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This paper addresses two topics in systems biology, the hypothesis that
biological systems are modular and the problem of relating structure and
function of biological systems. The focus here is on gene regulatory networks,
represented by Boolean network models, a commonly used tool. Most of the
research on gene regulatory network modularity has focused on network
structure, typically represented through either directed or undirected
graphs. But since gene regulation is a highly dynamic process as it determines
the function of cells over time, it is natural to consider functional modularity
as well. One of the main results is that the structural decomposition of a
network into modules induces an analogous decomposition of the dynamic
structure, exhibiting a strong relationship between network structure and
function. An extensive simulation study provides evidence for the hypothesis
that modularity might have evolved to increase phenotypic complexity while
maintaining maximal dynamic robustness to external perturbations.

1. Introduction

Building complicated structures from simpler building blocks is a widely
observed principle in both natural and engineered systems. In molecular sys-
tems biology, it is also widely accepted, even though there has not emerged a
clear definition of what constitutes a simple building block, or module. Conse-
quently, it is not clear how the modular structure of a system can be identified,
why it is advantageous to an organism to be composed of modular com-
ponents, and how we could take advantage of modularity to advance our
understanding of molecular systems [1-3]. In the (graph-theoretic) network
representation of molecular systems, such as gene regulatory networks or
protein—protein interaction networks, a module is typically considered to be a
‘highly” connected region of the graph that is ‘sparsely’ connected to the rest
of the graph, otherwise known as a community in the graph. Graph theoretic
algorithms that depend on the choice of parameters, and the specific definition
of ‘highly’ and ‘sparsely’ are typically used to define modules [4,5]. Similar
approaches are used for identifying modules in co-expression networks based
on clustering of transcriptomics data [6].

A major limitation of this approach to modularity is that it focuses entirely
on a static representation of gene regulatory networks and other systems. How-
ever, living organisms are dynamic, and need to be modelled and understood
as dynamical systems. Thus, modularity should have an instantiation as a
dynamic feature, as advocated in [7]. The most common types of models
employed for this purpose are systems of ordinary differential equations and
discrete models such as Boolean networks and their generalizations, providing
the basis for a study of dynamic modularity. In recent years, there have been an
increasing number of papers that take this point of view. Jimenez et al. [8] argue
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that dynamic modularity may be independent of structural
modularity, and they identify examples of multi-functional
circuits in gene regulatory networks that they consider dyna-
mically modular but without any underlying structural
modularity. A similar argument is made in [9] by analysing
a small gene regulatory network example. For another
example of a similar approach see [10].

The literature on how modularity might have evolved
and why it might be useful as an organizational principle
cites as the most common reasons robustness, the ability to
rapidly respond to changing environmental conditions,
and efficiency in the control of response to perturbations
[2,11,12]. An interesting hypothesis has been put forward in
[3], namely that a modular organization of biological
structure can be viewed as a symmetry-breaking phase
transition, with modularity as the order parameter.

This literature makes clear that research on the topic of
modularity in molecular systems, both structural and
dynamic, would be greatly advanced by clear definitions of
the concept of module, both structural and dynamic. This
would in particular help to decide whether and how struc-
tural and dynamic modularity are related, and it would
provide a basis on which to distinguish between dynamic
modularity and multi-stationarity of a dynamic regulatory
network. To be of practical use, such a theory should include
algorithms to decompose a dynamic network into structural
and/or dynamic modules. At the same time, it would be of
great practical value, for instance for synthetic biology, to
understand how systems can be composed from modules
that have specific dynamic properties.

The search for such algorithms has led us to look for
guidance to mathematics, as a complement to biology.
After all, if the dynamic mathematical models that
are widely used to encode gene regulatory networks are
appropriate representations, and if modularity is indeed
an important feature of such networks, then it should be
reflected in the model structure and dynamics. Choosing
the widely used modelling framework of Boolean networks,
we asked whether it is possible to identify meaningful
concepts of modularity that, ideally, link both the structural
and dynamic aspects. Modularity is fundamentally about
connectivity. The central dynamic instantiation of connec-
tivity is the feedback loop, which we, therefore, choose as
the defining feature. The concept of module we propose is
structural, in terms of special subgraphs of the (directed)
graph of dependencies of network nodes. These subgraphs,
called strongly connected components (SCCs), are maximal
with respect to the property that every node is connected to
every other node in the subgraph through a directed path.
In other words, none of the nodes in the SCC are involved
in feedback loops that are not entirely within the SCC.
These types of decomposition-based approaches are by no
means novel and have been employed by computer scien-
tists for developing faster, more efficient algorithms for
finding and enumerating attractors.
decompositions have been used to find fixed points and
attractors of nested canalizing networks [13], and SCCs
have been used to enumerate the attractors of an asynchro-
nous network, in a manner very similar to our own
approach [14]. Our aim is to highlight the structure that
these types of decompositions, in particular that of SCCs,
place on the attractor landscape, and to investigate the
implications for the modelled biological systems.

For instance, tree
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Figure 1. Wiring diagram and state space of the Boolean network
F=(f,f )= (nA—Xx, —X AX). (@ The wiing diagram
encodes the dependency between variables. Subnetworks are defined on
the basis of the wiring diagram. For example, the subnetwork
F| o )(3}()(1,)(2, x3) = (X, =% AXy) is the restriction of F to {x,, x3}
and contains external parameter x;. (b) The state space is a directed
graph with edges between all states and their images. This graph, therefore,
encodes all possible trajectories and attractors. Here, F has two steady states,
000 and 011, and one limit cycle, (010, 101), so .A(F) = {000, 011,
(010, 101)}.

The main result of this paper is that this structural
decomposition of the model into modules induces a similar
decomposition of model dynamics, explicitly linking the
dynamics of the structural modules in a mathematically clearly
specified way. This theorem links structural and dynamic
modularity, and provides an example of how network struc-
ture influences network function. We provide an important
application of this theorem to network control by showing
that, in order to control a network, it is sufficient to control
its modules, and we provide an application of this result to
a published cancer signalling network. This result is important
both for applications to e.g. medicine and might provide a can-
didate for a mechanism that allows organisms to quickly
respond to changes in their external environment. We also
discuss our results in the context of published Boolean network
models of regulatory networks and provide specific instantia-
tions of our decomposition theorem. Finally, we address the
question as to why evolution should favour modularity as a
structural and dynamic feature. We carry out an extensive
simulation study that provides evidence for the hypothesis that
modularity enables phenotypic complexity while maintaining
maximal robustness to external perturbations.

1.1. Boolean networks

For the purpose of this article, we will focus on the class of
Boolean networks as a modelling paradigm. Recall that a
Boolean network F on variables xq, ..., x,, can be viewed as
a function on binary strings of length n, which is described
coordinate-wise by n Boolean update functions f;. Each

function f; uniquely determines a map
Fi:{0,1}" —{0,1}", Fi(x1, ..., xn)
=x1, ..., filx), .. X)),

where x = (xy, ..., x,). Every Boolean network defines a canon-
ical map, where the functions are synchronously updated,

(fi(x), o) fa(2))-

In this paper, we only consider this canonical map, i.e. we only
consider synchronously updated Boolean network models.
Two directed graphs can be associated with F (see figure 1 for
an example). The wiring diagram (also known as dependency
graph) contains 1 nodes corresponding to the x;, and has a
directed edge from x; to x; if f; depends on x;. The state space of
F contains as nodes the 2" binary strings, and has a directed
edge from u to v if F(u) = v. Each connected component of the

F:{0,1}" — {0,1}", F(x1, ..., x,) =

S0S0£207 07 2pLau) 20§ Y Jisi/jeuinol/b10°buiysijgndanosiefos H



state space gives an attractor basin of F, which consists of a
directed loop, the attractor, as well as trees feeding into the attrac-
tor. Attractors can be steady states (also known as fixed points)
or limit cycles. Each attractor in a biological Boolean network
model typically corresponds to a distinct phenotype [15]. The
set of attractors of F, denoted A(F), contains all attractors, i.e. all
minimal subsets C C {0, 1}" satisfying F(C) = C. Note that a
limit cycle of length k represents k trajectories. For example,
the 2-cycle (010, 101) in figure 1 represents (010, 101, 010, ...)
and (101, 010, 101,...). This distinction becomes important
later, when decomposing the dynamics of Boolean networks.

