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Image based prognosis 
in head and neck cancer using 
convolutional neural networks: 
a case study in reproducibility 
and optimization
Pedro Mateus 1*, Leroy Volmer 1, Leonard Wee 2, Hugo J. W. L. Aerts 3,4,5, Frank Hoebers 1, 
Andre Dekker 1 & Inigo Bermejo 1

In the past decade, there has been a sharp increase in publications describing applications of 
convolutional neural networks (CNNs) in medical image analysis. However, recent reviews have 
warned of the lack of reproducibility of most such studies, which has impeded closer examination 
of the models and, in turn, their implementation in healthcare. On the other hand, the performance 
of these models is highly dependent on decisions on architecture and image pre-processing. In this 
work, we assess the reproducibility of three studies that use CNNs for head and neck cancer outcome 
prediction by attempting to reproduce the published results. In addition, we propose a new network 
structure and assess the impact of image pre-processing and model selection criteria on performance. 
We used two publicly available datasets: one with 298 patients for training and validation and another 
with 137 patients from a different institute for testing. All three studies failed to report elements 
required to reproduce their results thoroughly, mainly the image pre-processing steps and the random 
seed. Our model either outperforms or achieves similar performance to the existing models with 
considerably fewer parameters. We also observed that the pre-processing efforts significantly impact 
the model’s performance and that some model selection criteria may lead to suboptimal models. 
Although there have been improvements in the reproducibility of deep learning models, our work 
suggests that wider implementation of reporting standards is required to avoid a reproducibility crisis.

The field of artificial intelligence, especially machine learning, has captured the interest of several sectors in recent 
years, including  healthcare1. The substantial amount of data generated in this domain provided opportunities 
for models capable of assisting medical decisions, predicting outcomes, and moving in the direction of precision 
 medicine2. Deep learning (DL), a machine learning technique, departed from traditional methods by promoting 
a complex structure capable of developing decision boundaries that outperformed previous approaches and, in 
some cases,  specialists3. Within this field, a sub-class of deep neural networks, convolutional neural networks 
(CNN), has shown particular ability for processing imaging data by identifying predictive features without the 
need for feature  engineering4.

In recent years, there has been a rapid increase in applications using CNNs in the medical field, taking advan-
tage of the vast imaging data collected by healthcare centers. These applications span diverse goals, such as disease 
prediction and imaging  segmentation3. Nevertheless, the complex structure that characterizes neural networks 
inhibits the explainability of their  decisions5. In addition, CNNs generally require more data than traditional 
machine learning techniques and diverse  sources6. Encouraged by its potential, this field has seen a growing 
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number of published models. However, only a fraction gets applied in healthcare for reasons that include the 
lack of reproducibility and guidance to build robust imaging models.

The challenges in reproducing machine learning models unfolded as a prominent topic in the field. A large 
part of the studies does not provide enough information to achieve this  goal7. This inability to reproduce a model 
directly impacts the study’s replicability, preventing the model’s generalization over different data. To overcome 
this problem, solutions, such as the  TRIPOD8 statement, propose standard checklists to improve reporting 
transparency. Additionally to these guidelines, the technical aspects of the methods employed are crucial, as 
seen in a series of  reports7,9,10 that identified the code and data unavailability as the primary factors contributing 
to this issue. Moreover, the necessary actions extend beyond these and include the inadequate specification of 
the pre-processing methods, model, training and evaluation procedures, software used, the selective report of 
results, and insufficient statistical details also play a critical role.

As one of the ten cancers with the highest incidence in the  world11, head and neck cancer (HNC) presents 
heterogeneous aspects that hinder the attainment of successful treatment plans and precise  prognosis12. Although 
there have been improvements in treatment and understanding of the disease, survival hasn’t significantly 
improved in the last decades for the HNC population in  general12, except for HPV-related cancers. Moreover, 
contributing to this concern is the occurrence of locoregional recurrence and distant metastasis, important out-
comes that strongly affect the chances of  survival11,13. Applying machine learning to assist the prognosis of these 
events has been the focus of several recent studies that presented promising results by extracting and learning 
from the information of the medical images available. One of these applications, published in 2017 by Diamant 
et al.14, consisted of a CNN developed for outcome prediction in head and neck cancer patients. The network 
used tumor delineations from the pre-treatment CT scans to predict distant metastasis, loco-regional failure, and 
survival. This work displayed the potential of DL tools by outperforming methods based on radiomics features, 
a traditional framework relying on feature  engineering15.

