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ABSTRACT: Due to their potential as leads for various
therapeutic applications, including as antimitotic and antiparasitic
agents, the development of tubulin inhibitors offers promise for
drug discovery. In this study, an in silico pharmacophore-based
virtual screening approach targeting the colchicine binding site of
β-tubulin was employed. Several structure- and ligand-based
models for known tubulin inhibitors were generated. Compound
databases were virtually screened against the models, and
prioritized hits from the SPECS compound library were tested in
an in vitro tubulin polymerization inhibition assay for their
experimental validation. Out of the 41 SPECS compounds tested,
11 were active tubulin polymerization inhibitors, leading to a
prospective true positive hit rate of 26.8%. Two novel inhibitors
displayed IC50 values in the range of colchicine. The most potent
of which was a novel acetamide-bridged benzodiazepine/
benzimidazole derivative with an IC50 = 2.9 μM. The screening
workflow led to the identification of diverse inhibitors active at the tubulin colchicine binding site. Thus, the pharmacophore models
show promise as valuable tools for the discovery of compounds and as potential leads for the development of cancer therapeutic
agents.

1. INTRODUCTION
Cancer is defined as uncontrolled proliferation of cells,
resulting in the formation of a tumor.1 The number of cancer
deaths is escalating, making it one of the leading causes of
deaths across several demographics and age groups with
alarming projections.2 Therefore, there is an urgent need for
new effective and rapidly approved anticancer agents.
However, the success rate for the approval of new drugs is
limited. Clinical failures and stagnation is prevalent from phase
I to eventual commercial use, with the U.S. Food and Drug
Administration (FDA) approval taking around 8.3 years with
an estimated 6.7% success rate.3,4 Microtubule disrupters,
known as antimitotic agents, are an established class of
chemotherapeutics in this complex therapy area. The abnormal
growth of malignant tumors is characterized by uncontrolled
rapid cell division with unlimited replicative potential.5 Thus,
these drugs target the microtubule proteins involved in spindle
fiber formation and inhibit replication.6 Specifically, the
microtubule polymers composed of α/β-tubulin heterodimers
play a crucial role in the mitosis phase.7 Classically, inhibitors
act as microtubule-destabilizing or-stabilizing agents, disrupt-
ing mitosis and mechanistically exerting their effect by binding
at the taxol, vinca, or colchicine binding site (CBS) (Figure 1),

although at least two more α/β-tubulin binding sites have been
allocated and studied.8

An overview of inhibitors targeting the different binding sites
of tubulin is shown (Figure 2). Notably, CBS inhibitors
(CBSIs) with natural and synthetic scaffolds exist as micro-
tubule-destabilizing agents and exert their effect by binding at
the β-tubulin colchicine domain.13 The CBSIs (1−8) are
considered powerful antimitotic agents, but colchicine’s (1a)
clinical application was limited due to its severe toxicity. It also
binds to the tubulin of noncancerous cells, causing mitotic
arrest and impairing protein assembly in healthy cells, leading
to organ dysfunction.14 Furthermore, a 1a analogue prodrug
for the treatment of solid renal tumors was terminated after
phase I trials, due to GI and cardiac side effects.15 Despite
being prescribed in Europe as a second line treatment for
gout,16 its lack of success as a cancer therapeutic is correlated
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with the fact that there are currently no European Medicines
Agency (EMA) or FDA marketed cancer drugs targeting the
CBS. Instead, patients have been treated with the natural
product (NP)-derived taxane and vinca alkaloids, including
taxol 9 and vinblastine 10, respectively. Taxol is primarily
indicated for Kaposi’s sarcoma, lung, ovarian, and breast
cancer; meanwhile, vinblastine is used to treat malignant
lymphomas, Hodgkin’s disease, breast, and testicular cancers.17

Both are flagship drugs for the success of microtubule-
disrupting agents in cancer chemotherapy.
Despite therapeutic limitations, motivation remains for

investigating CBSIs, as the approved taxane and vinca alkaloids
have notable drawbacks, such as intravenous administration
due to poor aqueous solubility, affecting patient compliance.
Their high lipophilicity also requires the use of surfactants,
causing reactions and hypersensitivity in patients.18,19 Alarm-
ingly, the prevalence of multidrug resistance (MDR) in tumors
limits the effectiveness of cytotoxic agents, leading to treatment
failure. Such resistance mechanisms include the overexpression
of P-glycoprotein (P-gp) efflux pumps decreasing intracellular
drug concentrations and the mutant β-tubulin III isoform.20−22

Currently, models suggest that CBSIs might remain unaffected
by this β-tubulin mutation.20 Additionally, the high cost of
alternative monoclonal antibody biologics is another economic
incentive. Research efforts have been led to find alternative
CBSIs for anticancer therapy with numerous natural, semi-
synthetic, or synthetic compounds being reported. The