2. Results

2.1. A structural definition of modularity for Boolean

networks

Given a Boolean network F and a subset S of its variables, we
can define a subnetwork of E, denoted F | 5, as the restriction of F
to S. If some variables in S are regulated by variables not in S,
then we require these regulations to be included in Flg. In this
case, the subnetwork is a Boolean network with external par-
ameters. For the example in figure 1, the subnetwork F[,, ..,
contains x; as external parameter because x; regulates xz. If
the variables in S form a SCC (that is, (i) every pair of nodes
in S (excluding possible external parameters) is connected by
a directed path and (ii) the inclusion of any additional node
in S will break this property), we call the subnetwork a module.

The wiring diagram of any Boolean network F is either
strongly connected or it consists of a collection of SCCs
where connections between two SCC point in only one direc-
tion. Let Wy, ..., W, be the SCCs of the wiring diagram, with
Y; denoting the set of variables in SCC W; (note U;Y; = Y and
Y;#Y; for i #]). Then, the modules of F are F|y, ..., F|y , the
restrictions of F to the Y;. By setting W; — W; if there exists at
least one edge from a node in W; to a node in Wj, we obtain a
directed acyclic graph

Q=AW — W}, 2.1)

which describes the connections between the modules of F.
As we will show later, any Boolean network can be decom-
posed into modules and this structural decomposition implies
a decomposition of the network dynamics, which is of practi-
cal utility. The main question to be answered at this point,
though, is whether there exists biological evidence that our
concept of modularity and the structural and dynamic
decomposition theory that follows does in fact reflect reality.

2.2. Modularity in expert-curated biological networks

A recent study investigated the features of 122 distinct publi-
shed, expert-curated Boolean network models [16]. Analysing
the wiring diagrams of these models, we found that almost all
of them (113, 92.6%) contained at least one feedback loop and
thus at least one non-trivial SCC/module (which contains
more than one node). The nine models that only contained
single-node SCCs mainly describe signalling pathways. Thirty
models (24.6%) contained even more than one non-trivial
SCC, with one Influenza A virus replication model possessing
11 [17]. The directed acyclic graph structure (equation (2.1)) of
these models varied widely (figure 2). While the average con-
nectivity of a network was not correlated with the number of

non-trivial SCCs (pspearman = —0.08, p=0.37), network size n

was positively correlated (pspearman=0.37, p< 107%. The
same trends persisted when considering the binary variable
‘multiple non-trivial SCCs’ (multi-variable logistic regression:
connectivity p =0.07, size p =0.002).

Modules are subnetworks that carry out key control func-
tions in a cell. It would, therefore, not be surprising if there
was a selection bias among systems biologists to focus their
attention on such modules. Larger networks are still challenging
to build and analyse since an accurate formulation of a biologi-
cal network model requires a substantial amount of data for a
careful inference and calibration of the update rules by a subject
expert [18-21]. For this reason most published expert-curated
models might focus on one specific cellular function of interest
and contain, therefore, only one non-trivial SCC. Assuming that
a principled method for predetermining the modular structure
of a biological system existed, one interesting application of
this modular decomposition would be to allow Boolean infer-
ence algorithms to use this decomposition to focus on one
module at a time reducing the complexity of the problem.

2.3. Modularity confers phenotypical robustness

and a rich dynamic repertoire
To provide additional evidence that SCCs form biologically
meaningful modules, we performed a computational study
which shows that the presence of several modules confers
robust phenotypes and a rich dynamic repertoire, both
desirable features for an organism.

Biological networks must harbour multiple phenotypes,
allowing the network to dynamically shift from one attractor
to another based on its current needs. This shift is typically
mitigated by external signals. Many evolutionary innovations
are the result of newly evolved attractors of gene regulatory
networks (GRNs) [22,23]. The number of attractors of a
Boolean network, therefore, describes its dynamical complexity.

Furthermore, biological networks need to robustly
maintain a certain function (i.e. phenotype) in the presence of
intrinsic and extrinsic perturbations [24,25]. At any moment,
these perturbations may cause a small number of genes to
randomly change their expression level. For a Boolean GRN
model, this corresponds to an unexpressed gene being ran-
domly expressed, or vice versa. The robustness of the
network describes how a perturbation on average affects the
network dynamics. One popular robustness measure for Bool-
ean networks (BNs), the Derrida value, describes the average
Hamming distance between two states after one synchronous
update according to the Boolean network rules, given that
the two states differed in a single node [26]. Due to the finite
size of the state space, any state of a BN eventually transitions
to an attractor, which corresponds to a distinct biological
phenotype. Thus, while the Derrida value is a meaningful
robustness measure, a more phenotype-focused measure
describes how frequently a small perturbation (e.g. a single
node flip) forces the network to transition to a different attrac-
tor. We, therefore, measure the phenotypical robustness of a
Boolean network F : {0, 1} — {0, 1}"" by

1 n
D AKX = A(x @ e)] (2.2)
x€{0,1)" i=1

=0 2. AW =AW €01 (23
xy€{0,1}",[x~y|/=1
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Figure 2. Modular decomposition of all published expert-curated Boolean gene regulatory network models with more than one non-trivial module. Each model is
labelled by the Pubmed ID of its source. Each red non-trivial module is labelled by its size, i.e. the number of nodes contained in the module. Trivial modules consist
of one node only. They are coloured grey if they are input or output nodes, i.e. nodes without incoming or outgoing edges, respectively. Otherwise, they are coloured
pink. For models with more than 40 modules, input and output modules are omitted for clarity, indicated by * after the Pubmed ID. An arrow from module X to
module Y indicates that some node in X regulates some node in V. The directed acyclic graph of the multi-cellular pancreatic cancer model, analysed in figure 6, is
shown in row 4, column 4 (Pubmed ID 35752283).

Here, ¢ is the ith unit vector and A(x) labels the attractor that r(F) is the proportion of edges, which connect vertices with
state x transitions to. Geometrically, if we consider the Boolean the same value.
hypercube with each vertex in {0, 1}" labelled by the attractor Clearly, »(F)=1 if a Boolean network F possesses only a

that the vertex-associated state eventually transitions to, then single attractor. Moreover, the expected value, E[r(F)], decreases
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Figure 3. Modularity confers dynamical complexity and phenotypical robust-
ness. Sixty-node nested canalizing Boolean networks with a constant in-
degree of 3 and with 1-6 modules (i.e. SCCs of the wiring diagram) of
equal size were generated (50 000 networks each). For each modular net-
work, a weakly connected directed graph describing the connections
between modules, as well as a single edge connecting an upstream with
a downstream module were selected uniformly at random. By following
the transitions of 500 random initial states to their attractors, the phenoty-
pical robustness and a lower bound for the dynamical complexity (here,
number of attractors) were established for each network. (a) Cumulative
empirical density function of the number of attractors, stratified by the
number of modules or SCCs. (b) The mean phenotypical robustness (y) is
plotted against the number of discovered attractors (x), stratified by the
number of modules or SCCs (dots). Since y(1) = 1, the two-parameter function
y=a+ (1—a)e™ s fitted to the means of the number of attractors for
x=1,..., 19 (lines).

as the number of attractors of F increases. This implies that the
phenotypical robustness and the dynamical complexity are
negatively correlated and that there exists a trade-off when
trying to maximize both. It is reasonable to hypothesize that
evolution favours robust GRNs that give rise to sufficient
variety in the phenotype space. In line with this, we hypoth-
esized that modular networks have higher robustness than
non-modular networks with the same dynamical complexity.

