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Understanding the genetic basis of novel adaptations in new species is a fun-
damental question in biology. Here we demonstrate a new role for galr2 in
vertebrate craniofacial development using an adaptive radiation of trophic
specialist pupfishes endemic to San Salvador Island, Bahamas. We con-
firmed the loss of a putative Sry transcription factor binding site upstream
of galr2 in scale-eating pupfish and found significant spatial differences in
galr2 expression among pupfish species in Meckel’s cartilage using in situ
hybridization chain reaction (HCR). We then experimentally demonstrated
a novel role for Galr2 in craniofacial development by exposing embryos to
Garl2-inhibiting drugs. Galr2-inhibition reduced Meckel’s cartilage length
and increased chondrocyte density in both trophic specialists but not in
the generalist genetic background. We propose a mechanism for jaw
elongation in scale-eaters based on the reduced expression of galr2 due to
the loss of a putative Sry binding site. Fewer Galr2 receptors in the scale-
eater Meckel’s cartilage may result in their enlarged jaw lengths as adults
by limiting opportunities for a circulating Galr2 agonist to bind to these
receptors during development. Our findings illustrate the growing utility
of linking candidate adaptive SNPs in non-model systems with highly
divergent phenotypes to novel vertebrate gene functions.
1. Introduction
Craniofacial developmental anomalies are the most common source of birth
defects in humans, present in 1 out of 700 births [1–3]. While Mendelian cranio-
facial defects are well characterized (e.g. Treacher Collins syndrome [4], Apert
syndrome [5] and Crouzon syndrome [6,7]), the developmental genetics of com-
plex craniofacial defects, such as micrognathia, are poorly understood [8–14].
With the continued lowering costs of genomic sequencing and functional
genetic tools, it is increasingly feasible to develop new genetic models for
understanding human development and disease.

Understanding the genetic bases of naturally occurring, highly divergent
adaptive phenotypes in novel systems that parallel human clinical variation,
such as ‘evolutionary mutant’ models [15–18], provides a powerful approach
combining the tractable functional investigations possible in vertebrate model
systems with genome-wide association scans of small-effect regulatory loci
underlying natural craniofacial diversity. In particular, the most remarkable
diversity of vertebrate craniofacial morphology is represented in teleost
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Figure 1. Divergent craniofacial morphology and development of the San Salvador Island Cyprinodon pupfish radiation. C. variegatus ( first row) is a trophic general-
ist distributed across the western Atlantic and Caribbean; C. brontotheroides (second row) is a molluscivore and C. desquamator (third row) is a scale-eater, both
endemic to the hypersaline lakes of San Salvador Island (SSI), Bahamas. Left panel: development at 1-, 3-, and 8-days post-fertilization (dpf ). Middle panel:
laboratory-reared adult female pupfishes of each species. Right panel: Lateral and dorsal views of µCT scans of craniofacial morphology (modified from [43]).
The maxilla is coloured in blue, premaxilla in red, dentary in green, articular in orange.
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fishes, often associated with their diverse and sometimes
highly specialized modes of feeding (e.g. [19–24]).

Emerging fish model systems include the rapidly evol-
ving East African and Cameroon cichlid radiations, in
which a small number of genetic changes underlie immense
morphological disparity [25–32] and the repeated parallel
speciation of stickleback ecomorphs in glacial lakes [33–36].
These systems provide excellent examples of leveraging
naturally occurring and highly divergent craniofacial pheno-
types as ‘evolutionary mutants’ or ‘evolutionary forward
genetics’ models to gain novel insights into the genetics of
natural human craniofacial variation [17,37–42].