Figure 1. Graphical depiction of microtubule target and α/β-tubulin
monomer units with 3D structural overlay (gray) with antimitotic
ligands cocrystallized in their respective binding pockets highlighted.
Taxol complex (blue, PDB: 1JFF)9 with the vinblastine complex
(orange, PDB: 1Z2B)10 superimposed onto the (yellow, PDB:
1SA0)11 colchicine-DAMA complex. red, GTP (Guanosine-5′-
triphosphate) substrate. Graphic made in PyMOL.12

Figure 2. Overview of microtubule inhibitors that target different binding sites of tubulin.
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investigations into CBSIs are prevalent, and comprehensive
literature reviews outlining the importance of these scaffolds
from preclinical to clinical development have been per-
formed.13,23 Many NP scaffolds remain excellent starting
points for discovering novel CBSIs. Isolated from Popdophyl-
lum rhizomes, Podophyllotoxin 6 had its antimitotic effects
reported in similar fashion to 1a.24 However, development for
use in chemotherapy was impeded due to its unfavorable
toxicity profile.25 Optimization of 6 led to a series of
semisynthetic derivatives, including etoposide, approved to
treat a number of cancers by the EMA and FDA.26 Despite
binding to the CBS of β-tubulin, this analogue has a distinct
mode of action to 6, with DNA topoisomerase II as its primary
cytotoxic target.27 Concerningly, complications of routine use
emerged with the onset of secondary leukemia in patients.28

The less toxic phosphate prodrug analogue etopophos with
improved formulation characteristics has largely displaced
etoposide in clinical settings.29,30 Another NP, combretastatin
A-4 7, isolated from Combretum caf f rum plants traditionally
used by the South African Xhosa tribe, is a CBS inhibitor with
potent cytotoxicity against cancer cell lines.31−33 A notable
bioactivity feature was the retention of the trimethoxyphenyl
(TMP) ring substituent, analogous to 1a. As emphasized in the
mentioned reviews, medicinal chemistry efforts yielded
unquestionably potent 7 analogues with improved pharmaco-
kinetics. However, they were overshadowed by poor aqueous
solubility and short half-life, requiring introduction of hetero-
cycles and/or a phosphate or amino acid hydrochloride salt.19

This challenge was circumvented by effective prodrug
strategies with improvements in the therapeutic potential of
this scaffold, and clinical candidates now reside in phases I−
III.23 Subsequent modifications utilized the chalcone 4 scaffold
to design further derivatives of 7. The simplicity of the 4
scaffold was favorable for further CBS analogue design with
potent antimitotic activities summarized by Dong et al.13 More
recently, the marine halimide, plinabulin 3 used with docetaxel,
is now under phase III trials for epidermal growth factor
receptor wild-type patients with its activity owed to CBS
interactions.23,34 Moreover, NP scaffolds and semisynthetics
are not self-standing as synthetic scaffolds have also been
prioritized in investigations. Notable synthetic ligands for in
vitro development of CBSIs include heterocycles (myoseverin,
thiazolidinone) and sulfonamides.13 One widely studied
heterocycle, nocodazole 5, gave crucial information into the
role of CBSIs in microtubule dynamics at the cell biology
level.35 Established benzimidazoles with antimitotic mecha-
nisms against human and veterinary parasites support their
wider safe use as medications.36,37 A recent prodrug
lisavanbulin with a benzimidazole moiety, reached phase I/
IIa trials for advanced solid tumors.38 Interestingly, the
synthetic indole 2 demonstrated potent tumor growth
inhibition in a taxane resistant model, suggesting it might
circumvent certain types of MDR that taxanes cannot evade.39

Meanwhile, analogues of the synthetic thiazole scaffold 8 also
showed promise for overcoming P-gp mediated MDR.40 The
onset of MDR against the vinca- and taxol-derived drugs
highlights the immediate clinical relevance of both NP-derived
and synthetic CBSIs toward antimitotic discovery.
As drug design assets, molecular modeling studies have been

performed based on the interaction of ligands at the CBS.
Important crystallographic structures mapping binding inter-
action complexes are presented in Figure 3. Ravelli et al. first
described the CBS buried between the β/α-subunits (PDB:

1SA0) with the DAMA−colchicine in complex.11 The βCys-
241 residue forms a hydrogen bond with the TMP of 1b while
αThr-179 and αVal-181 form hydrogen bonds with the
tropolone ring. Later, Wang et al. showed the structure ligand
complex (PDB: 5CA1) and proposed a structure-based (SB)
pharmacophore of tubulin with 5, reporting its key CBS
interactions overlap little with 1a, forming hydrogen bonds
with βAsn-165 and βGlu-198.34 In contrast, the indole 2
bound at the CBS showed greater overlap with 1a (PDB:
6O5M).39 The ligand shares hydrogen bond interactions with
αThr-179 and βAsp-249. In addition, a hydrogen bond
between the indole amine and carbonyl of β-Asn347 was
observed, and a separate water-mediated hydrogen bond
network was observed between the middle methoxy oxygen
to the backbone amine in βCys-239 and carbonyl in βGly-235.
They declared that this water-bridged feature was likely
responsible for increased activity compared to analogues.
Such reports rationalize the distinct and ubiquitous inter-
actions at the CBS. Abundant ligand and target information
provides a base for CBS pharmacophore modeling.
A pharmacophore is a set of common electronic and