To test this hypothesis, we generated Boolean networks
with N =60 nodes, a fixed in-degree of 3, and m=1,..., 6
modules (i.e. SCCs of the wiring diagram) of size N/m.
Since published expert-curated Boolean GRN networks are
almost exclusively governed by nested canalizing functions
[16], we required all update rules to be of this type. Networks
with more modules possessed on average a higher dynamical
complexity, quantified here as the number of attractors
(figure 3a). At a fixed dynamical complexity, the more mod-
ular a network the higher was its average phenotypical
robustness (figure 3b). This finding supports the hypothesis
that a modular design serves as an evolutionary answer to
a multi-objective optimization problem.

S =)

7 P

Xi—= X
Xp = Uy, Xy —> Uy ll /4— l2
y1<—y2

FX,G

Ltl M2
NS N
G

Figure 4. Semi-direct product of Boolean networks. Wiring diagrams of inde-
pendent Boolean networks F and G (where G has external parameters) can be
combined into FXpG, the semi-direct product of F and G. The coupling
scheme P describes which variables of F take the place of the external par-
ameters and act as inputs to G.

2.4, Structural decomposition of Boolean networks
Thus far, we have described how to define modules as restric-
tions of Boolean networks and provided evidence that
modules defined this way are biologically meaningful. To
obtain a successful decomposition theory, we also require
the inverse operation of a restriction: a semi-direct product
that combines two Boolean networks, F and G, such that F
is the upstream module and G is the downstream module.
The coupling scheme P contains the information which nodes
in F regulate which nodes in G. We denote the combined
Boolean network as FXpG and refer to this as the coupling
of F and G by the coupling scheme P or as the semi-direct
product of F and G via P (detailed definition in appendix
A, §A.1). (The motivation for the term ‘semi-direct product’
comes from the fact that the combination of the two subnet-
works is like a product, except that F acts on G through P,
which is not the case in an actual product. The term is also
used in mathematical group theory, which provided the
motivation for our decomposition approach.)

As an example, consider the Boolean networks F(x1,x;) =
(x2, x1)G(u1, Uz, y1,Y2) = (U1 V (U2 Ay2), ~ua Ay;) where
G possesses two external parameters, 1, and u,. With the coup-
ling scheme P ={x; — 1, x, — Uy}, we obtain the combined
nested canalizing network FXpG: {0, 1} = {0,1}%,

(EFXpG)(x1, X2, Y1, Y2) = (X2, X1, X1 V (X2 A Y2), X2 AYp).

At the wiring diagram level, this product can be seen as the
union of the two wiring diagrams and some added edges
determined by the coupling scheme P (figure 4).

If instead G(uy, Uz, Y1, Y2) = Uy + Uz + Yo, Uz + Y7 with F and
P as before, then we obtain the linear network

(FXpG)(x1, X2, Y1, Y2) = (X2, X1, X1 + X2 + Yo, X2 + Y1).

At the wiring diagram level, this product looks exactly the
same (figure 4).

We can prove that every network is either a module or
can be decomposed into a semi-direct product of two net-
works. That is, if a Boolean network F is not a module (i.e.
if its wiring diagram is not strongly connected), then there
exist F;, F,, P such that F = F;XpF;,, and we call such a net-
work F decomposable. We can even find a decomposition
such that F; is a module. By induction on the downstream
component F,, it follows that any Boolean network is either
a module or decomposable into a unique series of semi-
direct products of modules. That is, for any Boolean network
F, there exist unique modules Fy, ..., F,, (n=1 if F is itself a
module) such that

F = F1Xp, (FaXp, (- - Xp, ,Fu)), (2.4)
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Figure 5. Attractors of a Cartesian product and a semi-direct product. (a) The space of attractors of a Cartesian product F = F; X F,, with F;(xq, X,) = (xp, X3), Fo(x3,
X3) = (X4, x3), can be seen as a Cartesian product of A(F;) and A(F,). To illustrate the different ways to combine attractors of £, and F, in the panel we explicitly
write (01, 10) and (10, 01) for F,. (b) In general, the coupling of networks does not behave as a Cartesian product and the space of attractors depends on
this coupling. The crossed-out attractors indicate which attractors from the Cartesian product are lost when using a semi-direct product with coupling scheme

P={(x;, X, x4)}, and Fy, F, as in (a).

where this representation is unique up to a reordering, which
respects the partial order induced by the directed acyclic
graph Q (equation (2.1)). The collection of coupling schemes
Py, ..., Py,_1 depends on the particular choice of ordering, as
well as on the placement of parentheses in the decomposition
of F, which may be rearranged in any associative manner.
Appendix A, §A.1 contains the proofs of these theorems.

2.5. Dynamic decomposition of Boolean networks
When the variables of a network F can be partitioned such
that F = F1XpF, =F; x F, is simply the cross product of
two networks F; and F», ie. the coupling scheme P =0,
then the dynamics of F can be determined directly from the
dynamics of F; and F,. The dynamics of F consists of
coordinate pairs (x, y) such that

x(t+1)=Fi(x(t)) and y(t+1)=F(y(t)). (2.5)

If trajectories (x(t));-, and (y(t)),, have periods ! and
m, respectively, then the periodicity of the trajectory
(x(5) (1) (x(B) (1)1 is the least common multiple of [ and .
Moreover, the set of periodic points (i.e. attractors) of F is the Car-
tesian product of the set of periodic points of F; and periodic
points of F».

For example, the Boolean network F(xy, X, X3, Xg) = (x2, X1,
X4, X3) can be seen as F=F; x F5, where F;(x1, x2) = (x5, x1)
and Fy(x3, x4) = (x4, x3). The sets of attractors of F; and F,
are A(F;) = {00, 11, (01, 10)} and A(F,) = {00, 11, (01, 10)}
(where we omit parentheses around steady states). By
concatenating the attractors of F; and F,, we obtain the attrac-
tors of F (figure 5a1). Note that we have two ways of
concatenating the limit cycle (01, 10) of F; and the limit
cycle (01, 10) of F, to obtain attractors of F. In general, we
have the following equation that formally states that attrac-
tors of FyxF, are given by concatenating attractors of F;
and F,.

A(F] X Fz) = .A(F1) X A(Fz) (26)

The computation of the attractors of F becomes more compli-
cated when F is slightly modified so that F(xy, xp, x3, x4) =
(%2, X1, X2X4, X3) = F1XpF,, where F; is as before and F, = (x4,
x3) with external parameter u and coupling scheme P = {x; —
u}. Since the coupling between F; and F; is no longer empty,
not every combination of attractors of F; and F, will result in
an attractor of F (figure 5b). For example, (01, 10) € A(F;) and
(01,10) € A(F;) do give rise to an attractor of F
while (01, 10) € A(F;) and (10, 01) € A(F,) do not. The set of
attractors, A(F), is the union of 00 x 00, 11 x A(F;) and (01,
10) x {00, (01, 10)}, and is thus a subset of the attractors of the Car-
tesian product (figure 5a). This is, however, not always the case
but depends on the particular coupling between the networks.
Hence, equation (2.6) is not valid in general.

In order to study the dynamics of decomposable
networks, we need to understand how a trajectory, which
describes the behaviour of an ‘upstream’ network at an attractor,
influences the dynamics of a ‘downstream’ network. The
trajectory of an ‘upstream’ m-node network F; at an attractor
C1 = (a1, ..., &) can be described by (g(f));-,, a sequence
with elements in {0, 1}™. This trajectory has period 7, the length
of the attractor. The dynamics of the "downstream’ n-node
network F, depend on F;. Therefore, F; is a non-autonomous
Boolean network, defined by

y(t+1) = Fa(g(t), y(1)),

where F, : {0, 1} > {0, 1}". Appendix A, §A.2 contains a
detailed definition and examples of non-autonomous Boolean
networks. To make the dependence of F, on the choice of
upstream attractor C; € C; explicit, we often write Fgl instead
of simply F,. IfC, = (B, ..., B,) is an attractor of F§', then

C] D CZ = ((a1, Bl)/ (0(2, Bz)/ LR (al—lr Bl—l))

is an attractor of the combined network F = F; XpF; of length

I:=Iem(|C1], |C2|), the least common multiple of |C;] and |C5|.
Iterating over all attractors of F; (thatis, allC; € A(F7)) as

well as all attractors of the corresponding non-autonomous

(2.7)