Later, Lombardo et al.16 and Le et al.17 extended this study by exploring approaches to improve the model’s 
discriminative power and scope. Lombardo et al.16 included external validation datasets and performed a time-
to-event analysis based on the CNN output. In their work, although demonstrating the predictive power for 
distant metastasis classification, the performance of the CNN was notably lower. Furthermore, the inclusion of 
clinical variables improved the network’s performance. Le et al.17 evaluated adding modules to handle the data 
variability between institutions, using all slices available with tumor tissue and incorporating PET information. 
The results, similar to Lombardo et al.16, showed a lower performance for distant metastasis prediction using an 
identical network to the one described by Diamant et al.14 However, their proposed network displayed better 
results for loco-regional failure and overall survival prediction. Additionally, the findings of this work suggested 
that the CNN benefits more from the inclusion of clinical information than the PET scan. Nonetheless, the 
performance remained lower than in the study proposing the CNN, a problem later faced by the authors when 
trying to reproduce their work.

This work focuses on the factors that commonly impact the reproducibility of studies proposing CNN appli-
cations. We accomplished this by assessing previous studies for HNC outcome prediction based on aspects 
identified in the literature that pose challenges to reproducible work. It is our hypothesis that these aspects are 
indeed crucial for reproducible science. Furthermore, we developed a CNN framework centered on these factors, 
compared the results with the previous studies, and evaluated the impact of imaging pre-processing approaches 
for medical images and model selection on a CNN performance.

Methods
Reproducibility assessment
Evaluating the reproducibility of a study takes into account several aspects that impact the ability to implement 
its model and achieve the results reported. In this study, different aspects reported in  studies7,9,10 on this topic 
combined with  checklists18,19 for clinical artificial intelligence models were used to assess the reproducibility of 
previous studies in HNC prognosis using DL. Furthermore, these aspects supplied a guideline to the DL model 
presented in this study. The resulting checklist extends over three domains proposed by McDermott et al.7, tech-
nical reproducibility, statistical reproducibility, and generalizability. The first mainly encompasses the detailed 
description of the model, the datasets, and the release of the code. Statistical reproducibility evaluates the quan-
tification of the model performance with measures of central tendency and uncertainty. Lastly, generalizability 
accounts for evaluating the model with an external dataset uninvolved in the training and validation process. 
Extending the model evaluation to unbiased data gives a better understanding of the model’s generalizability and 
the potential to replicate it. In addition, we completed this assessment by employing the Checklist for Artificial 
Intelligence in Medical Imaging (CLAIM)19 for each study.

In this assessment, we looked into the work of Diamant et al.14, Lombardo et al.16 and Le et al.17, three studies 
proposing a CNN models evaluated with publicly available data. For this, we followed the specifications given 
by the authors, retrieved the data from its sources, and attempted to train the model with the publicly available 
code. Besides, we contacted the respective authors for additional information. Diamant et al.14 and Le et al.17 
trained and evaluated a model separately for each outcome: distant metastasis, loco-regional failure, and overall 
survival. On the other hand, Lombardo et al.16 focused exclusively on exploring one model for distant metastasis 
occurrence prediction. In our work, we assessed these models’ reproducibility within the proposed objectives 
from their original work.

Data
The data used in this study consisted of de-identified pre-treatment CT scans obtained from 435 patients diag-
nosed with head and neck cancer without metastasis at the time of diagnosis from two distinct publicly available 
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datasets at the The Cancer Imaging Archive (TCIA)20–22. The first  cohort21, obtained from four different institu-
tions in Canada, accounted for 298 patients after excluding cases with errors in the initial data curation. The 
second  cohort22, obtained from one institution in the Netherlands, contained 137 patients. In both cases, an 
expert performed the 3D gross tumor volume (GTV) delineations as part of the routine clinical workflow 
in radiation treatment and the data available consisted of DICOM images and radiotherapy structures. Both 
datasets included a set of variables alongside the images including the patient’s age, biological sex, HPV status, 
tumor location, T, N, M, and overall staging (according to the 7th Edition of the cancer staging manual by the 
American Joint Committee on  Cancer23), treatment, and outcomes. In addition, we extracted the GTV area and 
volume from the imaging metadata.

The patients’ data available in each cohort included the time in days to each outcome (event time) and the 
follow-up time. In this study, to handle the limitations posed by using right-censored data, the patients with a 
follow-up time below the defined event time frame were excluded (overview of the number of patients shown 
in Supplementary Table 2). Specifically, the time frame considered in this study for distant metastasis and loco-
regional failure prediction was the commonly used 2 years since most occurrences happen during this  period24,25. 
In the case of overall survival, a 4-year time frame, the follow-up time median, was used instead of the conven-
tional 5-year  interval11,24 to avoid excluding 47 additional patients.

The data split for training and validation was performed using two different methods. For reproducibility 
purposes, one approach followed the same distribution as the one implemented by Diamant et al.14 (cohort split): 
the data from two Canadian institutions in each, comprising 192 and 106 patients, respectively. The second 
method consisted of performing 5-fold cross-validation (CV) using all Canadian institutions for training and 
validation. Additionally, the dataset from the Dutch cohort was used exclusively as the testing set to evaluate 
model generalization. Table 1 provides a complete overview of both data split methods (complementary patient 
characteristics shown in Supplementary Table 1).