geometric features required for a ligand to interact with amino
acid residues of a given protein target exerting a biological
response.41 Such features may consist of positive/negative
ionizable interactions, hydrophobic contacts (HC), aromatic
interactions (AI), and hydrogen bond donors/acceptors
(HBD/HBA) for the interaction with the target. Pharmaco-
phore-based virtual screening is an established computational
lead discovery tool utilized in modern drug development.42

Co-utilizing SB and ligand-based (LB) screening exploits the
target’s 3D structure and a ligand’s molecular similarity
principle to cover more of the chemically active space.43 It
has also been demonstrated that using several modeling
programmes for model hit prediction is advantageous.44

Moreover, workflows employing both LigandScout (LS) and
Discovery Studio (DS) software with in vitro validation of
potential lead candidates has been successfully applied.45−47

Meanwhile pharmacophore models have been developed in

Figure 3. 3D graphic of the CBS by overlaying the crystal structures
(PDB: 1SA0, 5CA1, and 6O5M)11,34,39 in complex with the ligands
1b (yellow, sticks), 3 (green, sticks), and 5 (magenta, sticks) showing
polar interactions with amino acid residues αThr179, αVal181,
βCys241, βAsn347, and βGlu198 (gray, sticks). Made in PyMOL.12
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CBS antimitotic discovery efforts.48−50 However, to our
knowledge, none have yet integrated a combined SB-LB
pharmacophore workflow with more than one modeling
software coupled with experimental validation. Coupled LB
pharmacophore modeling allows for inclusion of features from
inhibitors where the exact binding mode is not elucidated in
crystallography. Thus, providing an opportunity for its
application in CBS investigations for anticancer chemotherapy
and immunomodulation as outlined in this paper.

2. MATERIALS AND METHODS
2.1. Data Set Assembly. A literature search was

performed for known β-tubulin CBS inhibitors, and a set of
active compounds (n = 95) was curated. The compounds were
selected based on their scaffold chemical diversity from natural,
semisynthetic, and synthetic origin and with inhibition activity
reports and IC50 values in the micromolar range (<100 μM). A
list detailing the selected inhibitors is given in the Supporting
Information (SI) (Section 1, Table S1).
A corresponding decoy set was developed from the

ChEMBL database (version 26, accessed 05/08/2020) by
selecting the distinct compounds search function, followed by
selection and download of the “all small molecules” file (n ≥ 2
million). Next, a customized script in Pipeline Pilot 2019
Client (BIOVIA, San Diego)51 was used for clustering and
filtering. The actives data set SMILES codes were input to the
script file reader. The script function calculated the mean and
SD of the active data set’s physiochemical properties
(molecular weight, #N, #O atoms, #rotatable bonds, #HBD,
#HBA, and LogP values), and Pipeline Pilot was set to filter
those within range from lowest to highest occurring in the
database. Thus, the ChEMBL database compounds were
reduced to a selected subset of compounds with similar
physiochemical properties to the actives set. Furthermore,
known tubulin active molecules (from ChEMBL) were
removed from the subset (n = 1 million), and the remaining
compounds were clustered to arrive at a final decoy data set of
4901 structurally diverse compounds with similar physiochem-
ical properties to the actives set. These random compounds are
assumed to be inactive for modeling purposes.52

Prior to model training, both data sets were converted into
multiconformational screening databases with a LS (www.
inteligand.com)53 integrated Omega conformer generator
(https://www.eyesopen.com/omega)54 using default “FAST”
settings (calculating a maximum of 25 conformers for each
structure). For the models generated in DS, the algorithm
calculates a maximum of 255 conformers under “FAST”
settings.51 This differs from Omega but is equivalent since it
uses a different conformer generator that allows more similar
conformers. The generated databases were used for model
training and theoretical validation of the generated pharmaco-
phore models.52