(2.8)
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Figure 6. A multi-cellular Boolean cancer model [34], which describes the interactions of PCCs (purple nodes), PSCs (blue nodes) and their connecting cytokines
(yellow nodes). (a) Wiring diagram describing the regulations between nodes, which are all monotonic, with black and red arrows indicating activation and inhi-
bition, respectively. The non-trivial modules are highlighted by amber, green and grey boxes. (b) Directed acyclic graph describing the connections between the non-

trivial modules.

networks Fgl that is, all C; € A(I—gl)) yields all attractors of
the combined network F. After the structural decomposition
theorem (equation (2.4)), this dynamic decomposition
theorem constitutes the second main theoretical result.
Mathematically, it can be expressed as

AR = || | aec, (2.9)
CEA(F) CZEA(F?)

which can be written as A(F; ) Xp.A(F>) to highlight the analogy
between the structural decomposition of a Boolean network
and the decomposition of its dynamics. With this, the dynamic
decomposition theorem states A(FiXpEF,) = A(F1)XpA(F2),
which implies a distributive property for the dynamics of
decomposable networks. Note that if P is empty, then
A(Fgl) = A(F,) for all C; and we recover equation (2.6),
A(Pl X Fz) = .A(Fl) X .A(FQ)

The dynamics of a Boolean network F, which decomposes
into modules Fy, ..., F,, can thus be computed from the
dynamics of its modules. That is,

A(F) = A(F1)Xp, (A(Fz)xp2 (- xpm,lA(Fm))), (2.10)

where the placement of the parentheses may be rearranged in
any associative manner, just as for the structural decompo-
sition in equation (2.4). Appendix A, §A.2 contains the
proof of the dynamic decomposition theorem as well as
instructional examples.

2.6. Efficient control of decomposable Boolean

networks
The state space of a Boolean network grows exponentially
in the number of variables. Therefore, the decomposition
theorems can reduce the time needed to perform various
computations by orders of magnitude for networks with
several larger modules. Besides an efficient strategy to com-
pute all attractors of a Boolean network, the structural

decomposition theorem can also be applied to efficiently
identify controls of Boolean networks, a topic that has
received recent attention [27-29]. Drug developers wonder,
for example, which nodes in a gene regulatory network
need to be controlled by an external drug to ensure the net-
work transitions to a desired phenotype, typically
corresponding to a specific network attractor.

Two types of control actions are generally considered:
edge controls and node controls. For each type of control,
one can consider deletions or constant expressions, as defined
in [30]. The motivation for considering these control actions is
that they represent the common interventions that can be
implemented in practice. For instance, edge deletions can
be achieved by the use of therapeutic drugs that target
specific gene interactions, while node deletions represent
the blocking of effects of products of genes associated with
these nodes [31,32].

A set of controls u stabilizes a Boolean network
at an attractor C when the resulting network after
applying u possesses C as its only attractor. As described in
detail in [33], the decomposition into modules can be used
to obtain controls for each module, which can then be
combined to obtain a control for an entire network. Specifi-
cally, for a decomposable network F = F;XpF,, if u; is a
set of controls that stabilizes F; in C; and u, is a control
that stabilizes I—? in Cy, then w = u; U u, is a set of control
that stabilizes F in C=C; ®Cp, as long as C; or C; is a
steady state.

A recently published multi-cellular Boolean network
model describes the microenvironment of pancreatic cancer
cells (PCCs) by modelling the interactions of PCCs, pancrea-
tic stellate cells (PSCs), and their connecting cytokines [34].
This network has 69 nodes, 114 edges and possesses three
non-trivial modules (figure 6a). Figure 6b shows the directed
acyclic graph, which describes the connections between
the modules.

An effective treatment should induce the cancer cell to
undergo apoptosis, which, therefore, represents the desired
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attractor of this network. To find a set of controls that stabil-
izes the network in this attractor, one can exploit the
structural decomposition of the network by first controlling
the upstream module (module 1), which has four attractors:
two steady states and two 3-cycles. This module consists of
two feedback loops joined by the node TGFbl. It is thus
enough to control TGFb1 to stabilize this module into any
of its attractors [35]. Using the methods from Zanudo &
Albert [36] or Murrugarra et al. [30], the controls of module
2 can be identified. A minimal set of two nodes needs to be
controlled to stabilize this module: RAS in the pancreatic
cell and RAS in the stellate cell. After applying these controls,
the nodes in the downstream module (module 3) are all
already constant and do, therefore, not require additional
controls. Using the modular structure of the network, three
nodes can be easily identified, which suffice to control the
entire network. Notably, this never requires the consideration
of the entire network, which saves computation time. Disre-
garding the decomposition and identifying controls for the
whole network instead yields the same minimal set of three
controls. However, this may not always be the case. In rare
cases, the module-by-module control identification strategy
will yield a set of controls that is larger than necessary.

3. Discussion

The search for ‘fundamental laws’ has been part of systems
biology since its beginning, including features of biological
systems that are characteristic of most or all systems of a
given type, such as gene regulatory networks. The concept
of modularity can be considered as such a feature, and has
been studied extensively in several different contexts.
Another focus of interest has been the relationship between
the structure and function of dynamic networks. The results
in this paper in essence provide evidence that modularity is
in fact a key feature that connects structure and function of
networks.

Systems biology has been a field that is making extensive
use of mathematical models as descriptive language and ana-
lytic tool. Notions such as dynamic modularity are difficult or
impossible to study without the use of mathematical models,
as is the relationship between structure and function of net-
works. A limitation of this approach is of course that
published models are partial and simplified representations
of the requisite biology, so that caution is required when
drawing conclusions. But this approach has yielded useful
results in studying motifs in static networks (e.g. [24]). The
advantage of a mathematical foundation is that it enables
an analytical treatment of concepts that might otherwise
have to be studied using heuristics, examples and simu-
lations. This is the essence of our approach in this study.
Based on rigorous definitions, we were able to prove the
link between structural and functional modularity, as well
as the broad application to control of networks. We believe
that we have only scratched the surface of results that
follow from the mathematical framework we have estab-
lished. For instance, the flip side of network decomposition
is network construction through ‘concatenation” of modules.
This can be done in ways that achieve certain dynamic prop-
erties, of potential interest to problems in synthetic biology.

Finally, while we have provided evidence that our concept
of structural and functional modularity might have biological

relevance, more work remains to be done. For instance, it n

would be of interest to investigate the biological features of
the individual modules found in the repository of Boolean
network models from [16] to investigate whether modules
in our definition can be viewed as meaningful biological
‘functional units’. The implications of a functional modular
structure also remain to be explored beyond our initial
result of control at the modular level. We also believe that
many of our results should hold in appropriate form for the
modelling framework of ordinary differential equations.

It is also worth observing that our decomposition results
do not preclude the existence of emergent properties. Each
module is a complex system in itself, capable of exhibiting
emergent properties. And as modules perturb other down-
stream modules, their emergent properties propagate to
other modules. Our results simply assert a certain relation-
ship between certain subsystems of the whole system.
These subsystems cannot be considered the parts that make
up the whole.

4. Methods

4.1. Meta-analysis of published gene regulatory

network models

We used the same repository of 122 published and distinct gene
regulatory network models as in [16]. Some of these models
include non-essential regulators. That is, a node is included as
a regulator in an update rule but a change in this node never
affects the update rule. We removed all non-essential regulators
from the update rules, before computing for each network the
number of genes (i.e. size), the average connectivity, all SCCs,
as well as the size of each SCC. From this, we derived the pri-
mary metric of interest, the number of non-trivial SCCs. Trivial
SCCs consist of one node only. Since SCCs are defined as the lar-
gest connected component such that there is a path from every
node to every other node, it is irrelevant whether the single
node in a trivial SCC regulates itself.

The logistic multi-variable regression model, implemented in
the Python module statsmodels.api is given by

P — eBotBixi+Brxz 4.1
e : (1)
where p is the probability of a model having multiple non-trivial
SCCs, and x4, x, are average connectivity and network size.