Pre-processing
In both cohorts, the primary GTV delineations, performed by an experienced oncologist in the CT scans and 
provided as DICOM RTSTRUCT, and the DICOM images were resampled to a uniform pixel spacing (1 × 1  mm3), 
calibrated to Hounsfield units (HU), and transformed to the NIFTI format using the “dcmrtstruct2nii”26 python 
library. Moreover,  FSL27, a library of analysis tools for brain imaging data, allowed to re-orient the scans to the 
 MNI15228 standard template and apply the GTV masks to obtain the scans’ portion containing the region of 
interest. For each participant, a single CT slice was selected by identifying the one with the largest GTV area 
from the resulting stack of CT slices.

The resulting NIFTI images were posteriorly transformed by windowing the pixel values according to the 
Hounsfield scale, smoothed with a Gaussian filter, and normalized to a scale from 0 to 1. To explore the impact 
of windowing CT images, we considered different windowing parameters and compared them based on the 
model’s performance. As a starting point and based on the previous studies, images were windowed using a 
level of 0 HU and a width of 1000 HU. Additionally, we explored using a window level of 50 HU and a width of 
350 HU based on the expected interval of the Hounsfield scale for the tissues in the head and neck region (e.g., 
mucosal, soft tissues)29.

Analyzing the GTV area led to cropping the images around the tumor center from the standard CT size of 
512 × 512 pixels to a smaller region, enhancing the learning process without losing information. Based on inspec-
tion of the GTV sizes, the dimensions used consisted of 180 × 180 pixels. Finally, the images were stored in an 
8-bit Portable Network Graphic (PNG) format limiting the range of values to 255 integers.

Table 1.  Patient and outcome distribution across the different centers. CHUM Centre Hospitalier de 
l’Université de Montréal, CHUS Centre Hospitalier Universitaire de Sherbooke, HGJ Hôpital Général Juif, 
HMR Hôpital Maisonneuve-Rosemont.

Cohort split 5-fold CV

Training Validation Testing Training and validation Testing

Data sources

 Canadian  institutions21

HGJ 91 (47.6%) – – 91 (30.6%) –

CHUS 100 (52.4%) – – 100 (33.7%) –

HMR – 41 (38.7%) – 41 (13.8%) –

CHUM – 65 (61.3%) – 65 (21.9%) –

 Dutch  institution22 Maastro – 137 (100%) – 137 (100%)

Outcome

Distant metastasis (DM) 26 (13.6%) 14 (13.2%) 8 (5.8%) 40 (13.5%) 8 (5.8%)

Loco-regional failure (LRF) 27 (14.1%) 16 (15.1%) 34 (24.8%) 43 (14.5%) 34 (24.8%)

Death 32 (16.8%) 24 (22.6%) 74 (54.0%) 56 (18.9%) 74 (54.0%)

Total 191 106 137 297 137
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Model description
The basis for the CNN architecture consisted of the structure proposed by Diamant et al.14, a network that 
accepted as input a standard CT image, 512 × 512 pixels. However, in light of the inability to reproduce their 
results, we propose an adaptation to the network structure, represented by Fig. 1, using as input a cropped region 
of 180 × 180 pixels from the original scan around the tumor center. This approach, suggested but not applied 
by Diamant et al.14, can be easily integrated into the pre-processing, as seen in the work of Lombardo et al.16. It 
facilitates the learning process by reducing the model’s number of parameters considerably. Furthermore, we 
assessed simplifying the network structure by evaluating a smaller number of filters, fully connected layers, and 
the application of dropout to reduce overfitting. The resulting network consists of two segments, the first with 
three convolution blocks, each applying a convolution layer, a max-pooling layer, and a non-linear transformation 
using the leaky rectified linear unit (leaky ReLU) function. These operations transform the pre-processed scan 
into a 4 × 4 image embedding with 32 channels. Taking these 512 features as input, the second segment consists 
of four fully connected layers, each using a linear transformation, a non-linear transformation, the leaky ReLU 
function, and a dropout layer. The last component consists of a sigmoid function to transform the result into a 
binary prediction.

To evaluate the impact of the structured data available (i.e., age, gender, TNM stage, etc.) on the model’s 
performance, we developed a second model that includes these variables as input. This additional data provides 
relevant information on the patient and tumor characteristics that clinicians use for prognosis and treatment 
 choices11,25. Non-imaging data can be included in a CNN using the fully connected layers, and, as a result, mul-
tiple locations are possible. In this study, we selected the clinical variables to add to the model using forward 
feature selection, adding in each step the variable that provided the highest performance increase in the validation 
set, and assessed the integration in the network by evaluating the model’s performance when including these 
variables at each of the fully connected layers. Regarding the clinical data, we categorized the volume and area 
according to the quartiles, used one-hot encoding to encode the categorical variables, and normalized the age 
considering a maximum of 100. Additionally, we aggregated the cancer staging variables according to the main 
categories (e.g., T4 represented T4a and T4b). The M staging information was not included since the criteria for 
the data sources excluded patients with metastases at presentation.