2.2. Pharmacophore Model Generation and Evalua-
tion. To optimize mapping of the inhibitor’s active chemical
space, the pharmacophore modeling programs, LS version
4.0853 and DS version 3.0 (BIOVIA),51 were employed. For
SB modeling, X-ray crystal structures of the protein−ligand
complexes (PDB: 5CA1)34 and (PDB: 6O5M)39 were
obtained from the Protein Data Bank (PDB).55 For LB
modeling in LS, either the merged or shared feature mode was
used for the 3D alignment of the selected molecules in the
actives data set. All models were subsequently trained against
subsets of the actives/decoy data sets. Each automatically

generated model possessed a variety of different pharmaco-
phore features such as HBD/A, HC, and AI. Additionally, they
contained exclusion volumes (Xvols), which prohibit steric
clashes of the molecule with the protein. To optimize the
automatically generated models, each model was manually
refined or altered during subsequent screening steps. Features
that did not lead to higher model selectivity were removed,
Xvols were added/removed, and feature tolerances adjusted to
optimize model performance. The calculated quality metrics
included sensitivity (eq 1), specificity (eq 2), accuracy (eq 3),
yield of actives (YoA) (eq 4), and enrichment factor (EF) (eq
5). This refinement process was guided by continuous
observation of the quality enrichment metrics calculated
during each step as described in previous reports.47

Pharmacophore models which failed to reach good perform-
ance (i.e., EF < 4) were discarded. Graphical depictions of the
final optimized models and detailed descriptions outlining their
individual optimization and features can be found in the SI
(Section 2, Figures S1−S16) .

=Sensitivity number of actives identified by the model

/number of actives in the dataset (1)

=Specificity number of actives not identified by the model

/number of inactives in the dataset (2)

=
+

Accuracy (number of true positives (TP)

number of true negatives (TN))

/number of all the compounds in the database
(3)

=YoA number of TP/number of total hits (4)

=EF YoA/(number of actives in the database

/number of all compounds in the database) (5)

2.3. Virtual Screening. The 16 generated and optimized
pharmacophore models (models 1−16) were subjected to
virtual screening against three distinct databases: (1) SPECS
database of commercially available synthetic compounds (n =
208,968) and (2) SPECS (NP) (n = 736) downloaded from
www.specs.net (accessed May 2021; Specs_SC_10
mg_May2021, Specs_NP_1 mg_May2021). (3) Further, an
in-house, manually curated polyphenol database named
PhytChem (PC) (n = 735) was used. Each database was
prepared for virtual screening by creating 3D multiconforma-
tional databases using the Omega conformer generator54 with
default “FAST” settings calculating a maximum of 25
conformers in LS; meanwhile in DS, the algorithm calculated
a maximum of 255 conformers under “FAST” settings for each
screening database.51

2.4. Filtering and Selection of Test Compounds for
Biological Assays. In order to guide selection for biological
testing, virtual hits obtained were subject to a filtering
workflow with multiple cutoff steps. Hit selection was guided
by ranking compounds based on consensus overlap and
pharmacophore fit scores/values. The online server
SwissADME (www.swissadme.ch, accessed May 2021)56 was
used to prioritize selection further based on Lipinski’s
properties (solubility) and alerts to any PAINS or Brenk
violations.57,58 A final visual inspection was performed to limit
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and remove chemically unstable functional groups and assess
structural similarities. The final hit list (n = 47) was cross
checked with SciFinder for previously known tubulin activity.
Out of those hit candidates which met the criteria, 46
commercially available compounds (SC1-SC46) (10 hits from
SPECS NP and 36 from hits SPECS database) were purchased
from SPECS chemicals (www.specs.net), and one (Hit47) (hit
from PC database) was purchased from MERCK Group.
2.5. Fluorescence-Based Cell-Free Tubulin Polymer-

ization Assay. The assay test kit, Tubulin polymerization
HTS assay using >99% pure tubulin, fluorescence based
(#BK011P), was purchased from Cytoskeleton, Inc. (www.
cytoskeleton.com).59 The fluorescence-based tubulin polymer-
ization experiment was developed in-line with the kit manual
applying some minor modifications. Each of the kit
components were reconstituted as solutions and stored as
described in the kit guide.59 To prepare the tubulin stock,
lyophilized brain tubulin powder (>99%, porcine, 10 mg) was
placed on ice. The tubulin powder was resuspended in the
supplied supplemented buffer 1 (1.1 mL) and kept on ice for 2
min to ensure complete resuspension. On ice, the tubulin stock
(10 mg/mL, 88 μL) was dispensed as aliquots into labeled 0.5
mL Eppendorf tubes and snap-frozen with liquid nitrogen. The
tubulin stock was stored at −80 °C until later use. To prepare
the tubulin reaction mix for each assay, the GTP stock solution
(100 mM, 20 μL) and buffer 1 (1.5 mL) were thawed and
placed on ice. Glycerol buffer was then removed from +4 °C
and placed on ice. Next, the tubulin stock was thawed and
immediately placed on ice, and the mix components were
combined as follows: buffer 1 (205 mL), glycerol buffer (150
μL), GTP stock solution (100 mM, 4.4 μL), and tubulin stock
(10 mg/mL, 85 μL) and kept on ice. Test compounds and
control solutions were prepared by dissolving samples in
DMSO (3 mM), and from this, aqueous stock solutions (300
μM) were prepared by adding the DMSO/compound stock
(100 μL) to Milli-Q water (900 μL).
For screening, 5 μL of each stock solution was added to