4.2. Generation of Boolean networks for simulation
study

To understand the effect of modularity on the phenotypical
robustness and the dynamical complexity, we resorted to simu-
lation studies of Boolean networks with a specific structure and
a defined number of SCCs (i.e. modules). To reduce the
number of potential confounders, we fixed the network size at
N =60 and the in-degree of each node at 7 =3, which is slightly
higher than the average in-degree in published gene regulatory
network models [16]. We further considered only nested canaliz-
ing update rules (e.g. [37,38] for a definition) since most rules in
published gene regulatory networks are of this type [16]. To gen-
erate networks with a defined number of mef{l, 2,..., 6}
modules, each of which consists of N/m nodes, we first gener-
ated a random directed acyclic graph of m modules by picking
uniformly at random a weakly connected lower triangular
binary m xm-matrix D with diagonal entries 1. If D;=1, a
node in module i regulates a node in module j. Otherwise,
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there is no connection. To ensure that the number of SCCs was
indeed m, we required each module to be a single SCC. We
achieved this by randomly generating wiring diagrams for a
module until the wiring diagram was strongly connected (for
the sparsest modules (i.e. m=1, N/m = 60), this took on average
approximately 22 iterations).

4.3. Estimating dynamical complexity and phenotypical
robustness

The size of the state space of the 60-node Boolean networks used
in the computational study prohibits the exhaustive identification
of all attractors. To compute all attractors, we could have exploited
the decomposition into smaller modules for decomposable net-
works. However, this does not help with the identification of
attractors for non-decomposable networks consisting of a single
module of size 60. To avoid introducing any bias by using differ-
ent methods, we employed the same sampling technique to
estimate a lower bound of the number of attractors for each
Boolean network. Specifically for each network F, we generated
500 random initial states xo € {0, 1}°° and continued to synchro-
nously update each x, according to F (that is, x.1 = F(x)) until a
recurring state was found, indicating the arrival at an attractor.

Biologically meaningful attractors ‘attract’ a substantial por-
tion of the state space. With a state space size of 2°° and when
starting from 500 random initial states, we have a 95% chance
of finding an attractor, which attracts 0.6% of the state space
and even a 99% chance of finding an attractor, which attracts
0.9% of the state space. Relying on sampling and the resulting
lower bound of the number of attractors should, therefore, not
limit the validity of our findings.

To estimate the phenotypical robustness, we considered the
same 500 random initial states % € {0, 1}*° and generated for
each xy a corresponding state 1o = Xg @ ¢; by randomly flipping
one bit i €{1, ..., n} (Where ¢; is the ith unit vector and & denotes
binary addition). Just as xy, we synchronously updated y; accord-
ing to F until it reached an attractor and compared the attractors.
As a consequence, all estimated phenotypical robustness values
are multiples of 1/500.
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Appendix A. Mathematical details and

supplementary figures
A.1. Proofs of the structural decomposition theorems

This section contains the proofs of the structural decompo-
sition theorems described in the main text. First, we define
in full detail the semi-direct product, used to combine two
networks in a hierarchical fashion.

Definition A.1. Consider two Boolean networks,

F=(f, ..., f):{0, 1}* — {0, 1},

with variables x = (xq, ..., x3) and

G= (g1, - gu): {0,117 = {0,1)",

with external inputs u = (u, ..., u,) and variables y=(y;, ...,
Ym)- Let AC{1, ...,k} such that |[A|={ and define
Xp:= (Xp, ..., Xx,). Then,

H=(h1, ..., heew): {0, 1351 = {0, 1}F,

defines a combined Boolean network by setting

e,y = { 5

if1<i<k,

fkt1<i<k+m  AD

Si—k(xa,y)
That is, the variables x, act as the external inputs of G. The
corresponding coupling scheme is defined to be

P={x), —uy, x), = U, ..., X), — U} (A2)
We denote H as H:= FXpG and refer to this as the
coupling of F and G by (the coupling scheme) P or as the

semi-direct product of F and G via P.

Theorem A.2. If a Boolean network F is not a module, then there
exist Fy, Fp, P such that F = FyXpF,. Furthermore, we can find a
decomposition such that Fy is a module.

Proof. Let F=(fy,..., f,) be a Boolean network with
variables X ={xy,..., x,} and assume F is not a module.
Then the wiring diagram of F is not strongly connected,
implying there exists at least one node y and one node
xj#y such that there exists no path from x; to y in the
wiring diagram of F. Let X, ={xj,xj,, ..., xj,} denote
the set of all such nodes, i.e. the nodes for which there
exists no paths to y. Further, let X; = X\X, denote the
complement set of nodes to X,. Note that for every x; € X,
there exists a path from x; to y but no paths originating
from X to x;.

Define A to be the subset of indices A ={Ay, ..., A/} C
{1, ..., k} such that for each A € A there exists at least one
function f;, with x; € X, which depends on x,.

If A =0, then the sets X; and X, represent two groups of
nodes, which are disconnected in the wiring diagram. Hence
the network F is a Cartesian product of F; and F,. It follows
that F = F; XpF, with P = (.

If A # (), then for any x; € X;, the corresponding update
function f; does not depend on X, by construction, as there
are no paths from X, to x;, and we set F; to be the restriction
of F to Xy, (F1);:= (Flx,); = fi- For any x; € X5, if the corre-
sponding update function depends on a node x; € X;, then
xj € A by the definition of A. It follows by construction that
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any function f; then can be written as a Boolean function on X,
with external inputs from x,.

Hence, F = FiXpF,. Note that in the above proof we can
choose the node y such that it belongs to a SCC that receives
no edge from any other SCC. X; will contain the nodes of
this SCC and hence F; will be a module. u

The main structural decomposition theorem follows
directly from this:

Theorem A.3. For any Boolean network F, there exist unique
modules F4, ..., F,, such that

F:lePl(FZNPZ(..' Npm—lFm))/ (A3)

where this representation is unique up to a reordering, which
respects the partial order of Q (equation (2.1)), and the collection
of coupling schemes P4, ..., P,y depends on the particular choice
of ordering.

Proof. If F is a module, then m =1 and the result follows.
If F is not a module, we use induction on the downstream
subnetwork F, in theorem A.2 to obtain the result. n

Consider as an example a network F with four SCCs, F;,
F,, F5, F4, where F; influences both F, and F5, F, and F5 both
influence F,, but F, and F3 have no influence on each other.
The network can first be broken up as F = F;Xp,G where G
represents the downstream network of F,, F;, F, and P
includes the connections from F; — F, and F; — F5. In turn,
G can be decomposed as G = F»Xp,H, where H is the net-
work consisting of F; and F,, and P, denotes the
connections from F, — F4. Finally, H can be decomposed as
H = F3Xp,F, where P; represents the connections from
F3 — F4. The final decomposition can thus be written as

F=F Xp, (Fz)qu(F3>4p3F4)).

Alternatively, we could have realized the decomposition of G
as G = F3Xp,(F,Xp,Fy). The final decomposition then takes
the form

F=F Ap, (F3>4p3(F2>4p2F4)).

The ambiguity of choice for decomposing G arises from the
ambiguity of choosing a total order for the partially ordered
set Q={W;->W,, Wi->W; W,-> W, W;— Wy. Both
decompositions are equally valid, and the ordering of the
modules in each representation respects the partial order Q.

A.2. Non-autonomous Boolean networks
This section contains the full definition of non-autonomous
Boolean networks, as well as two examples.

Definition A.4. A non-autonomous Boolean network is
defined by

y(t+1) = H(g(h), y(t)),

where H : {0, 1} - {0, 1} and (g(t));’, is a sequence
with elements in {0, 1}*. The network, denoted H?, is non-
autonomous because its dynamics depend on g(t).

A state ce{0, 1}" is a steady state of H® if H(g(t), c)=c
for all t. Similarly, an ordered set with r elements,

(A4)

C=A{ci, ..., ¢} is an attractor of length r of H® if ¢;=
H(g(), ¢1), c3=H(g®2), c), ..., ¢,=HQr-1), ¢,.1), c1=
H(g(r), c,), co=H(g(r+1), c1), .... In general, g(¢) is not necess-
arily of period r and may even not be periodic.