Artificial neural network
In order to assess the predictive power of the structured data and measure the added value of imaging features, 
we trained an artificial neural network (ANN) using only the structured data. This ANN consisted of four lay-
ers with an input layer with 11 neurons and two hidden layers with eight and four neurons respectively and 
the output layer. We used the same hyperparameters and components as in the previous model, using the leaky 
ReLU as activation function as and a sigmoid function for the output binary prediction. Furthermore, a logistic 
regression model was used as baseline to evaluate the performance of both the CNN and ANN models for each 
outcome prediction.

Figure 1.  CNN architecture adapted from Diamant et al.14 for outcome prediction. The description includes 
the number of neurons for the fully connected layers and the number of filters, kernel size, and stride for each 
convolutional block.
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Model evaluation and selection
The model evaluation and selection relied primarily on the ROC (Receiver Operating Characteristic) AUC 
(Area Under the Curve) metric. This measurement, agnostic to a threshold selection, evaluates a binary model’s 
discriminative power, i.e., its ability to distinguish between two classes.

For both data partition approaches, uncertainty measurement, using the confidence interval for the cohort’s 
split and range of values for the 5-fold CV, complemented the results. The 95% confidence interval was calculated 
for the selected model using a bootstrapping technique with resampling of the data in each set (1000 resamples). 
Furthermore, the cross-validation employed a stratified sampling technique taking into account the imbalanced 
nature of the data and maintaining the outcome proportions constant in each fold.

We selected the model at the epoch with the highest ROC AUC in the validation set from the epochs where 
the difference between the training and validation ROC AUCs was below a certain threshold to avoid overfit-
ting. For this study, the initial threshold used was 0.05, gradually increasing the value until a model meeting the 
requirement was found.

Experimental setup
In terms of software tools, we used FSL, Docker, and Python 3.9. For the pre-processing, FSL allowed to extract 
the region of interest from the CT scans, followed by the cropping and windowing operations performed using a 
Python script. Regarding the neural networks, development and optimization was performed using PyTorch (ver-
sion 1.10.0)30. Additional libraries employed for image augmentation and performance evaluation are described 
in the public repository with the respective versions.

Considering the limited size of the dataset, data augmentation was used to avoid overfitting. The images were 
randomly flipped on the horizontal and vertical axis, with a probability of 0.5, rotated 90° a random number 
of times, additionally rotated by a value within the range of 0°–20°, and shifted on the horizontal and vertical 
axis 3% of the total width and length respectively. Moreover, we manually tweaked the network and training 
hyperparameters based on the output of “Weights and Biases”31. Furthermore, we included a weighting term 
in the loss function to adjust for class imbalance and initialized the model’s weights with the default PyTorch 
method, employing the He  initialization32. Lastly, the network was optimized using stochastic gradient descent 
with a batch size of 64 samples.

The network’s training process was executed on a CPU cluster hosted on a Kubernetes infrastructure, a dis-
tributed computing platform based on containers, with 64 cores and 512 GB of memory available. The network 
was trained for 3000 epochs with early stopping when it reached an AUC superior to 0.95 for the training data. 
In each experiment, a model was trained for each outcome separately.

In addition to the code used for this study, the public repository includes the necessary tools to recreate an 
identical environment. By using Docker, a containerization mechanism, it is possible to perform the training 
and evaluation of the CNN following the software specifications described in this section to reproduce the 
results described.

Results
Reproducibility assessment
The reproducibility assessment, presented in Table 2, displays the compliance of the previous  studies14,16 on 
head and neck cancer prognosis using DL and our work with the criteria previously described and the  CLAIM19 
checklist (evaluation provided in the supplementary materials). In this assessment, Diamant et al.14and Le et al.17 
missed elements that preclude reproduction of the results, such as the specification of data pre-processing or 
a complete and functional code release. Moreover, the three studies missed at least one element, mainly the 
environment description or disclosure of the random initializers, that prevented the reproduction of the exact 
results presented. Concerning the statistical reproducibility, all studies provide most of the necessary information, 
except for the evaluation of uncertainty in the work of Diamant et al.14. The uncertainty around the performance 
estimates can be represented, for example, as a confidence interval and is essential information to compare per-
formances across studies. Lastly, conceptual reproducibility, comprising the external validation of the model, 
was assessed by Lombardo et al.16 using three external datasets and by Le et al.17 employing a cross-validation 
strategy with the Canadian institutions.