separate wells of the assay plate (Cytoskeleton Inc., Denver,
CO, USA; half area 96-well plate, black, flat bottom) with final
DMSO concentrations (<2%). The 96-well plate was
submitted to a Tecan Spark 10 M plate reader (Tecan,
Man̈nedorf, Switzerland) and warmed for 1 min to 37 °C.
Then, 50 μL of the tubulin solution was pipetted into each
well. Final test compound concentration in the wells was 30
μM. The fluorimeter function equipped with filters was preset
to excitation at 340 nm (20 nm bandwidth), and the
monochromator was set to emission at 450 nm. The gain
was manually set to 40 (mirror, flashes = 30, integration time =
40 μs, lag time = 0 μs). The reaction plate was resubmitted to
the temperature-controlled plate reader (t = 60 min, T = 37
°C). The polymerization inhibitor 1a colchicine (TCI
Chemicals) was used as a positive control. For bioactivity
data analysis, significance testing by one sample t test and IC50
calculations with nonlinear regression (curve fit), log
(inhibitor) vs normalized response−variable slope were
performed using GraphPad Prism version 5.01 for Windows
(GraphPad Software, San Diego, California USA, www.
graphpad.com).60

3. RESULTS
3.1. General Workflow. The general workflow of this

study is summarized in Figure 4. The PDB database was
searched for ligand-binding complexes of tubulin CBS. A total

of 95 known CBS inhibitors from the literature were curated
into a data set of active ligands. Pharmacophore SB models
were created from two PDB structures and the remaining built
LB models from the actives set. The initial models were
optimized to map as many actives and reject as many decoys as
possible. The final models were then used for the virtual
screening of SPECS and in-house compound databases. Virtual
hits were filtered and prioritized for in vitro screening. Test
compounds were purchased and classified as active or inactive
based on in vitro screening at maximum water solubility. The
strongest inhibitors identified were subject to concentration−
response experiments with potency (IC50) determined. Finally,
the strongest inhibitors were aligned to their respective models
to evaluate their potential pharmacophore binding features and
amino acid interactions.
3.2. Data Set Assembly. The selected ligands were

composed of a variety of chemical scaffolds from both
synthetic and NP origin. They were selected on the basis of
their known tubulin inhibition and scaffold diversity to ensure

Figure 4. General workflow for the pharmacophore model-based
search for novel tubulin CBS inhibitors.
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sufficient mapping of the available bioactive space of the
target.61 The ligands were analogues and derivatives of the
following CBSI scaffolds: benzimidazole, thiazole, myoseverin,
thiazolidinone, sulfonamide, arylthioindoles, anthracenone,
combretastatin, podophyllotoxin, chalcone, sesquiterpenoids,
and colchicine alkaloids. A detailed list of the selected tubulin
CBS inhibitors, abbreviated with AS (active set) and listed
AS1−AS95, is shown in the SI (Section 1, Table S1).
3.3. Pharmacophore Modeling and Evaluation.

Graphical depictions of the final optimized models and
detailed descriptions outlining their individual optimization
and features can be found in the SI (Section 2, Figures S1−
S16). The automatically generated SB and LB pharmacophore
models were individually optimized, and below the individual
final models are briefly described.
The automatically generated SB models (SB1 and SB2)

shown in Figure 5 were generated in the LS SB perspective and
were based on coordinates of X-ray crystal structures (PDB:

5CA134 and PDB: 6O5M).39 The models initially generated
showed distinct but unoptimized pharmacophore features. The
initial SB1 model contained just three features, two HC and
one HBD owed to its base ligand 5. After optimization of these
features, a further two HBD and two AI features were
generated by aligning the common LB features of benzimida-
zole ligands from the actives set ligands. Both the SB and LB
features were merged and the final SB1 model further
optimized (Figure 6a, b). The automatically generated model
of SB2 had two HC, one HBD, and two HBA features
representing the important TMP moiety of 2 for CBS binding,
including the water-mediated hydrogen bonding network with
Cys239 and Gly235. These features were optimized accord-
ingly for improved discriminatory power leading to the final
SB2 model (Figure 6c, d).
A total of 14 LB models were generated with LS and DS,

respectively. Among the LS models, each was generated in the
LB perspective by aligning a set of ligands from the actives data

Figure 5. 3D representations of tubulin-ligand complexes used to create SB pharmacophore models generated with LS. Automatically generated
models (A) based on coordinates the X-ray crystal structure (PDB: 5CA1)34 and (B) based on (PDB: 6O5M).39