If H(g(t), y) = G(y) for some network G for all ¢ (that is, it
does not depend on g(t)), then y(t + 1) = H(g(t), y(t)) = G(y(t))
and this definition of attractors coincides with the classical
definition of attractors for (autonomous) Boolean networks.

Example A.5. Consider the non-autonomous network defined

by
H(u1, uz, y1, ¥2) = (U2y2, 1),

and the two-periodic sequence (¢(t)),~, = (01, 10, 01, 10, ...),
which corresponds to a 2-cycle of the upstream 2-node net-
work. If the initial point is ¥(0) = (y;, ¥3), then the dynamics
of H? can be computed as follows:

0)) =H(0, 1, y1, ¥5) = (y2, ¥1),
1)) =H(1,0,y5, v7) = (0, ¥3)
and y(3) = H(g(2),y(2)) = H(0, 1,0, y3) = (5, 0).

Thus for t > 1, y(2t) = (0, y5) and y(2t + 1) = (y3, 0). It follows
that the attractors of H¥ are given by 00 (one steady state) and
(01, 10) (one cycle of length 2). Note that (10, 01) is not an
attractor because (10, 01, 10, 01, ...) is not a trajectory for this
non-autonomous network. This is a subtle situation that can
be sometimes missed when not considering all trajectories a
limit cycle represents.

Example A.6. Consider the non-autonomous network defined
by H(u1, Uy, y1, y2) = (42 Yo, y1), as in the previous example, and
the one-periodic sequence (g(#));e, = (00, 00, ...), which cor-
responds to a steady state of the upstream 2-node network. If
the initial point is y(0) = (y;, ¥5), then the dynamics of H®
can be computed as follows:

y(1) = H(g(0), y(0)) = H(0, 0, y1, v2) = (0, 1)

and

y(2) = H(g(1), y(1)) = H(0, 0, 5, y7) = (0, 0).

Then, y(t) = (0, 0) for t >2, and the only attractor of H? is the
steady state 00.

A.3. Proof of the dynamic decomposition theorem

For a decomposable network F = F;XpF,, we introduce the
following notation for attractors. First, note that F has
the form F(x, y)=(F;(x), Fx(x, y)) where F, is a non-
autonomous network. Let C; = (ry, ..., 7y) € A(F;) and
Cy=(s1, ---,5:) € A(FS") be attractors of length m and 1,
respectively. Then, the sequence ((r, st));, has period I=
lem(m, n), so we define the sum (or concatenation) of these
attractors to be

C] @Cz = ((1’1, S]), (72, 52), ceey (1"1,1, 51,1)). (A5)

Note that the sum of attractors is not a Cartesian product,
C1 x Ca = {(ry, sj)|for all i, j}.

Similarly, for an attractor C; and a collection of attractors
A we define

C1eA={C18CC € A} (A6)
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Our second main theoretical result shows that the
dynamics (i.e. the attractor space) of a semi-direct product
can be seen as a type of semi-direct product of the dynamics
of the decomposable subnetworks. When applied iteratively,
this enables a computation of the attractor space from the
attractor space of each module.

Theorem A.7. Let F = FyXpF; be a decomposable network. Then
|_| C1€BAF61 = |_| |_| C1 & Cy. A7)

CIEA(F) CEAE) c,e AFS)

Proof. Let X; and X, be the variables of F; and F,, respectively.
Further, let C = {c1, ..., ¢} € A(F) be an arbitrary attractor of
F with length I. We can define C; = pr,(C) = (pry(c1), ...,
pry(a)) =:(ci, ..., c}) as the projection of C onto X;, and
similarly Cp = pr,(C) =:(c3, ..., ¢?) as the projection of
C onto X,. By definition, F; does not depend on X,. Thus,
Fi(pri(x)) = pry(F(x)), and for any c},

Fi(c}) = pry(F(cj))

= F1(pry(c))) =pry(cjn) :C}'H

Iterating this, we find that in general F¥ (c ) = from which
it follows that C; € A(Fy).

Next, we consider the non-autonomous network Fgl
defined as in definition A.4 where y(t + 1) = proF(g(t), y(t)),
and g(t) = c}. If y(1) = c3, then

j+k’

y¥(2) = proF(g(1), ) = pr,F(cy, €1) = pryp(c1) = pry(c2) = &

and in general
= pryF(g(k), ci) = proFlcp, &)

Hence y(I+1) =pr, F(c) =prp ¢;=y(1) and thus C, € A(Fgl).
From this we have that C=C1 ¢ C €1 @ A(Fgl) and thus

yk+1)

_ _ 2
= P11 = Ceiq

AF) C || coAFs).

CIEA(F)

Conversely, let C; € A(F;) and Cz € A(FS'). We want to show
that C; @ C; € A(F). Let g(t) = ¢}, y(1) = ¢3, and y(t + 1) = pry
F(g(t), y(t). Since C, € A(F5'), then y(t+1)=c, by
definition. Let N = |C;|. Then

(pry F(ci, &¢), proF(g(k), y (k)
= (Fi(qt), F5' (e, y(k +1)))

F(Ck/ Ck)

1 2
= (k17 Cieg1)-

Thus FN(cl, ) = F(ck;, %) =
A(F). It follows that

(cl,c?) and hence C; ®C, €

|| creAF) C AP,

C1EA(F)
from which we can conclude that the sets are equal. L]

The following two examples highlight how theorem A.7
enables the computation of the dynamics of a decomposable
network from the dynamics of its modules. To match attrac-
tors from the upstream module with the attractor spaces of
the corresponding non-autonomous downstream networks,
it is useful to consider the space of attractors in a specified
order: we use parentheses (curly brackets) to denote

an ordered (unordered) space of attractors. If there is no [ 11 |

ambiguity, in practice we can use X instead of Xp.

Example A.8. Consider the Boolean network F(xi, X3, y1,
Y2) = (2, X1, XaY2, ¥1). We can decompose F = F;XF, where
Fi(x1, x)=(xz, x1) is an upstream module and Fy(uy, ¥y,
y2) = Uy Y2, y1) is a downstream module with external par-
ameter x,. To find all attractors of F by using theorem A.7,
we find the attractors of F; and the attractors of F, induced
by each of those attractors. It is easy to see that
A(F1) = {00, 11, {01, 10}} (where we denote steady states
C = {c} simply by o).

— For C; =00, the corresponding non-autonomous net-

work is y(t + 1) = F>(0, 0, y(£)). If y(0) = (v3, y5), then

y(1) =F2(0,0, y1, ¥5) = (0, y7)
and

y(2) = F2(0,0,0,y7) = (0, 0).
Thus, the space of attractors for Fgl is
A(Fy") = {00}

— For C, =11, the corresponding non-autonomous net-
work is y(t + 1) = Fx(1, 1, y@®)). If y(0) = (3, v3), then

y(1) = F(L Ly, v2) = (v2, 1)
and

¥(2) = F(1 1y, 1) = (1, 12)-
Thus, the corresponding space of attractor is

A(F5?) = {00, 11, (01, 10)}.

— For C3=(01,10), we define g(t):N— {0, 1}2 by
g0 =(0, 1), g)=(1, 0), and g(t+2) =g(t). F5* is given
by y(t+1) =Fx(g®), y@®)). If y(0) = (y;, y3), then

y(1) =F2(0, L, yi, v3) = (v2, v1),

¥(2) =F(1,0, %5, v1) = (0, y3),

y@3) =F2(0,1,0,y3) = (5, 0)
and y(4) =F2(1,0,¥5,0) = (0, y3).

Then, the corresponding space of attractors is

A(FS?) = {00, (01, 10)}.

To reconstruct the entire space of attractors for F, we have
A(F)=A(F1) X A(F2)

=(00,11,(01,10)) X(A(F5"), A(F3), A(F5*))
=00{00} U11&{00,11,(01,10)} U (01,10)&{00,(01,10)}

={0000,1100,1111,(1101,1110),(0100,1000),(0101,1010)},

which agrees with the space of attractors shown in figure 5b.