Herewe demonstrate the utility of an evolutionary radiation
of Cyprinodon pupfishes for discovering and validating the cra-
niofacial function of a new gene associated with jaw evolution
via QTL and GWAS analyses. Pupfishes offer some advantages
over other evolutionary fish systems because they (1) rapidly
evolved highly divergent and unique craniofacial phenotypes
(figure 1) with minimal genetic differentiation among species
[43–50], (2) speciated in the face of ongoing gene flow resulting
in very few highly differentiated genomic regions associated
with species-specific craniofacial traits [51–57], and (3) are
highly amenable to laboratory rearing and imaging due to
their high fecundity, daily egg production, and egg transparency
comparable to zebrafish [58,59]. This radiation contains the
widespread algae-eating generalist pupfish, Cyprinodon
variegatus (figure 1a), which is broadly distributed across the
Caribbean and North American Atlantic coast and occurs in
sympatry with two microendemic trophic specialist species
found only in the hypersaline lakes of San Salvador Island
(SSI), Bahamas. Each trophic specialist displays highly divergent
behaviour, pigmentation and craniofacial morphology: the mol-
luscivore C. brontotheroides has a novel nasal protrusion that is a
skeletal extension of the maxilla and foreshortened robust oral
jaws (figure 1b); and the scale-eater, C. desquamator, exhibits
two-fold larger oral jaws and overall brachycephalic features
(figure 1c) [46,47,60,61]. There is also a fourth intermediate
scale-eating ecotype in some lakes [62].

Previous genomic and transcriptomic work on the SSI
pupfishes identified dozens of new candidate craniofacial
genes never previously characterized as craniofacial or
directly investigated in other systems [54,56,57,62–67]. One
of the most promising candidates was galanin receptor 2a,
the second receptor type for the galanin peptide. Using a
genome-wide association (GWA) test across 202 individuals
from the SSI radiation and outgroup populations, we pre-
viously found an association of the regulatory region of
galr2a with lower jaw length, confirming an earlier pilot
study that found the galr2a region to be among the top five
strongest associations with lower jaw length, containing
highly differentiated SNPs between trophic specialist species
[56,63]. An analysis of hard selective sweeps using both site
frequency spectrum (SweeD) and linkage disequilibrium
(Omegle) based summary statistics additionally found evi-
dence of a putative adaptive allele in the 20 kb regulatory
region upstream of galr2 that swept to fixation in the scale-
eater C. desquamator population on SSI 696–1008 (95% cred-
ible interval) years ago, potentially providing a pivotal
stage in adaptation to scale-eating [56]. Furthermore, an inde-
pendent quantitative trait loci (QTL) mapping study in F2
intercross hybrids between scale-eater and molluscivore
parents found a significant QTL on linkage group 15 contain-
ing galr2a that accounted for 15.3% of the phenotypic
variance in premaxilla length (n = 178) [67], with a positive
effect on jaw length in the scale-eater genotype. Similarly, a
second independent study of an F2 hybrid intercross from a
second lake found evidence of a QTL in this region explain-
ing 8% of the phenotypic variance in the length of the
coronoid process on the articular bone of the lower jaw
( jaw closing in-lever; n = 227; [57]). The combined strength
of evidence for a role of galr2a in craniofacial development
across independent analyses of GWA, QTL, selective
sweeps and genetic differentiation between species indicated
that this was one of our highest priority candidates for
functional studies.

In humans, galr2 is abundantly expressed within the hypo-
thalamus and hippocampus of the central nervous system and
in the heart, kidney, liver, colon and small intestine, and it has
genetic associations with epilepsy and Alzheimer’s [68,69].
Classified as an orexigenic (appetite stimulant) gene, galr2 is
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expressed in the human hypothalamus and in the ventral tele-
ncephalon of larval and adult zebrafish [68,70,71]. Although a
role of galr2 in craniofacial development has not previously
been reported in the literature, its ligand, the neuropeptide
galanin (GAL), is highly expressed in bones from early to
post-embryonic development [72,73], with demonstrated
effects on bone mass [74], muscle contraction [75] and
periodontal regeneration [76].

