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Abstract
Motivation: Coincidence of Convergent Amino Acid Substitutions (CAAS) with phenotypic convergences allow pinpointing genes and even
individual mutations that are likely to be associated with trait variation within their phylogenetic context. Such findings can provide useful insights
into the genetic architecture of complex phenotypes.

Results: Here we introduce CAAStools, a set of bioinformatics tools to identify and validate CAAS in orthologous protein alignments for
predefined groups of species representing the phenotypic values targeted by the user.

Availability and implementation: CAAStools source code is available at http://github.com/linudz/caastools, along with documentation and
examples.

1 Introduction

Convergent Amino Acid Substitutions (CAAS) provide impor-
tant insights into the genetic changes underlying phenotypic
variation (Zhang and Kumar 1997, Rey et al. 2019). Recent
examples include the identification of genes potentially in-
volved in marine adaptation in mammals (Foote et al. 2015)
and the convergent evolution of mitochondrial genes in deep-
sea fish species (Shen et al. 2019). Notably, in 2018, Muntané
et al. identified a set of 25 genes involved in longevity in pri-
mates (Muntané et al. 2018). A few years later, a similar
analysis for a wider phylogeny retrieved 996 genes associated
with lifespan determination in mammals (Farré et al. 2021).
While these analyses often need to be tailored for each partic-
ular phenotype and phylogeny, all CAAS detection and vali-
dation strategies reported in the literature share some
common steps (Rey et al. 2019). First, researchers select the
species to compare for CAAS analysis and split them into two
or more groups according to the phenotype of interest. The
criteria to select these groups can be quite diverse: for in-
stance, groups can be formed by species having diverging

values of a given continuous trait, or by species sharing differ-
ent adaptations, like terrestrial and marine mammals (Foote
et al. 2015). The second step consists in linking amino acid
substitutions with each group. Here, different approaches can
be used, such as identifying identical substitutions for the
same amino acid (Besnard et al. 2009, Chabrol et al. 2018),
detecting topological incongruencies (Li et al. 2008), varia-
tions in amino acid profiles (Rodrigue et al. 2010, Rey et al.
2018), or relying on consistent patterns of groups of amino
acids in different groups of species (Zhang et al. 2014,
Muntané et al. 2018, Farré et al. 2021). The third step con-
sists in testing the significance of the results. Molecular con-
vergence is a noisy process because spurious CAAS may occur
at random in the absence of relationships with phenotypes or
selective forces (Xu et al. 2017). To overcome this, researchers
have adopted different strategies, mostly based on the idea
that adaptive CAAS tend to exceed convergent noise. The
delta Site-Specific log-Likelihood Score (DSSLS), for instance,
is a method that consists in comparing the CAAS likelihood
for different phylogenetic topologies (Castoe et al. 2009,
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Parker et al. 2013, Wang et al. 2013). Another approach uses
bootstrap resampling tests to evaluate whether the number of
detected CAAS is larger than expected by chance (Muntané
et al. 2018, Farré et al. 2021). Alternatively, some authors
have adopted a strategy that consists in quantifying the con-
vergent noise and focus on the detection of Convergence on
Conservative Sites (Xu et al. 2017, He et al. 2020). In spite of
all these contributions, there is still no consensus approach.
Some authors question whether phenotypic convergence
matches genome-wide molecular convergence (Zou and
Zhang 2015b), or whether adaptive substitutions outnumber
random CAAS (Thomas and Hahn, 2015; Zou and Zhang
2015a). Access to free software tools that are specifically
designed to retrieve CAAS will allow the wider research com-
munity to compare and validate different strategies, boosting
future methodological developments in the field of phyloge-
netic analysis.

Here we present CAAStools, a toolbox to identify and vali-
date CAAS in a phylogenetic context. CAAStools is based on
the strategy applied in our previous studies (Muntané et al.
2018, Farré et al. 2021) and implements different testing
strategies through bootstrap analysis. CAAStools is designed
to be included in parallel workflows and is optimized to allow
scalability at proteome level.

