored as follows: 1, poor; 2, 
fair; 3, moderate; 4, good; 5, excellent.

Statistical analysis

The statistical analysis was carried out using SPSS 26.0 
software (IBM). The examination time and the values of 
the SNR and CNR were compared between ACS and PI 
sequences. All measurement data were expressed as the 
mean ± SD. Normality of data was tested by the Kolmog-
orov-Smirnov test. The paired sample t-test was used for 

(2)CNR =
SI

tissue1
− SI

tissue2

SD

the analysis of normally distributed data, and the Wil-
coxon signed-rank test was utilized for the analysis of 
abnormally distributed data. The image quality scores of 
sequences with ACS and PI techniques were also tested 
using the Wilcoxon signed-rank test. Weighted kappa sta-
tistic and χ2 test were used to evaluate the inter-observer 
agreement of imaging analyses for each qualitative indi-
cator. The kappa coefficients for inter-observer agree-
ments were interpreted as follows:  < 0.20, very weak; 
0.21–0.40, weak; 0.41–0.60, moderate; 0.61–0.80, satis-
factory; and 0.81–1.00, excellent. p < 0.05 was considered 
statistically significant.

Results

Two representative cases are illustrated in Figs. 2 and 3.
The comparison of examination time (Fig. 4) showed 

that the time of FSE sequences with ACS was significantly 
shorter than that of FSE sequences with PI, and the over-
all examination time of the ACS sequences and the PI 
sequences showed a statistical difference. The comparison 
of examination time showed that the time of T2-weighted 
sequences in the transverse planes with ACS was signifi-
cantly shorter than that with PI (ACS (40.08 ± 1.33 s) vs. 
PI (60.21 ± 3.24 s), p < 0.0001). The time of T1-weighted 
sequences in the transverse planes with ACS was signifi-
cantly shorter than that with PI (ACS (74.91 ± 2.76 s) vs. 
PI (107.54 ± 5.89 s), p < 0.0001). The time of post-con-
trast T1-weighted sequences in the transverse planes with 
ACS was significantly shorter than that with PI (ACS 
(92.40 ± 2.82 s) vs. PI (129.72 ± 5.66 s), p < 0.0001). The 
time of post-contrast T1-weighted sequences in the coro-
nal planes with ACS was significantly shorter than that 
with PI (ACS (127.78 ± 9.74 s) vs. PI (218.21 ± 16.13 s), 
p < 0.0001). The total time of 4 sequences using ACS and 
PI was 335.17 ± 11.40 and 515.67 ± 21.80 s, respectively 
(p < 0.0001).

The comparison of SNR (Table 3 and Fig. 5) showed that 
the SNR values of FSE sequences with ACS were signifi-
cantly higher than those of FSE sequences with PI. The SNR 
values of T2-weighted sequences in the transverse planes 
with ACS were significantly higher than those with PI (ACS 
(182.07 ± 41.69) vs. PI (145.27 ± 38.05), p < 0.0001). The 
SNR values of T1-weighted sequences in the transverse 
planes with ACS were significantly higher than those 
with PI (ACS (183.53 ± 31.36) vs. PI (147.02 ± 27.11), 
p < 0.0001). The SNR values of post-contrast T1-weighted 
sequences in the transverse planes with ACS were signifi-
cantly higher than those with PI (ACS (312.43 ± 56.59) vs. 
PI (245.89 ± 46.68), p < 0.0001). The SNR values of post-
contrast T1-weighted sequences in the coronal planes with 
ACS were significantly higher than those with PI (ACS 
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(189.05 ± 60.84) vs. PI (140.82 ± 43.26), p < 0.0001). The 
SNR values of the trapezius were also statistically sig-
nificant in post-contrast coronal T1-weighted FSE with 
fat suppression sequences (ACS (94.76 ± 27.08) vs. PI 
(78.63 ± 23.00), p < 0.0001). As for CNR values, the FSE 
sequences with ACS were also significantly higher than 
those of FSE sequences with PI (Table 3 and Fig. 6). The 