Figure 6. (A−D) SB pharmacophore models SB1 and SB2 generated using LS. The automatically generated models (A) and (C) were based on
the β-tubulin X-ray crystal structures (PDB: 5CA1)34 and (PDB: 6O5M),39 respectively. Pharmacophore models were automatically generated
with ligands 5 and 2 cocrystallized in the CBS. (B) SB1 model optimized features with additional LB features added. (D) SB2 model with
optimized features. HC, yellow spheres; AI, purple circle; HBD, green arrows/spheres; HBA, red arrows/spheres.
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set using the merged or shared feature mode of the LB
function. Each model was individually trained against the
actives/decoys and optimized as described in SI (Section 2).
The model LB3 (Figure 7A) depicted with ligand AS55 was

based on the pharmacophore features of sulfonamide-indole/
sesquiterpenoid scaffolds. Model LB6 (Figure 7B) depicted
with ligand AS59 was based on the sulfonamide-indole
scaffold. The model LB7 (Figure 7C) depicted with ligand
AS30 (1a, colchicine) was based on the colchicine/
podophyllotoxin scaffolds. Model LB8 (Figure 7D) depicted
with ligand AS15 was based on thiazolidinedione/benzimida-
zole scaffolds. While LB10 (Figure 7E) depicted with ligand
AS80 was based on the anthracenone-methoxy phenyl scaffold.
In the final models shown, all contained at least one HC, AI,

and HBA feature, while LB6 and LB7 additionally possessed a
HBD feature attributed to the indole and acetamide moieties.
For all DS models, automatically generated feature

tolerances were altered to optimize model performance.
Xvols were added manually for steric refinement. Some DS
models were excluded from the set (DS1, DS3, DS4, DS6,
DS7, DS10, and DS11) due to poor model performance (i.e.,
EF < 4). The model DS2 was based on AS64, a diphenyl
sulfonamide (Figure 8A). It contained three HC features, two
ring AI features that are on the two phenyl rings, two HBD
features, and 26 Xvols.
Model DS5 was based on AS75, a podophyllotoxin (Figure

8B). It contained four HC features, two AI features, five HBA
features, and 34 Xvols (not shown in Figure 8B, see Figure
S13, SI). The model DS8 was calculated for AS77, a modified
podophyllotoxin scaffold with an amine functionality inserted
in the central ring and an elongated linker to the
trimethoxyphenylring (Figure 8C). The resulting pharmaco-
phore consists of three HC features, two AI, two HBAs, one
HBD feature, and 21 Xvols.
Model DS9 was derived from AS79, an anthracene sulfonate

(Figure 8D). It consists of a HC feature, three AI features, two
HBA features, and 60 Xvols.
The model DS12 was based on AS29, a chalcone (Figure

8E). The final model contains two HC, two AI, two HBA
features, and 118 Xvols.
The theoretical evaluation of the 16 final pharmacophore

models optimized against the training set is presented in Table
1. All the generated models rejected a large number of decoys
and, thus, can be classified as highly specific (specificity value
ranging from 0.96 to 0.98). However, due to the low number
of TPs retrieved by each one, the individual models are also
considered to have rather low sensitivity with values between
0.04 and 0.16. While all the models are determined to have
high accuracy falling within 0.97−0.98, they were, however,
distinct from one another regarding YoA and EF values. Model
LB5 had the highest YoA and EF with values of 0.45 and 23.57,

Figure 7. (A−E) LB pharmacophore models generated in LS were
aligned with their respective ligands. HC, yellow spheres; AI, purple
circle; HBD, green arrows/spheres; HBA, red arrows/spheres.

Figure 8. (A−E) LB pharmacophore models were generated in DS with their respective parent ligands. (A) Model DS2, (B) model DS5, (C)
model DS8, (D) model DS9, and (E) model DS12. Pharmacophore features included HC (blue spheres), AI (brown spheres), HBA (green
spheres), and HBD (purple spheres).
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respectively, compared to the lowest scoring model LB10 with
0.08 and 4.17. Thus, considering all quantitative evaluation
parameters, LB5 performed the best overall with the largest
enrichment of active compounds over random selection in the
theoretical validation. We aimed to cover more than 90% of
the actives database with multiple highly selective models,
rather than aiming for fewer and more general models. Despite
the rather low sensitivity of each individual model, the
combined pharmacophore models recognized a total of 89
TPs from the actives data set with an improved overall
sensitivity of 0.94 and combined value of 6.11 for the
enrichment factor.
Each model was continually optimized and evaluated to

allow as many actives to be retrieved as possible and to exclude
the decoy compounds. For the two final SB models, important
features representing interactions between two different ligands
with key residues at the CBS required for inhibition were
retained. Thus, the two SB models displayed different
interaction features from their respective crystal structures
and met the theoretical evaluation criteria. However, the SB
models matched just 13 actives out of 95 from the data set.
Therefore, further LB models were generated based on
inhibitor scaffolds from the active set to cover more of the
active molecular space. After optimization, the additional nine
LS models and five DS models retrieved further actives from
the data set. A final optimization step was applied to each
model, by enhancing the tolerance of or adding additional
Xvols to reduce the number of inactive compounds that
sterically clash with the protein to be matched with the
pharmacophore. This resulted in an enriched final model set
recognizing 89 out of 95 active compounds from the training
set. This demonstrates that the application of two modeling
software tools yielded a broader list of inhibitors, strengthening
the model set’s ability to cover more of the active chemical
space for virtual screening.
3.4. Virtual Screening. All models were screened against

three databases. The resulting single hits (n = 1) of the
combined virtual screening are presented in Table 2.
Meanwhile the consensus hits that were found by means of
more than one model (n = 2, n= 3) in the virtual screening can
be seen in the SI (Section 3, Table S2). The model LB4

identified no virtual hits against all databases due to it being
too selective (FPs = 15) and therefore could not be
theoretically validated by the screening; thus, it was omitted
from the workflow.
After filtering of the virtual screening hit lists, as outlined in