Altogether, we could not reproduce Diamant et al.’s work. We had difficulties figuring out the correct library 
versions, the image pre-processing was not reported, and we had issues with the convergence of the model, lead-
ing to an estimated performance significantly lower than the one detailed in their article (AUC of 0.79 versus the 
reported 0.88). On the other hand, Lombardo et al.16 provided the necessary tools to train the model, resulting in 
an identical performance for the CNN based on imagining data. Furthermore, we observed that in both studies 
the data augmentation methods cropped the images within the GTV region. Lastly, we could not reproduce the 
work proposed by Le et al.17 because of the incomplete documentation regarding the input data preparation and 
the absence of details for the image pre-processing.

During this work, we contacted the corresponding authors of each study for additional information. We did 
not obtain a response from Diamant et al.14, Lombardo et al.16 provided the code for the CT scans pre-processing 
according to their shape-based interpolation method, and Le et al.17 informed us that the code is currently being 
prepared for release.

Model architecture and training
The model’s optimization encompassed a range of values for the model’s hyperparameters with similar perfor-
mances. The best-performing model resulted when employing a constant learning rate of 0.05, an L2-regulariza-
tion parameter of 1 ×  10−4, a momentum of 0.9, and a slope coefficient of 0.01 for the leaky ReLU. The weighting 
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terms were identical for the three events predicted, with a rescaling factor of 3.7 for the minority class and 0.7 
for the dominating class. The CNN proposed included 85,505 trainable parameters, 96.3% less than in Diamant 
et al.’s work (2,316,385 parameters) and 87.8% less than in Lombardo et al.’s work (692,298 parameters). The 
network’s training time was approximately 3 h, requiring a maximum memory usage of 3 GB.

Comparative performance
The performance of our network varied for different outcomes, as shown in Table 3: the 2-year distant metastasis 
prediction had the highest AUC, around 0.90, across the training, validation, and testing sets. These results are 
similar to those reported by Diamant et al.14 and superior to those reported by Lombardo et al.16, especially in 
the validation set, regardless of the type of validation. In terms of 4-year overall survival and 2-year loco-regional 

Table 2.  Results of the reproducibility assessment. a Code provided upon request to the authors. b Code 
publicly available but not fully functional. c As specified in “Part 6: reproducible pipeline” of the MI-CLAIM 
checklist by Norgeot et al.18.

Diamant et al.14 Lombardo et al.16 Le et al.17 Our work

Technical reproducibility

 Network architecture ✓ ✓ ✓ ✓

 Hyperparameters evaluation and selection ✓ ✓ ✓ ✓

 Model evaluation ✓ ✓ ✓ ✓

 Model selection ✓ ✓ ✓

 Pre-processing specification ✓a ✓

 Censored data handling ✓ ✓

 Data split specification ✓ ✓ ✓ ✓

 Code release ✓b ✓ ✓ ✓

 Environment description (libraries versions) ✓ ✓

 Computational infrastructure description ✓ ✓ ✓ ✓

 Dataset(s) publicly available ✓ ✓ ✓ ✓

 Reproducible  pipelinec ✓

 Random seed ✓

Statistical reproducibility

 Evaluation of central tendency ✓ ✓ ✓ ✓

 Evaluation of uncertainty ✓ ✓ ✓

 Cross validation/bootstrapping ✓ ✓ ✓ ✓

Generalizability

 Performance metrics on all data partitions ✓

 External validation ✓ ✓ ✓

CLAIM19 completeness 74% 88% 86% 95%

Table 3.  Comparative performance (AUCs) for different outcomes of the reproduced studies and our 
proposed CNN. a Reproduced for this study. b Median (CI 83%). c CI calculated over 5 trials. d Event time may be 
different in the studies included.

Diamant et al.14 Lombardo et al.16 Le et al.17 Our CNN

Cohort Split

5-fold CV 3-fold CV

Cohort split (CI 95%)c Cohort split (CI 95%)

5-fold CV

Mean (range) Mean (range) Mean (range)

Distant Metastasis (2 years)d

 Training –/0.70a – –/0.71a – 0.91 [0.84, 0.96] 0.87 (0.84–0.92)

 Validation 0.88/0.79a 0.85 (0.80–0.88) 0.75 (0.67–0.83)/0.73a 0.84 [0.83, 0.85] 0.89 [0.81, 0.96] 0.86 (0.77–0.96)

 Testing –/0.75a – 0.81 [0.73–0.89]b/0.75a – 0.89 [0.79, 0.98] 0.83 (0.76–0.90)

Loco-regional failure (2 years)d

 Training –/0.52a – – – 0.76 [0.64, 0.88] 0.77 (0.72–0.86)

 Validation 0.65/0.61a – – 0.72 [0.67, 0.76] 0.77 [0.58, 0.92] 0.76 (0.72–0.84)

 Testing –/0.44a – – – 0.45 [0.32, 0.57] 0.53 (0.48–0.59)

Overall survival (4 years)d

 Training –/0.55a – – – 0.84 [0.75, 0.92] 0.82 (0.68–0.94)

 Validation 0.70/0.67a – – 0.77 [0.75, 0.79] 0.80 [0.66, 0.91] 0.77 (0.62–0.96)