CNR values of T2-weighted sequences in the transverse 
planes with ACS were significantly higher than those 
sequences with PI (ACS (6.21 ± 3.00) vs. PI (5.52 ± 3.05), 
p < 0.0027). The CNR values of T1-weighted sequences in 
the transverse planes with ACS were significantly higher 
than those sequences with PI (ACS (1.96 ± 1.38) vs. PI 
(1.59 ± 1.11), p < 0.0003). The CNR values of post-contrast 

Fig. 2   A 34-year-old male 
patient with NPC. The MRI 
sequences and examination time 
were summarized as follows: 
T2-weighted FSE sequences 
in the transverse planes: (A) 
with ACS technique (39.6 s); 
(B) with PI technique (59.0 s); 
T1-weighted FSE sequences in 
the transverse planes: (C) with 
ACS technique (74.8 s); (D) 
with PI technique (105.4 s); 
post-contrast T1-weighted FSE 
sequences in the transverse 
plane: (E) with ACS technique 
(92.1 s); (F) with PI technique 
(129.9 s). The border of NPC 
was clearer for FSE sequences 
with ACS (A, C arrows) than 
for FSE sequences with PI (B, 
D arrows); the scan time was 
shorter with ACS (E) than with 
PI (F), and the artifacts of swal-
lowing motion could be effec-
tively suppressed (E, F arrows) 
due to shortening of time
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T1-weighted sequences in the transverse planes with ACS 
were significantly higher than those sequences with PI 
(ACS (4.59 ± 2.19) vs. PI (3.93 ± 2.03), p < 0.0001). The 
CNR values of post-contrast T1-weighted sequences in 
the coronal planes with ACS were significantly higher 
than those sequences with PI (ACS (9.32 ± 4.07) vs. PI 
(6.70 ± 2.54), p < 0.0001).

Table 4 shows that the scores of lesion detection, margin 
sharpness of lesions, artifacts, and overall image quality are 
higher in the ACS sequences than those in the PI sequences 
(p (for all)  < 0.0001). The inter-observer agreement for the 
independent qualitative analysis showed satisfactory-to-
excellent agreement, and κ value ranged from 0.627 to 0.892 
(p (for all)  < 0.0001).

Discussion

The present study explored whether applying ACS would 
decrease the examination time and affect the MR image 
quality of NPC by comparing with the PI.

The quantitative assessment in the study showed that with 
applying both the ACS and conventional PI for two sets of 
FSE sequences on the same patient, the sequence scanning 
time using ACS was significantly shorter than that by PI 
at the same resolution. The time of 4 sequences with ACS 
was 180 s shorter than that with the conventional PI, indi-
cating that time saving was approximately equal to 35%. 
Meanwhile, the SNR and CNR values of images did not 
descend drastically, and these values were even higher in the 
sequences that used ACS, which indicated that ACS has the 
ability to maintain image quality even at high acceleration 
factors. In previous combined nasopharyngeal neck scans, 
the SI of the lower neck was mainly poor due to the limita-
tion of the head and neck coil and the vascular pulsation 
artifacts after contrast injection, especially the fat suppres-
sion sequences in the coronal plane. Hence, the SNR of the 
coronal fat suppression sequence was deliberately measured. 
It was found that the SNR of the trapezius muscle with ACS 
was higher than with the conventional PI, while the scan 
time was reduced over 40%, indicating that ACS could also 
maintain the imaging quality after the imaging velocity was 

Fig. 3   A 54-year-old female 
patient with NPC. The MRI 
sequences and examination time 
were summarized as follows: 
post-contrast T1-weighted 
FSE sequences in the coronal 
planes: (A) and (C) with ACS 
technique (124 s); (B) and (D) 
with PI technique (216 s); ACS 
provided a better image quality 
than the PI, while the scan time 
was reduced over 40%
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raised. ACS can make a well-balanced relationship between 
the imaging velocity and imaging quality.