Section 2.5, a total of 47 compounds were purchased and
selected for experimental validation in the tubulin polymer-
ization inhibition assay. The final list of selected test
compounds with their respective vendor IDs and matching
pharmacophore models can be found in SI (Section 4, Table
S3).
3.5. Tubulin Polymerization Inhibition. The 47 selected

compounds (SC1−SC46 and Hit47) were investigated in the
previously described fluorescence-based cell-free tubulin
polymerization assay.59 In an initial active/inactive discrim-
ination screen, the compounds were tested at 30 μM (or when

Table 1. Theoretical Evaluation of LS and DS Generated Modelsa

Model Actives Decoy TPs FPs TNs FNs Accuracy Sensitivity Specificity YoA EF

SB1 7 49 7 49 4852 88 0.97 0.07 0.99 0.13 6.57
SB2 6 69 6 69 4832 89 0.97 0.06 0.99 0.08 4.21
LB3 12 51 12 51 4850 83 0.97 0.13 0.99 0.19 10.02
LB4 8 15 8 15 4886 87 0.98 0.08 1.00 0.35 18.29
LB5 13 16 13 16 4885 82 0.98 0.14 1.00 0.45 23.57
LB6 5 24 5 24 4877 90 0.98 0.05 1.00 0.17 9.07
LB7 4 32 4 32 4869 91 0.98 0.04 0.99 0.11 5.84
LB8 3 18 3 18 4883 92 0.98 0.03 1.00 0.14 7.51
LB9 5 52 5 52 4849 90 0.97 0.05 0.99 0.09 4.61
LB10 5 58 5 58 4843 90 0.97 0.05 0.99 0.08 4.17
LB11 9 45 9 45 4856 86 0.97 0.09 0.99 0.17 8.76
DS2 10 49 10 49 4852 85 0.97 0.11 0.99 0.17 8.91
DS5 11 57 11 57 4844 84 0.97 0.12 0.99 0.16 8.51
DS8 10 74 10 74 4827 85 0.97 0.11 0.98 0.12 6.26
DS9 9 64 9 64 4837 86 0.97 0.09 0.99 0.12 6.48
DS12 15 86 15 86 4815 80 0.97 0.16 0.98 0.15 7.81

Combined 89 677 89 677 4224 6 0.86 0.94 0.86 0.12 6.11
aEach model was evaluated in relation to EF, YoA, and number of TPs.

Table 2. Overview of Virtual Hits from In Silico Screening
and Filtering of SPECS, SPECS (NP), and PhytChem (PC)
Databases

Virtual screening (single hits)

Model
SPECS

(n = 208761)
SPECS (NP)
(n = 736)

PhytoChem (PC)
(n = 735)

SB1 64 0 0
SB2 121 0 1
LB3 2624 0 0
LB4 0 0 0
LB5 3050 3 8
LB6 242 0 0
LB7 25 0 1
LB8 210 0 0
LB9 50 0 1
LB10 216 1 0
LB11 567 1 4
DS2 399 1 14
DS5 63 16 0
DS8 210 9 11
DS9 50 7 4
DS12 2961 2 4
Total 5.20%

(n = 10852)
5.43% (n = 40) 6.53% (n = 48)

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00939
J. Chem. Inf. Model. 2023, 63, 6396−6411

6403

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00939/suppl_file/ci3c00939_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00939/suppl_file/ci3c00939_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00939/suppl_file/ci3c00939_si_001.pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00939?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


not fully soluble in DMSO/H2O at this concentration, at lower
concentrations) to assess for polymerization inhibition. The
highly active compounds (Figure 9 and Table 3) SC23 and