 Testing –/0.58a – – – 0.67 [0.57, 0.77] 0.63 (0.57–0.72)
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failure prediction, our model performed better than Diamant et al.’s original work in the validation set: our CNN 
achieved an AUC 0.78 and 0.77, for overall survival and for loco-regional failure prediction, respectively, com-
pared to the AUCs of 0.65 and 0.70 reported by Diamant et al.14. However, in both cases, the AUCs achieved by 
our model plummeted in the test set, to 0.67 for overall survival and to 0.45 for loco-regional failure, resulting in 
a complete loss of discriminative power for loco-regional failure prediction. Diamant et al.14 did not report the 
performance in a test set. Nevertheless, we observed a similar outcome in our attempt to reproduce their study 
using the same test set. Noticeably, the training set underperformed with AUCs closer to a random prediction.

• CNN with clinical data and ANN

Integrating the clinical data into the CNN did not consistently lead to significant improvements in the mod-
els’ AUC as shown in Table 4. The performance on the testing set for distant metastasis (AUCs 0.89–0.93) and 
overall survival (AUCs 0.67–0.69) prediction remained similar. However, it did result in improvements on the 
testing set for loco-regional failure (AUCs 0.45–0.59). We achieved the best results (which were comparable to 
our model based only on imaging data) when adding the clinical data in the network’s last connected layer. The 
clinical variables that maintained the performance were mainly the T and N stages, and the volume discretized 
according to the quartiles.

The CNN outperformed the ANN in the test set on loco-regional failure (AUCs 0.59 vs 0.41), overall survival 
(AUCs 0.69 vs 0.63) and distant metastasis (AUCs of 0.93 vs 0.87) prediction. The logistic regression model 
achieved similar AUCs for the test set to the CNN in overall survival but lower in distant metastasis and loco-
regional failure (results shown in Supplementary Table 4). Moreover, both the ANN and logistic regression 
underperformed in the training and validation sets compared to CNN (Table 4).

• Image pre-processing

Figure 2 shows the model performance obtained from repeating the model training for 2-year distant metas-
tasis prediction with varying parameters for the windowing step of the pre-processing pipeline. The model 
performed the best when using a window level of 125 HU and a width of 350 HU to preprocess the images. This 
model achieved an average AUCs of 0.88, 0.87, and 0.85 in the training, validation, and testing sets, respectively. 
For the wider window, using a window level of 0 HU and a width of 1000 HU, the AUCs were lower (0.83, 0.81 
and 0.80). Similarly, applying a narrower window, with a width of 500 HU and a level of 0 HU, resulted in AUCs 
of 0.86, 0.83 in and 0.78 in the training validation set, and testing set, respectively. Statistically significant differ-
ences (Kruskal–Wallis, p < 0.05) were found for the validation and testing sets when comparing the AUCs of the 
best-performing window to the AUCs of models trained using the other two windows.

• Model selection criteria

Table 5 displays the AUC achieved in the training, validation, and testing sets for each predicted outcome 
and different model selection criteria. The model’s performance in the test set, in terms of AUC, differed under 
different model selection criteria for all outcomes. For distant metastasis, our selection criteria (described in 

Table 4.  AUCs of models including clinical data. a Reproduced for this study. b Median (CI 83%). c Testing on 
a different dataset from the CHUM. d CI calculated over 5 trials. e Event time may be different in the studies 
included.

Lombardo et al.16 Le et al.17 c Our CNN Our ANN

3-fold CV

Cohort split (CI 95%)d Cohort split (CI 95%)

5-fold CV

Cohort split (CI 95%)

5-fold CV

Mean (range) Mean (range) Mean (range)

Distant metastasis (2 years)e

 Training –/0.84a – 0.91 [0.86, 0.95] 0.88 (0.81–0.93) 0.87 [0.78, 0.93] 0.87 (0.81–0.92)

 Validation 0.81 (0.73–0.86)/0.79a 0.80 [0.77, 0.83] 0.89 [0.79, 0.98] 0.87 (0.79–0.94) 0.79 [0.65, 0.93] 0.83 (0.79–0.88)

 Testing 0.86 (0.79–0.92)b/0.86a 0.69 [0.68, 0.70] 0.93 [0.86, 0.99] 0.88 (0.86–0.90) 0.87 [0.78, 0.95] 0.86 (0.81–0.89)

Loco-regional failure (2 years)e

 Training – – 0.84 [0.76, 0.93] 0.77 (0.62–0.87) 0.71 [0.61, 0.80] 0.74 (0.70–0.84)

 Validation – 0.79 [0.77, 0.80] 0.70 [0.54, 0.84] 0.72 (0.60–0.84) 0.66 [0.48, 0.82] 0.71 (0.60, 0.81)

 Testing – 0.69 [0.68, 0.70] 0.59 [0.47, 0.70] 0.57 (0.53–0.60) 0.41 [0.29, 0.54] 0.53 (0.50, 0.54)