The qualitative assessment in the study showed that the 
scores of the sequences with ACS were higher than with PI 
in lesion detection, margin sharpness of lesions, artifacts, 
and overall image quality. Inter-observer agreement was 
evaluated for all qualitative indicators for each method, 
and the results showed that the values of kappa ranged 
from 0.627 to 0.892. Therefore, satisfactory-to-excellent 
agreement was achieved in the present study. We found 
that margin sharpness of NPC lesions was clearer for FSE 
sequences with ACS, and the ACS-based sequences could 
clearly distinguish muscles, mucosa membranes, and adi-
pose tissues compared with the PI-based sequences. It 
could be advantageous to more clearly define the inva-
sion range of the tumor tissues, especially for T2-weighted 

FSE sequences in the transverse planes. This characteristic 
may be related to the ability of ACS to suppress noises 
and reduce artifacts, resulting in a higher image clarity 
and a better overall quality than those achieved by the 
PI method. The PI might produce residual aliasing and 
noise-induced artifacts at high acceleration factors, which 
were previously reported [11, 33–36]. However, ACS has 
eliminated this challenge perfectly. The AI module in ACS 
was trained using a huge amount of fully sampled data 
to suppress various reconstruction artifacts introduced by 
conventional methods at high acceleration factors without 
affecting anatomical and pathological structures. Patients 
with NPC may easily produce swallowing motion artifacts 
in MR scans, and in severe cases, they may not be able 
to complete the entire examination. However, the motion 

Table 3   Quantitative 
comparison of SNR and CNR 
values between the two methods

SNR, signal-to-noise ratio; CNR, contrast-to-noise ratio
p values were calculated using the paired sample t-test

Method ACS (mean ± SD) PI (mean ± SD) p value

SNR Tra_T2WI_FSE 182.07 ± 41.69 145.27 ± 38.05  < 0.0001
Tra_T1WI_FSE 183.53 ± 31.36 147.02 ± 27.11  < 0.0001
Post contrast Tra_T1WI_FSE 312.43 ± 56.59 245.89 ± 46.68  < 0.0001
Post contrast Cor_T1WI_FSE 189.05 ± 60.84 140.82 ± 43.26  < 0.0001
Post contrast Cor_T1WI_FSE (muscle) 94.76 ± 27.08 78.63 ± 23.00  < 0.0001

CNR Tra_T2WI_FSE 6.21 ± 3.00 5.52 ± 3.05  < 0.0027
Tra_T1WI_FSE 1.96 ± 1.38 1.59 ± 1.11  < 0.0003
Post contrast Tra_T1WI_FSE 4.59 ± 2.19 3.93 ± 2.03  < 0.0001
Post contrast Cor_T1WI_FSE 9.32 ± 4.07 6.70 ± 2.54  < 0.0001

Fig. 5   Comparison of SNR values between ACS sequences and 
PI sequences. ACS sequences were significantly higher than FSE 
sequences with PI technique

Fig. 4   Comparison of examination time between ACS sequences and 
PI sequences
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artifacts caused by swallowing motions were significantly 
reduced in the sequences using ACS in the present study. 
The ultra-fast imaging of ACS, which is the inherent abil-
ity of freeze motions to effectively reduce the artifacts, 
could be an influential factor.

Unlike the PI method, there are potential risks existing 
when using ACS from the deep learning method, whose 
high precision heavily depends on the size and variety 
of the training data set. Although the current deep learn-
ing algorithms have already shown accurate reconstruc-
tion results, the results still lack stability. The issues of 
instability majorly cover the following aspects: (1) the 
instability of some small noise perturbations; (2) the 
instability of microstructure changes; (3) the instability of 

sample number difference. In medical imaging, stability 
and accurate image reconstruction methods are essential 
for disease diagnosis. Thus, it is very significant to ensure 
stable outputs while improving the accuracy of the algo-
rithm. However, according to the current research, the 
capability of ACS in lesion detection is no less than that 
of PI. Taking the T2WI FSE sequence as the example, 0 
cases were rated 1 and 2 (1, poor, almost invisible; 2, fair, 
lesions were partially visible) by both readers on the ACS 
and PI methods.