2 Implementation

CAAStools is a multi-modular python application organized
into three tools. The outline of the suite is presented in Fig. 1.
The discovery tool is based on the protocol described in
Muntané et al. (2018) and Farré et al. (2021). This approach

identifies CAAS between two groups of species in an amino-
acid Multiple Sequence Alignment (MSA) of orthologous pro-
teins. These groups are named Foreground Group (FG) and
Background Group (BG). Collectively, the two groups are
called Discovery Groups (DG), as they represent the base for
CAAS discovery. The CAAS identification algorithm scans
each MSA and returns those positions that meet the following
conditions: First, the FG and the BG species must share no
amino acids in that position. Second, all the species in at least
one of the two discovery groups (FG or BG) must share the
same amino acid. The combination of these two conditions
determines a set of different mutation patterns that the tool
identifies as CAAS. Details on these patterns are provided in
Supplementary Table S1.

Finally, CAAStools calculates the probability of obtaining a
CAAS in a given position compared to randomized DGs, cor-
responding to the empirical P-value of the predicted CAAS in
that position. This P-value represents a quantification of the
convergent noise (Shahoua et al. 2017) that is associated with
a specific position. The details of this calculation are pre-
sented in Supplementary Section S3. The Resample tool sorts
species into n virtual DGs (resamplings) for bootstrap analysis
according to different combination strategies. This tool ena-
bles bootstrap analyses based on CAAS excess or likelihood
(Castoe et al. 2009, Muntané et al. 2018, Farré et al. 2021).
In a Naive modality, the probability of every species being in-
cluded in a DG is considered identical and independent. This
feature allows for bootstrap analyses aimed at quantifying
convergent noise. However, species are phylogenetically re-
lated, biasing their probability of sharing a phenotype or
amino acid. To address these phylogenetic dependencies

Figure 1. CAAStools layout. The three tools of the CAAStools suite rely on three pieces of information; a phylogenetic tree, the trait information, and an

amino acid MSA. The discovery tool (A) detects the CAAS between two groups of species that are defined by the user on the basis of trait values. The

resample tool (B) performs n trait resamplings in different modalities, on the bases of the phylogeny and the trait value distributions. The output of this

resampling is processed by the bootstrap tool (C) that elaborates a bootstrap distribution from the MSA. All the tools can be executed independently.
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CAAStools includes two other testing strategies. In the
Phylogeny-restricted modality, the randomization can be re-
stricted to some taxonomic orders or defined clades. These
clades will match the ones of the species included in the DGs.
In the Brownian motion modality, resampling is based on
Brownian Motion simulations. The latter builds on the
“permulation” strategy for trait randomization (Saputra et al.
2021) and its implementation relies on the simpervec() func-
tion from the RERconverge package (Kowalczyk et al. 2019).
Finally, the bootstrap tool determines the iterations returning
a CAAS for each position in a MSA to establish the corre-
sponding empirical P-value for the detection of a CAAS in
that position. Both the discovery and the bootstrap tools are
designed to be launched on single MSAs, in order to allow the
user to parallelize the workflow for large protein sets.

3. Usage and testing

CAAStools users should take special care when designing the
analysis and interpreting the results. The comparison should
be made between species with diverging values of a conver-
gent phenotype. Each DG should include species with compa-
rable phenotype values from different lineages. The values
between the two DGs must diverge, ideally representing the
extreme top and bottom values in a continuous distribution
or different binary conditions. The resulting output will con-
sist of a list of positions where at least one DG shares the
same amino acid, which differs from those found in the other
DG. Depending on the DGs selected (often limited by the
available phenotypic and genetic information), this outcome
may be influenced by various uninformative sources of se-
quence variability, such as convergent noise and identity-by-
descent. Therefore, it is advisable to complement the CAAS
analysis with other approaches that have different limitations,
such as ancestral state reconstruction (Royer-Carenzi and
Didier, 2016), selection studies (Kosakovsky Pond et al.,
2020), or dN/dS analysis (Yang, 1997). For e.g., we tested
CAAStools on the dataset from Farré et al., (2021). The
details of this test are reported in Supplementary 3. The full
dataset is available in the /test folder within the CAAStools
repository.
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