Overall survival (4 years)e

 Training – – 0.74 [0.64, 0.84] 0.83 (0.74–0.94) 0.83 [0.74, 0.90] 0.83 (0.77–0.85)

 Validation – 0.82 [0.80, 0.84] 0.74 [0.58, 0.86] 0.81 (0.73–0.93) 0.75 [0.62, 0.87] 0.76 (0.71–0.78)

 Testing – 0.69 [0.68, 0.70] 0.69 [0.59, 0.79] 0.68 (0.63–0.71) 0.63 [0.52, 0.73] 0.63 (0.61, 0.64)
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the “Methods” section) achieved similar results to the model with the highest validation AUC and they both 
outperformed the model with the lowest training loss. For loco-regional failure and overall survival, all three 
model selection criteria resulted in similar results, but our selection criteria slightly outperformed the other two. 
Selecting the model based on the highest AUC for the validation set resulted in higher differences between the 
training and validation AUCs.

Discussion
In this study, we have tried to reproduce the results of three published models predicting outcomes for patients 
with head and neck cancer, as well as trying to optimise the performance of the model by testing different pre-
processing options and model selection criteria.

Similar to previous  studies16,17, we were unable to reproduce Diamant et al.’s work and results. On the other 
hand, we were more successful reproducing the results reported by Lombardo et al.16 but encountered difficulties 
that impeded reproducing Le et al.17 work. It can be challenging to guarantee the reproducibility of a DL model 
due to the experimental and complex nature of developing the network. In this study, we found difficulties across 
different domains when attempting to reproduce a DL model: environment configuration, pre-processing steps, 

Figure 2.  Model performance for 2-year distant metastasis prediction with different windowing and pre-
processing options (**p < 0.001, *p < 0.05).

Table 5.  Model performance for different model selection criteria. The values reported represent the ROC 
AUC with the 95% confidence interval in brackets.

Our selection criteria Highest validation AUC Lowest validation loss

Distant metastasis

 Training 0.90 [0.82, 0.96] 0.82 [0.70, 0.91] 0.91 [0.83, 0.97]

 Validation 0.90 [0.79, 0.97] 0.92 [0.84, 0.99] 0.90 [0.82, 0.96]

 Testing 0.86 [0.72, 0.97] 0.86 [0.70, 0.98] 0.75 [0.57, 0.90]

Loco-regional failure

 Training 0.75 [0.66, 0.88] 0.53 [0.35, 0.68] 0.76 [0.64, 0.88]

 Validation 0.71 [0.52, 0.88] 0.83 [0.67, 0.94] 0.64 [0.42, 0.82]

 Testing 0.57 [0.45, 0.70] 0.54 [0.43, 0.66] 0.54 [0.40, 0.68]

Overall survival

 Training 0.76 [0.64, 0.87] 0.54 [0.41, 0.68] 0.78 [0.66, 0.88]

 Validation 0.72 [0.57, 0.84] 0.77 [0.63, 0.9] 0.66 [0.49, 0.81]

 Testing 0.72 [0.62, 0.80] 0.68 [0.58, 0.78] 0.70 [0.61, 0.79]
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random seed, weight initialization, data augmentation, statistical comparison, etc. Additional aspects, such as 
insufficient information regarding patient inclusion and event times, posed a barrier to guaranteeing a similar 
patient distribution. In agreement with previous  studies7,9,10, we consider a set of reporting requirements neces-
sary to guarantee such reproducibility, as shown by the inability to reproduce one of the studies. The prospect of 
developing a fully reproducible work can be improved by following one of the existing reporting  checklists8,18 that 
aggregate these requirements. In this study, we went beyond the checklists by providing a complete specification 
of the random initializers employed and a reproducible pipeline. As suggested by Norgeot et al.18, we developed 
this pipeline using Docker, configured with the exact environment requirements necessary, the scripts and 
configurations implementing the model, and a subsample of examples that can facilitate an accurate replication 
of the proposed methods. Although there is a stochastic component to a neural network optimization process, 
in most cases existing technologies enable the reproduction of the exact results presented in a  study30. Overall, 
the difficulties encountered revealed the need for auxiliary material, in addition to the scientific manuscript, 
to thoroughly describe the methodologies applied, reinforcing the importance of sharing the complete code.