At present, deep learning–based MRI solutions are 
used to solve problems, such as artifact reduction, 
motion correction, and denoising, which are mainly 
divided into two categories: deep learning–based image 
reconstruction and deep learning–based image post-pro-
cessing [37, 38]. The method of deep learning–based 
image post-processing uses deep learning reconstruc-
tion tools integrated into MRI, separating MRI signals 
from noises by deep learning algorithms, to enhance the 
signal intensity, while suppressing noises [18, 39]. The 
ACS is the method belonging to deep learning–based 
image reconstruction, integrating AI module into the 
iterative reconstruction process of the compression per-
ception framework, and some researchers demonstrated 
that this deep learning method helps the reconstruction 
of CS and ensures high fidelity when acquisition dura-
tion prolongs [40–42].

There are still several shortcomings in the present study. 
Firstly, the small sample size might cause a selection bias 
in the measured values. Secondly, only NPC patients 
with definite pathological results and typical imaging 
manifestations were included, while patients with other 
nasopharyngeal lesions were excluded. Last but not least, 
although the ACS has the feature of noise reduction to 
decrease the artifacts, some inherent artifacts might still 
not be eliminated.

Fig. 6   Comparison of CNR values between ACS sequences and PI 
sequences

Table 4   Comparison of subjective evaluation scores and inter-observer kappa values between ACS sequences and PI sequences

p values were calculated using the Wilcoxon signed rank test. All values were presented as mean ± standard deviation of the scores (p (for 
all) < 0.0001). Inter-observer agreement for image analyses was assessed by the weighted kappa values (p all < 0.0001)

Method Lesion detection Margin sharpness of lesions Artifacts Overall image quality

Subjective evalu-
ation

Kappa Subjective evalu-
ation

Kappa Subjective evalu-
ation

Kappa Subjective evalu-
ation

Kappa

Tra_T2WI_ACS 4.89 ± 0.31 0.841 4.92 ± 0.27 0.784 4.88 ± 0.33 0.858 4.91 ± 0.29 0.817
Tra_T2WI_PI 3.86 ± 0.46 0.691 3.73 ± 0.45 0.773 4.11 ± 0.40 0.794 3.92 ± 0.38 0.780
Tra_T1WI_ACS 4.00 ± 0.21 0.660 4.08 ± 0.33 0.640 4.45 ± 0.56 0.892 4.02 ± 0.21 0.660
Tra_T1WI_PI 3.38 ± 0.49 0.627 3.11 ± 0.32 0.776 3.80 ± 0.42 0.719 3.36 ± 0.48 0.664
Tra_T1WI + C_ACS 4.85 ± 0.36 0.882 4.61 ± 0.53 0.851 3.95 ± 0.27 0.790 4.59 ± 0.52 0.822
Tra_T1WI + C_PI 3.93 ± 0.33 0.784 3.68 ± 0.48 0.867 3.30 ± 0.58 0.866 3.79 ± 0.43 0.831
Cor_T1WI + C_ACS 4.84 ± 0.41 0.727 4.84 ± 0.41 0.836 4.04 ± 0.26 0.884 4.83 ± 0.42 0.847
Cor_T1WI + C_PI 3.96 ± 0.31 0.756 3.84 ± 0.37 0.830 3.40 ± 0.58 0.868 3.88 ± 0.37 0.886
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In conclusion, compared with the PI technique, the ACS 
technique for MR examination of NPC can not only reduce 
scanning time, but also improve image quality.
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