Here we used Sanger sequencing to confirm two highly
differentiated SNPs between SSI specialist species detected
in our previous genomic studies affecting two predicted tran-
scription factor binding sites in the galr2 regulatory region,
characterized the divergent craniofacial expression of galr2
across all three SSI pupfish species using in situ hybridization
chain reaction (HCR) [77,78] at two key developmental time-
points, and demonstrated that treatment with two different
Galr2 receptor inhibitors reduced Meckel’s cartilage length
and increased chondrocyte density dependent on the species’
genetic backgrounds.
2. Results
(a) Two highly differentiated SNPs are associated with

galr2a transcription factor binding sites
Previous whole genome resequencing of over one hundred San
Salvador Island (SSI) pupfishes identified only two highly
differentiated single nucleotide polymorphisms (SNP) within
the 20 kb regulatory region of galr2a between trophic specialists
across different lake populations on SSI [56]. We designed pri-
mers (electronic supplementary material, table S5) and used
Sanger sequencing to further genotype these SNPs in a large
panel of wild-caught specialists from six lake populations. We
confirmed the presence of a transversion from G to A approxi-
mately 11 kb upstream of the galr2a transcription starting site
(TSS; figure 2a; electronic supplementary material, figure S1
and table S1), which changes a predicted CAGCAA Elf1/Erg
transcription factor binding site (TFBS) to a predicted AGG-
GASW Elf5 TFBS at this locus (using the Multiple Expectation
maximizations for Motif Elicitation (MEME) server and the
motif database scanning algorithm TOMTOM [79]). This trans-
version was observed in 86.3% of scale-eaters across four lake
populations (n = 51) versus 20% of molluscivores across six
lake populations on SSI (n = 30) (figure 2a, S1).

Using Sanger sequencing, we genotyped a second transver-
sion from C to T approximately 8 kb upstream of galr2a TSS,
which changes the predicted AGACAA Sry TFBS to
a predicted YAGATA Znf146 TFBS (figure 2b; electronic
supplementary material, figure S2 and table S1). This transver-
sion was observed in 90.9% of scale-eaters across six lake
populations (n = 55) versus 33.9% of molluscivores across six
lake populations on SSI (n = 53) (electronic supplementary
material, figure S2). Notably, all scale-eaters sampled from
Crescent Pond (CRP) contained the T transversion (n = 30) (elec-
tronic supplementary material, figure S2). The predicted TFBS
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changes in the galr2a cis-regulatory region across pupfishes,
combined with a previous genetic mapping study that found
a significant QTL in this region explaining 15% of phenotypic
variance in oral jaw size [51], suggests that different spatial
or temporal galr2a expression may underlie some of the
craniofacial divergence in SSI pupfishes. Previous studies of
allele-specific expression in SSI pupfishes were inconclusive
due to lack of heterozygous sites in the galr2a transcripts [53].

(b) Different spatio-temporal patterns of galr2a
expression in craniofacial tissues

To determine if spatial or temporal changes in galr2a expression
underlie SSI craniofacial divergence, we assayed galr2a
expression in 2 dpf embryos and8 dpf larvae from two indepen-
dent lake populations for each of the three SSI species using
fluorescent in-situ hybridization chain reaction (HCR) for
galr2a and tropomyosin 3b (tpm3b), a component of thin filaments
of myofibrils expressed in fish skeletal muscles [80], to visualize
jaw and other cranial muscles. We also tested galr2a expression
using orthogonal amplifiers labelled with three distinct fluoro-
phores (see Methods for details) to ensure reliable detection of
galr2a transcripts in situ across species and developmental
stages (electronic supplementary material, video S1).

At 2 dpf, galr2a expression was detected in broad regions
of the central nervous system (e.g. the posterior tectum and
medial longitudinal fasciculus) of specialists (figure 3a,c)
and generalists, with apparent higher expression in both
specialist species than in generalists. We also observed an
apparent increase of galr2a expression anterior to the first
pharyngeal arches in the molluscivore and generalist
pupfishes relative to the scale-eaters.