While attempting to reproduce Diamant et al.’s results, we tried different techniques to maximize the model 
performance, such as optimizing the hyperparameters and image pre-processing steps. Eventually, this process 
led us to improve upon the CNN structure proposed by Diamant et al.14, decreasing the network’s complexity 
while achieving similar results for distant metastasis and improving the results for loco-regional failure and 
overall survival in the training and validation datasets. Similarly, our model outperforms Lombardo et al.’s and 
Le et al.’s 16,17 predicting distant metastasis. However, the performance of our model plummeted in the external 
dataset for loco-regional failure and overall survival prediction. Le et al.17 reported similar drops in performance 
in their external validation and we observed the same phenomenon using Diamant et al.’s model (Lombardo 
et al.16 did not consider these outcomes). We believe this issue could be attenuated to some extent by increasing 
the sample size of the training data and including data from a wide range of clinics. Nevertheless, these findings 
may imply pertinent issues, such as a concept  shift33 between the institutions or differences in the CT acquisi-
tion parameters, which may be relevant to explore in future research. In any case, these findings accentuate the 
importance of external validation for thoroughly evaluating a model as well as the need for further research to 
make these models less prone to overfitting and more generalizable.

Including clinical features in the CNN did not always enhance the model’s performance. However, our pre-
liminary results indicate a possible increase in the clinical features’ relevance when considering longer time 
windows for the events. In addition, including clinical features did lead to better results in the test set for loco-
regional failure. These results suggest that clinical features provide higher generalizability to the model for cer-
tain outcomes. Previous findings from Lombardo et al.16 and Le et al.17 differed on the impact of adding clinical 
features to their CNN models. However, studies showed that these attributes present  interactions11 and correlate 
with the incidence of the outcomes  explored13,34, possibly requiring more patients to evaluate the contribution of 
these features thoroughly. On the other hand, a neural network relying exclusively on the clinical data displayed 
a lower performance for distant metastasis and loco-regional failure prediction, showing the value of the imag-
ing features identified by the CNN to improve the decision boundary. These findings provide insights into the 
potential of extending CNNs with clinical data, which may only be beneficial for specific outcomes.

The modifications introduced to the network structure proposed by Diamant et al.14, in particular the reduced 
image size and number of filters in the network, decreased the complexity of the network and demanded fewer 
resources without compromising the performance. Additionally, the data augmentation methods employed 
during training avoided cutting the tumor region, and a weighting term was included to counteract the class 
imbalance. In our work, the strategy to handle right-censored data consisted of excluding the cases without the 
minimum follow-up time. However, it is possible to extend the network with survival analysis to include cen-
sored data, as Lombardo et al.’s work showed by feeding the CNN’s output to a survival model. Another aspect 
to consider in future work is interpretability, explored by Diamant et al.14 through the association between 
radiomic features and the convolutional layers, which can be further studied through heatmap visualization or 
adaptations of the  CNN35.

An important limitation of our model is that it processes one single slice of the pre-treatment CT (the one 
with the largest tumor area), ignoring several slices where the tumor is visible that may contain relevant informa-
tion. Results from recent studies on outcome  prediction16,36 and  classification37–39 using 3D and 2D CNNs for 
head and neck patients demonstrated improved results when using a 3D inputs or both. However, the trade-off 
between the improvements and computational resources is still unexplored. Our network can be further extended 
to process a 3D image and understand these compromises.

The flexibility of CNNs can attenuate the differences in the pre-processing pipelines  employed40. However, 
preprocessing choices can still significantly impact the model’s performance, as shown by the results obtained 
with different windowing parameters applied to the CT scans. In contrast to humans, machine learning models 
can process the complete range of values with no transformations. Nevertheless, our results showed that deter-
mining the windowing parameters according to the target tissue can enhance the CNN’s ability of discerning 
relevant imaging features.

In DL, the available data is typically split into training, validation (or development) and testing datasets: the 
model’s parameters (i.e., weights) are determined by the training set, its hyperparameters by the validation set 
(i.e., model selection) and its performance is estimated on the test set. The training set is typically the largest, 
and the model’s performance on this set is essential to understand if the model may be overfitting or underfitting 
the data. In our work, we introduced a model selection criterion based both on the validation and training sets’ 
performance. We observed that models selected based only on the validation set were sometimes underfitted 
to the training set, which had implications on the performance in the testing set. These results highlight the 
importance of reporting the metrics for all subsets of data and considering the training set performance for the 
model selection.
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In conclusion, the results of our study show the importance of complying with reporting guidelines for the 
reproducibility of DL studies. They also show that model architecture, image processing decisions, additional 
clinical data and model selection criteria can have a significant impact in the model’s performance. Our work 
followed the guidelines for a reproducible network and achieved results that equaled or surpassed previous 
studies keeping a simpler structure. This work supports the potential of CNNs to extract imaging features with 
clinical relevance for head and neck cancer outcome prediction but also hints at necessary improvements for 
their generalizability.

Data availability
The datasets analyzed during the current study are publicly available at the Cancer Imaging Archive (TCIA)20 
repository: Canadian benchmark  dataset21: https:// doi. org/ 10. 7937/ K9/ TCIA. 2017. 8oje5 q00. MAASTRO 
 dataset22: https:// doi. org/ 10. 7937/ tcia. 2019. 8kap3 72n.

Code availability
The custom code developed to train and evaluate the models is available at GitHub: https:// github. com/ Maast 
richtU- CDS/ hn_ cnn.
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