Example A.9. Consider the linear Boolean network

F(x1, X2, y1, y2) = (X2, X1, X2 + Y2, ¥1)-

We can decompose F = FiXF, into modules F;(x1, x2) = (xo,
x1) and Fy(ua, y1, y2) = (uz + 2, y1). The space of attractors of
the upstream module F; is

A(Fy) = {00, 11, (01, 10)).

Using the dynamic decomposition theorem (theorem A.7),
we can identify all attractors of F as follows (see figure 7
for a graphical description).
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Figure 7. Graphical description of the dynamic decomposition theorem (applied to example A.9). The dynamics of F; XpF, can be seen as a semi-direct product
between the dynamics of F; and the dynamics of £, induced by F; via the coupling scheme P. The dynamics of F, induced by attractors of F; can vary, and the
dynamic decomposition theorem (theorem A.7) shows precisely how to combine all of these attractors.

— For C; =00, the corresponding non-autonomous net-
work is y(t+1) = F»(0, 0, y(#)). If y(0) = (v}, y3), then
y(1) =F2(0,0, yi, v3) = (3, y;). Thus, the space of attrac-
tors for Fgl is

A(FS) = {00, 11, (01, 10)}.

Similarly, for C; = 11, we find that the space of attractors
for ng is

A(F$) = {(00, 10, 11, 01)}.
For C; = (01, 10), we define g(t):N — X; by g(0)=(0, 1),

g(1)=(1, 0), and g(t+2)=g(t). F® is given by y(t+1) =
Fy(g(®), y®). If y(0) = (v, y3), then

y(1) =1 +y5 1),
y2) =Wy +1),
y(@3) = (3, v1)

and y(4) = (y1, v3) = y(0),

y(4t) = (1, ¥2),
y(At+1) = (1+y3 v1),
y(4t+2) =y, 5+ 1)
and y(4t+3) = (3, y7)-
References

1. Hartwell LH, Hopfield JJ, Leibler S, Murray AW. 1999

Phys. Life Rev. 8, 129-160. (doi:10.1016/j.plrev.

It follows that there are only two periodic trajectories in
this case: (00, 10, 01, 00, 00, 10, 01, 00, ...) and (11, 01,
10, 11, 11, 01, 10, 11, ...), which both have period 4. The
corresponding attractor space is

A(F$) = {(00, 10, 01, 00), (11, 01, 10, 11)}.

Note that the repetition of certain states is needed to
obtain the correct attractors of the full network F.

To reconstruct the space of all attractors for F, we have

A(F) = (00, 11, (01, 10))x (A(FS"), A(FS), A(FS))

00 & {00, 11, (01, 10)}
11 @ {(00, 10, 11, 01)}
(01, 10) & {(00, 10, 01, 00), (11, 01, 10, 11)}
0000, 0011, (0001, 0010),
(1100, 1110, 1111, 1101),
(0100, 1010, 0101, 1000),
(0111, 1001, 0110, 1011)

The linear network F possesses thus two steady states, one 2-
cycle and three 4-cycles.

analysis. Stat. Appl. Genet. Mol. Biol. 4, 17.

From modular to molecular cell biology. Nature
402, (47-(52. (doi:10.1038/35011540)

2. Hernandez U, Posadas-Vidales L, Espinosa-Soto C.

2022 On the effects of the modularity of
gene regulatory networks on phenotypic
variability and its association with robustness.

Biosystems 212, 104586. (doi:10.1016/j.biosystems.

2021.104586)
3. Lorenz DM, Jeng A, Deem MW. 2011 The
emergence of modularity in biological systems.

2011.02.003)

Leicht EA, Newman ME. 2008 Community structure
in directed networks. Phys. Rev. Lett. 100, 118703.
(doi:10.1103/PhysRevLett.100.118703)

Malliaros FD, Vazirgiannis M. 2013 Clustering and
community detection in directed networks: a
survey. Phys. Rep. 533, 95-142. (doi:10.1016/j.
physrep.2013.08.002)

Zhang B, Horvath S. 2005 A general framework
for weighted gene co-expression network

(doi:10.2202/1544-6115.1128)

Alexander RP, Kim PM, Emonet T,

Gerstein MB. 2009 Understanding modularity
in molecular networks requires dynamics.

Sdi. Signal. 2, pe44. (doi:10.1126/scisignal.
281ped4)

Jimenez A, Cotterell J, Munteanu A, Sharpe J.
2017 A spectrum of modularity in multi-
functional gene circuits. Mol. Syst. Biol. 13,
925. (doi:10.15252/msh.20167347)

S0S0£207 07 2pLau) 20§ Y Jisi/jeuinol/b10°buiysijgndanosiefos E


http://dx.doi.org/10.1038/35011540
http://dx.doi.org/10.1016/j.biosystems.2021.104586
http://dx.doi.org/10.1016/j.biosystems.2021.104586
http://dx.doi.org/10.1016/j.plrev.2011.02.003
http://dx.doi.org/10.1016/j.plrev.2011.02.003
http://dx.doi.org/10.1103/PhysRevLett.100.118703
http://dx.doi.org/10.1016/j.physrep.2013.08.002
http://dx.doi.org/10.1016/j.physrep.2013.08.002
http://dx.doi.org/10.2202/1544-6115.1128
http://dx.doi.org/10.1126/scisignal.281pe44
http://dx.doi.org/10.1126/scisignal.281pe44
http://dx.doi.org/10.15252/msb.20167347

Verd B, Monk NA, Jaeger J. 2019 Modularity,
criticality, and evolvability of a developmental gene
regulatory network. Elife 8, e42832. (doi:10.7554/
elife.42832)

Deritei D, Aird WG, Ercsey-Ravasz M, Regan ER.
2016 Principles of dynamical modularity in
biological regulatory networks. Sci. Rep. 6, 21957.
(doi:10.1038/srep21957)

. Wagner GP, Pavlicev M, Cheverud JM. 2007 The

road to modularity. Nat. Rev. Genet. 8, 921-931.
(doi:10.1038/nrg2267)

Gilarranz LJ, Rayfield B, Lifdn-Cembrano G,
Bascompte J, Gonzalez A. 2017 Effects of network
modularity on the spread of perturbation impact in
experimental metapopulations. Science 357,
199-201. (doi:10.1126/science.aal4122)

Akutsu T, Kosub S, Melkman AA, Tamura T. 2012
Finding a periodic attractor of a Boolean network.
IEEE/ACM Trans. Comput. Biol. Bioinf. 9, 1410-1421.
(doi:10.1109/TCBB.2012.87)

Mizera A, Pang J, Qu H, Yuan Q. 2019 Taming
asynchrony for attractor detection in large Boolean
networks. /FEE/ACM Trans. Comput. Biol. Bioinf. 16,
31-42. (doi:10.1109/TCBB.2018.2850901)

Schwab JD, Kiihlwein SD, lkonomi N, Kiihl M,
Kestler HA. 2020 Concepts in Boolean network
modeling: what do they all mean?. Comput.

Struct. Biotechnol. J. 18, 571-582. (doi:10.1016/j.csbj.
2020.03.001)

Kadelka C, Butrie TM, Hilton E, Kinseth J, Serdarevic
H. 2020 A meta-analysis of Boolean network
models reveals design principles of gene regulatory
networks. arXiv. (http://arxiv.org/abs/2009.01216)
Madrahimov A, Helikar T, Kowal B, Lu G, Rogers J.
2013 Dynamics of influenza virus and human host
interactions during infection and replication cycle.
Bull. Math. Biol. 75, 988—1011. (doi:10.1007/
$11538-012-9777-2)

Pusnik Z, Mraz M, Zimic N, Moskon M. 2022 Review
and assessment of Boolean approaches for inference
of gene regulatory networks. Heliyon 8, €10222.
(doi:10.1016/j.heliyon.2022.610222)

Lee WP, Tzou WS. 2009 Computational methods for
discovering gene networks from expression data.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

Brief. Bioinform. 10, 408-423. (doi:10.1093/bib/
bbp028)

Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali
T. 2020 Benchmarking algorithms for gene
regulatory network inference from single-cell
transcriptomic data. Nat. Methods 17, 147-154.
(doi:10.1038/541592-019-0690-6)

Benes N, Brim L, Huvar 0, Pastva S, Safrének D. 2023
Boolean network sketches: a unifying framework for
logical model inference. Bioinformatics 39, btad158.
(doi:10.1093/bicinformatics/btad158)

Wagner GP. 2014 Homology, genes, and
evolutionary innovation. Princeton, NJ: Princeton
University Press.