Using three-dimensional reconstruction and volume ren-
dering analysis of HCR data for whole-mounted pupfishes
at hatching time (8 dpf), we found that the galr2a expression
domain was expanded in the jaws of the molluscivores relative
to the generalists (figure 4; p = 0.03, Tukey’s HSD), consistent
with either greater tissue volume or an increased gene
expression domain. By contrast, galr2a showed no differences
in expression volume among species in the brain and head
(figure 4; electronic supplementary material, table S3). Galr2a
expression was detected in the Meckel’s and palatoquadrate
cartilages in all SSI pupfishes, in the premaxilla of the general-
ist and the scale-eater SSI specialist (figure 4b–b0,c–c0), the
maxilla of the molluscivore SSI specialist (figure 4a–a0), and
in the intermandibular muscles of the scale-eaters (figure 4c0).

At the subcellular level, galr2a mRNA was detected in
the cytoplasm of chondrocytes at the Meckel’s symphysis
(figure 5a). By contrast, on the distal edge of the Meckel’s carti-
lage expression was detected only in the cytoplasm of the
elongated chondrocytes (figure 5a0). Towards the most posterior
region of theMeckel’s cartilage closest to the palatoquadrate car-
tilage,we observed galr2a expression in the cells surrounding the
jaw joint (figure 5b–d; electronic supplementary material, video
S1). We conclude that galr2a was significantly differentially
expressed in specific and distinct craniofacial tissues in the
specialists at hatching time, suggesting an important role for
craniofacial divergence in the SSI radiation.

We further tested for quantitative differences in galr2a
expression at 2 dpf and 8 dpf by quantifying transcript
counts from the only existing RNAseq data set for the heads
of SSI pupfishes during development [81]. Only galr2a, but
not galr1a, galr1b, galr2a, galr2b or galanin, showed significantly
higher mRNA expression in the molluscivores relative to gen-
eralists ( p = 0.003, Tukey’s HSD test) and scale-eaters ( p =
0.014, Tukey’s HSD test) at 2 dpf (electronic supplementary
material, table S2), whereas galr2a showed overall similar
levels of expression in the head from 4 to 15 dpf in all three
species (electronic supplementary material, table S2).

By using Tpm3b expression to label muscle cells, we
observed at 2 dpf that Tpm3b expressionwas detected in somitic
myofibers in all SSI pupfishes (figure 3a00–c00). However, only in
the scale-eaters, Tpm3b expression was detected in the eye’s
inferior obliquemuscle primordial cells (figure 3c00). At hatching
time, Tpm3b expression was detected in all larval head muscles
(figure 4a-a0, b-b0, c-c0; figure 5b). The scale-eater and mollusci-
vore Tpm3b expression volume was significantly larger than in
the generalists (electronic supplementary material, table S3;
p < 0.05; 1-way ANOVA, Tukey’s HSD test).

(c) Chemical inhibition of Galr2 receptors affects
Meckel’s cartilage length and chondrocyte density

To study the effect of Galr2 in craniofacial development, we
inhibited the endogenous activation of all four known gala-
nin receptors in teleost fishes (Galr1a and b, Galr2a and b
[68,82]) using M35 (Innopep, Inc.), a synthetic peptide
antagonist of Galr1+2 galanin receptors [83], and M871
(Abcam), a Galr2-specific synthetic peptide antagonist [84].
Embryos of all three species from two different lake popu-
lations were exposed from stages 24–25 (2 dpf, with the
appearance of the first pharyngeal arches) until hatching at
stages 32–33 (8 dpf; figure 6a).

At approximate hatching time (8 dpf), both trophic special-
ist species raised under laboratory common garden conditions
exhibited increased Meckel’s cartilage length (figure 6d ), con-
sistent with the longer jaws of adult scale-eaters and more
robust jaws of the molluscivore relative to the more gracile
jaws of the generalist [47,59]. We found that exposure to
M871, the Galr2-specific antagonist, significantly reduced the
length of the Meckel’s cartilage in both specialists relative to
the generalists (figure 6d; p = 7.89 × 10−5 for scale-eaters; p =
0.001 for molluscivores; 2-way ANOVA, Tukey’s HSD test)
while the interocular distance remained unchanged between
control and treated larvae (electronic supplementary material,
figure S4). By contrast, M35 (Galr1 and Galr2 antagonist) only
significantly reduced Meckel’s length in the molluscivore
(figure 6c). Meckel’s length of generalists was unaffected by
exposure to M35 or M871 (figure 6d ).

To understand the cellular effect of Galr1 and 2 antagon-
ists on Meckel’s length across species, we quantified the
number of chondrocytes 100 µm from the symphysis and
the mean width of ten chondrocytes nearest to the symphysis.
We found no significant differences in the mean chondro-
cyte width among pupfish species but observed increased
chondrocyte density in untreated scale-eaters relative to
generalists (figure 6e; electronic supplementary material,
table S4; p = 0.009, ANOVA, Tukey’s HSD test). Moreover,
only scale-eaters responded to M871, but not M35, by further
increasing chondrocyte density relative to the control larvae
(figure 6e; electronic supplementary material, table S4; p =
0.03, ANOVA, Tukey’s HSD test; mean ± 1 s.e.; control =
28.22 ± 0.38; M871 = 32.06 ± 1.06). Despite having shorter
jaws after treatment with M871, chondrocyte density was sig-
nificantly increased (figure 6e; mean ± 1 s.e.; control = 28.22 ±
0.38; M871 = 32.06 ± 1.06).
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3. Discussion
Weusedanevolutionary radiationof trophic specialist pupfishes,
endemic to San Salvador Island in the Bahamas, to discover a
novel function for galr2a in craniofacial divergence. Specifically,
we confirmed that two transcription factor binding sites
upstream of galr2a display highly divergent allele frequencies
between trophic specialist species, visualized galr2a expression
in craniofacial tissues in all three SSI pupfish species at twodevel-
opmental stages, and demonstrated a phenotypic effect on
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Meckel’s cartilage length and chondrocyte density using syn-
thetic peptides to inhibit the activity of Galr2 and Galr1 + 2.
Our findings demonstrate a crucial role for Galr2 in craniofacial
divergencewithin this pupfish radiation.Our studyalsoprovides
a roadmap in a non-model vertebrate system for rapidly identify-
ing previously uncharacterized candidate genes important for
adaptation to novel ecological niches (e.g. trophic specialization)
that can be quickly validated through classic and state-of-the-art
developmental biology tools. Overall, our research contributes to
understanding the genetic basis of phenotypic evolution and
adaptation in non-model organisms.

(a) Putative loss of a transcription factor binding site
for galr2a in scale-eating pupfish

One of the most common evolutionary changes associated
with phenotypic changes among closely related species is
the gain or loss of cis-regulatory elements [86,87]. More
than 85% of scale-eaters carry two transversions in the regu-
latory region of galr2a (figure 2). Combined with our
observations of reduced galr2a expression in the mandibular
mesenchyme during early jaw development in this species
(figure 3), we conclude that the putative loss of a predicted
Sry transcription factor binding site in scale-eaters is the
most likely explanation for changes in gene expression,
rather than a gain of a new predicted TFBS for Znf416 at
this locus (figure 2). This is further supported by the critical
role of the Sry-related HMG box (Sox) family of transcription
factors (especially the SoxE group including Sox8, Sox9 and
Sox10) in craniofacial development as Sry transcription fac-
tors specify the behaviour, multipotency and survival of
neural crest cells during vertebrate development [88–92].
Moreover, the maintenance of the Elf (E74-like ETS transcrip-
tion factor) family TFBS upstream of the loss of the Sry TFB in
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scale-eaters suggests that Elf TF recruitment to the regulatory
region of galr2amay play a broader role in head development
than species-specific craniofacial differences. Interestingly,
morphant zebrafish larvae for elf3 show craniofacial cartilage
defects [93], suggesting still unexplored possible roles for elf
genes in craniofacial development and evolution.