Halfon MS. 2017 Perspectives on gene regulatory
network evolution. Trends Genet. 33, 436—447.
(doi:10.1016/j.tig.2017.04.005)

Alon U. 2003 Biological networks: the tinkerer as an
engineer. Science 301, 1866—1867. (doi:10.1126/
science.1089072)

Klemm K, Bornholdt S. 2005 Topology of biological
networks and reliability of information processing.
Proc. Natl Acad. Sci. USA 102, 18 414-18 419.
(doi:10.1073/pnas.0509132102)

Derrida B, Weisbuch G. 1986 Evolution of overlaps
between configurations in random Boolean
networks. J. Phys. 47, 1297-1303. (doi:10.1051/
jphys:019860047080129700)

Borriello E, Daniels BC. 2021 The basis of easy
controllability in Boolean networks. Nat. Commun.
12, 1-15. (doi:10.1038/541467-021-25533-3)
Rozum J, Albert R. 2022 Leveraging network
structure in nonlinear control. NPJ Syst. Biol. Appl. 8,
36. (doi:10.1038/s41540-022-00249-2)

Paul S, Su C, Pang J, Mizera A. 2018 A
decomposition-based approach towards the control
of Boolean networks. In Proc. of the 2018 ACM Int.
Conf. on Bioinformatics, Computational Biology, and
Health Informatics, Washington, DG, 29 August—1
September, pp. 11-20. New York, NY: ACM. (doi:10.
1145/3233547.3233550)

Murrugarra D, Veliz-Cuba A, Aguilar B,
Laubenbacher R. 2016 Identification of control
targets in Boolean molecular network models via

3N

32.

33.

34.

35.

36.

37.

38.

39.

computational algebra. BMC Syst. Biol. 10, 94.
(doi:10.1186/512918-016-0332-x)

Choi M, Shi J, Jung SH, Chen X, Cho KH. 2012
Attractor landscape analysis reveals feedback loops
in the p53 network that control the cellular
response to DNA damage. Sci. Signal. 5, ra83.
(doi:10.1126/scisignal.2003363)

Wooten DJ, Zafiudo JGT, Murrugarra D, Perry AM,
Dongari-Bagtzoglou A, Laubenbacher R, Nobile CJ,
Albert R. 2021 Mathematical modeling of the
(andida albicans yeast to hyphal transition reveals
novel control strategies. PLoS Comput. Biol. 17,
€1008690. (doi:10.1371/journal.pchi.1008690)
Kadelka C, Laubenbacher R, Murrugarra D, Veliz-
Cuba A, Wheeler M. 2022 Decomposition of Boolean
networks: an approach to modularity of biological
systems. arXiv. (http://arxiv.org/abs/2206.04217)
Plaugher D, Murrugarra D. 2021 Modeling the
pancreatic cancer microenvironment in search of
control targets. Bull. Math. Biol. 83, 1-26. (doi:10.
1007/511538-021-00937-w)

Zafiudo JGT, Yang G, Albert R. 2017 Structure-based
control of complex networks with nonlinear
dynamics. Proc. Natl Acad. Sci. USA 114,
7234-7239. (doi:10.1073/pnas.1617387114)
Zanudo JG, Albert R. 2015 Cell fate reprogramming
by control of intracellular network dynamics. PLoS
Comput. Biol. 11, €1004193. (doi:10.1371/journal.
pcbi.1004193)

Kauffman S, Peterson C, Samuelsson B, Troein C.
2003 Random Boolean network models and the
yeast transcriptional network. Proc. Nat/ Acad. Sci.
USA 100, 14 796—14799. (doi:10.1073/pnas.
2036429100)

Li Y, Adeyeye JO, Murrugarra D, Aguilar B,
Laubenbacher R. 2013 Boolean nested

canalizing functions: a comprehensive analysis.

J. Theor. Comput. Sci. 481, 24-36. (d0i:10.1016/j.tcs.
2013.02.020)

Kadelka C, Wheeler M, Veliz-Cuba A, Murrugarra D,
Laubenbacher R. 2023 Modularity of biological
systems: a link between structure and function.
Github repository. (https://github.com/ckadelka/
DesignPrinciplesGeneNetworks)

S0S0£207 07 2pLau) 20§ Y Jisi/jeuinol/b10°buiysijgndanosiefos E


http://dx.doi.org/10.7554/eLife.42832
http://dx.doi.org/10.7554/eLife.42832
http://dx.doi.org/10.1038/srep21957
http://dx.doi.org/10.1038/nrg2267
http://dx.doi.org/10.1126/science.aal4122
http://dx.doi.org/10.1109/TCBB.2012.87
http://dx.doi.org/10.1109/TCBB.2018.2850901
https://doi.org/10.1016/j.csbj.2020.03.001
https://doi.org/10.1016/j.csbj.2020.03.001
http://arxiv.org/abs/2009.01216
http://dx.doi.org/10.1007/s11538-012-9777-2
http://dx.doi.org/10.1007/s11538-012-9777-2
http://dx.doi.org/10.1016/j.heliyon.2022.e10222
http://dx.doi.org/10.1093/bib/bbp028
http://dx.doi.org/10.1093/bib/bbp028
http://dx.doi.org/10.1038/s41592-019-0690-6
http://dx.doi.org/10.1093/bioinformatics/btad158
http://dx.doi.org/10.1016/j.tig.2017.04.005
http://dx.doi.org/10.1126/science.1089072
http://dx.doi.org/10.1126/science.1089072
http://dx.doi.org/10.1073/pnas.0509132102
http://dx.doi.org/10.1051/jphys:019860047080129700
http://dx.doi.org/10.1051/jphys:019860047080129700
http://dx.doi.org/10.1038/s41467-021-25533-3
http://dx.doi.org/10.1038/s41540-022-00249-2
http://dx.doi.org/10.1145/3233547.3233550
http://dx.doi.org/10.1145/3233547.3233550
http://dx.doi.org/10.1186/s12918-016-0332-x
http://dx.doi.org/10.1126/scisignal.2003363
https://doi.org/10.1371/journal.pcbi.1008690
http://arxiv.org/abs/2206.04217
http://dx.doi.org/10.1007/s11538-021-00937-w
http://dx.doi.org/10.1007/s11538-021-00937-w
http://dx.doi.org/10.1073/pnas.1617387114
http://dx.doi.org/10.1371/journal.pcbi.1004193
http://dx.doi.org/10.1371/journal.pcbi.1004193
https://doi.org/10.1073/pnas.2036429100
https://doi.org/10.1073/pnas.2036429100
http://dx.doi.org/10.1016/j.tcs.2013.02.020
http://dx.doi.org/10.1016/j.tcs.2013.02.020
https://github.com/ckadelka/DesignPrinciplesGeneNetworks
https://github.com/ckadelka/DesignPrinciplesGeneNetworks

	Modularity of biological systems: a link between structure and function
	Introduction
	Boolean networks

	Results
	A structural definition of modularity for Boolean networks
	Modularity in expert-curated biological networks
	Modularity confers phenotypical robustness and a rich dynamic repertoire
	Structural decomposition of Boolean networks
	Dynamic decomposition of Boolean networks
	Efficient control of decomposable Boolean networks

	Discussion
	Methods
	Meta-analysis of published gene regulatory network models
	Generation of Boolean networks for simulation study
	Estimating dynamical complexity and phenotypical robustness
	Ethics
	Data accessibility
	Declaration of AI use
	Authors' contributions
	Conflict of interest declaration
	Funding

	Acknowledgements
	Appendix A. Mathematical details and supplementary figures
	Proofs of the structural decomposition theorems
	Non-autonomous Boolean networks
	Proof of the dynamic decomposition theorem

	References