Along with the identification of an Sry TFBS site using
MEME, the Sry-related HMG box sox21 and sox7 were the
second and third top-hits for predicted TFBS for the galr2a
downstream SNP in molluscivores and generalists (TFBS pre-
dicted to be lost in scale-eaters). We checked both sox21 and
sox7 expression through time and across species and found
that they are mostly expressed at 2 and 4 dpf, with sox21b
expressed more than sox7 (greater than 25 RPKM for sox21b,
greater than 3 RPKM for sox7). We did not find species differ-
ences across time for sox21b; however, sox7 expression was
significantly higher in scale-eaters than in molluscivores and
generalists at 2 dpf (electronic supplementarymaterial, table S2).

Alternatively, we cannot rule out a gain of a TFBS
upstream of galr2a in scale-eaters, additive or epistatic effects
of both upstream transversions, or more complex regulatory
architectures, such as many interacting functional cis- and
trans-acting regulatory variants or combinations of variants
segregating at lower frequencies in trophic specialists that
we have not prioritized [53,94,95]. However, our mapping
cross of a single outbred pair of trophic specialists indicates
that a single moderate-effect QTL containing galr2a explains
15% of phenotypic variation in oral jaw length between
these species, consistent with causative variants affecting
jaw size originating from this region [51].
(b) Differential Galr2a expression during development is
associated with craniofacial divergence in SSI pupfishes

We found galr2a expression in our in situ hybridization exper-
iments to be consistent with previously published RNAseq
data for craniofacial tissues in this radiation (figure 3)
[53,64,96–98], with galr2a being differentially expressed only
at 2 dpf. We observed distinctive spatial galr2a expression
among SSI species at 2 and 8 dpf suggesting important
time and tissue-specific regulation of galr2a expression
during pupfish development. At 2 dpf, we found a strong
association between decreased expression of galr2a in the
mandibular mesenchyme anterior to the first pharyngeal
arch with the future Meckel’s cartilage and oral jaw lengths
in the adults of each species; with increasing galr2 abundance
in the molluscivores associated with shorter, but more robust
jaws in adults [47,59]. By contrast, the reduced galr2a
expression in the mandibular mesenchyme is associated
with the development of longer oral jaws in scale-eaters,
which is apparent as early as hatching time (figure 6d) [44].

We noted expression of galr2a in the maxilla of only mol-
luscivores at hatching (figure 4a–c), absent in the scale-eaters
and generalists, consistent with the uniquely enlarged and
anteriorly protruding head of the maxilla in this species
[43,47,49,50,59,98]. Furthermore, galr2a expression in the
intermandibular muscles of the scale-eaters at hatching time
(figure 4c) suggests that galr2a expression can also modulate
the development of the observed hypertrophic musculature
of the adductor mandibulae in the adult scale-eating pupfish
[43]. Altogether, these interspecific differences in spatial
expression support a novel role for galr2a in musculoskeletal
development and may contribute to the divergent craniofacial
morphology observed in SSI pupfishes.
(c) Receptor inhibition supports a novel function for
GALR2 in craniofacial divergence of SSI pupfishes

Interestingly, the response of Meckel’s cartilage length and
chondrocyte density to the inhibition of Galr-receptor
pathways was highly dependent on the species’ genetic
background. Scale-eaters responded only to the Galr2-specific
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antagonist M871 with substantially reduced Meckel’s cartilage
length and increased chondrocyte density but were unaffected
by the Galr1 + 2 antagonist M35 (figure 6c). Importantly, M871
exhibits a higher binding constant for Galr2 receptors than the
Galr1 + 2 antagonist M35 [84,99]. Previous transcriptomic data
from craniofacial tissues during early development [96] also
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indicates that galanin and Galr1 mRNA transcript abundance
does not vary among the three SSI species (electronic
supplementary material, table S3).

Therefore, we conclude that even though scale-eaters
expressed the lowest amount of galr2a transcripts and presum-
ably contain overall fewer Galr2 receptors in their craniofacial
tissue, M871’s higher binding affinity [85] was sufficient to inhi-
bit these fewer receptors, resulting in reducedMeckel’s cartilage
length (figure 7). By contrast, the presumably greater concen-
tration of Galr2 receptors in molluscivore craniofacial tissue
due to increased Galr2 expression during development resulted
in the inhibition of these receptors by both M871 and M35,
despite its lower binding affinity forGalr2 [85].Wealso conclude
that inhibitionofGalr1 receptors byM35doesnotaffectMeckel’s
cartilage length or chondrocyte density and that the specific
inhibition of Galr2 by M871 was sufficient to drive equal
Meckel’s cartilage length shortening. Finally, the generalists’
lack of significant response to M35 is consistent with their
decreased levels of galr2a at 2 dpf, suggesting that, as in scale-
eaters treated with M35, fewer Galr2 receptors may be present
for inhibition in these species’ background. However, the
response to M871 appears to be specialist-specific, with little
effect on the generalist Meckel’s cartilage length, and thus, we
cannot rule outmore complex species-specific factors interacting
with Galr regulatory pathways.

Our work is consistent with previous work showing that
Galr2 activation inhibits cell proliferation in neuronal cell
lines [85,100], suggesting that the TFBS allele frequency
shifts observed in scale-eaters are the cause for low galr2a
abundance and, consequently, have low Galr2 activity
during craniofacial development resulting in increased chon-
drocyte density and Meckel’s cartilage length. Thus, the
increased chondrocyte density observed in the M871-treated
scale-eater larvae likely results from the strong and continued
inhibition of the fewer Galr2 receptors available during
development due to their genetic background. Lastly, due
to the variable expression of galr2a between species at stage
24 but similar expression in chondrocytes of the Meckel’s
and palatoquadrate cartilages of different species at stage
33, we speculate that galr2a may have a species-specific mor-
phogenetic role during pharyngeal arch differentiation and
early jaw development and an osteogenic role at later stages.

In conclusion, we propose that the inhibition of Galr2 and
not Galr1 induces the reduction of Meckel’s cartilage length.
Thus, a greater number of Galr2 receptors in the molluscivore
specialist due to increased expression of galr2a during early
development may result in their reduced oral jaw lengths
as adults through increased opportunities for endogenous
agonistic binding interactions (figure 7). Fewer Galr2 recep-
tors on the scale-eater jaw may result in their enlarged jaw
lengths as adults by limiting opportunities for Galr2
endogenous agonists to bind to these receptors during devel-
opment. In the generalists, a greater number of Galr2
receptors but smaller overall Meckel’s cartilage length may
limit the sensitivity of this species to Galr2 and Galr1 + 2
endogenous agonists, however, resulting in their intermediate
length and least robust oral jaws among the three species
under control conditions [43,46].
4. Conclusion
Our results support a novel role of the second receptor for
galanin, Galr2, as a craniofacial modulator gene important
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in controlling craniofacial development and interspecific
divergence through modifying its transcript abundance and
receptor activity. Galr2a transcript abundance changes
among species are associated with genetic changes in the
regulatory region of galr2a, consistent with the loss of a tran-
scription factor binding site in the scale-eating pupfish. We
propose a model in which reduced Galr2 receptor abundance
in the oral jaws of scale-eaters results in fewer endogenous
agonistic interactions, increasing Meckel’s cartilage length
presumably by decreased inhibition of chondrocyte prolifer-
ation (as a downstream effect of endogenous Galr2
activation). We also acknowledge the polygenic nature of
jaw development and note that our previous genetic
mapping experiments place an upper bound of 15% of oral
jaw variation that may be due to differences in galr2a regu-
lation among the myriad craniofacial genes driving the
evolution of divergent craniofacial traits in this system.

5. Material and methods
Full details on pupfish husbandry, HCR FISH staining,
microscopy, Galr2-inhibition, sequencing, TFBS prediction,
gene expression and statistical analyses are available in the
supplemental material.
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