SC37 displayed activities similar to the control 1a with 99.3 ±
3.7% and 100.3 ± 0.4% inhibition, respectively, at 30 μM. Two
compounds, i.e., SC22 and SC32, showed moderate inhibition
ranges (50%−75%) while four (i.e., SC6, SC25, SC27, and
SC34) showed weak inhibition (25%−50%) at 30 μM
concentration. Furthermore, the compound SC24 tested at
20 μM showed high activity with 95.50 ± 2.52% tubulin
inhibition. Due to their high activity at 30 μM, compounds
SC23 and SC37 were also tested at 10 μM to consider potency
evaluation experiments. Again, SC23 showed high activity at
10 μM with 86.5 ± 2.7% inhibition and SC37 at 10 μM had
moderate activity with 71.3 ± 6.4% inhibition. Weak inhibition
activity at 10 μM was determined for the other inhibitors
SC14, SC27, and SC45 (15%−50%). Six compounds (SC7,
SC9, SC10, SC12, SC18, and SC3) were omitted from
analysis due to solubility constraints or fluorescence signal
interference.
Based on the preliminary screening, the most active

inhibitors SC23 and SC37 were selected for IC50 experiments.
Unfortunately, the other two promising inhibitors SC32 and

SC24 had to be omitted from potency determination due to
solubility constraints. All remaining selected test compounds
were considered inactive at the tested concentrations. The
assay results led to an experimental success rate of 26.8%. The
overall results of the preliminary screen are presented in the SI
(Section 5, Figure S18 and Table S4). The chemical structures
of the active inhibitor compounds are shown in Figure 10.
For the two virtual hits with the highest polymerization

inhibition (compounds SC23 and SC37), concentration−
response measurements and potency values (IC50) were
determined with results shown in Figure 11. When compared
to the control 1a (IC50 = 2.3 μM), SC23 was found to be the
most potent (IC50 = 2.9 μM). Meanwhile compound SC37
was less potent (IC50 = 5.8 μM) but still in the range of 1a
within this assay.
3.6. Model Performance and Inhibitor-Model Align-

ment. Based on the experimental testing of 41 virtual hits
selected from the 15 pharmacophore models, 13 models
matched ligands with promising bioactivity. The prospective
model performance is presented in Table 4. SB1 and SB2 each
yielded one active compound in the bioassay: SC45 and SC23,
respectively. Four of LS LB models (i.e., LB3, LB7, LB8, and
LB10) and four of the DS LB models (i.e., DS2, DS5, DS8, and
DS12) also each matched one active. The best performing LS
model was LB6, which had a hit rate of 60% and matched three
virtual hits (i.e., SC32, SC34, and SC37) that were active in
the bioassay. Meanwhile the best performing DS model was
DS9, which matched four actives (SC6, SC14, SC24, SC25)
and had an 80% hit rate. Furthermore, the combined SB and
LB modeling approach with different software environments
led to some consensus overlap between the different models.
Within LS, the active SC45 was matched with the models
SB1/LB3. Furthermore, the active SC34 matched with LB6/
LB11/DS2 and the active SC25 matched with LB10/DS9/
DS12 were triple consensus hits. These findings demonstrate
the utility of combining models from separate software
programmes, leading to overlapping experimentally active
compounds. Consensus actives were also distributed among
the DS models. The highly active inhibitor SC24 was matched
with the three models DS5/DS8/DS9. This compound is a
derivative of the well-known CBS ligand podophyllotoxin and
thus distinctly highlights that the models are highly selective
for such inhibitor scaffolds. Only inactives in the bioassay were
found for the virtual hits selected from model LB9; thus, the

Figure 9. Tubulin polymerization inhibition screening results showing
the active virtual hits at 30 μM (SC6, SC22, SC23, SC25, SC27,
SC32, SC34, SC37, and colchicine 1a), 20 μM (SC24), and 10 μM
(SC14). Results expressed at time point 41.5 min as % inhibition of
blank (mean ± SD, n = 2) and compared to control (1a) and blank.
Statistical significance compared to blank analyzed by t test: *p < 0.05,
**p < 0.01, n.s = not significant.

Table 3. Summary of In Vitro Polymerization Inhibition of Compounds Considered Activea

Compound Inhibition at 30 μM (%) Inhibition at reduced concentration (%) IC50 (μM), CI 95%

SC6 38.4 ± 12.6 n.d. n.d.
SC14 insoluble 43.9 ± 23.9 (10 μM) n.d.
SC22 54.7 ± 2.5 n.d. n.d.
SC23 99.3 ± 3.7 86.5 ± 2.7 (10 μM) 2.9 (2.2−3.9)
SC24 insoluble 95.5 ± 2.5 (20 μM) n.d.
SC25 25.5 ± 14.6 n.d. n.d.
SC27 32.9 ± 1.7 35.9 ± 4.4 (10 μM) n.d.
SC32 73.9 ± 0.2 n.d. n.d.
SC34 37.8 ± 5.7 n.d. n.d.
SC37 100.3 ± 0.4 71.3 ± 6.4 (10 μM) 5.8 (5.2−6.5)
SC45 Insoluble 17.7 ± 1.0 (10 μM) n.d.

1a (Colchicine) 98.8 ± 5.2 83.2 ± 1.7 (10 μM) 2.3 (2.0−2.8)

aThe assay measurements were performed at a concentration of 30, 20, or 10 μM. Polymerization inhibition (n = 2, mean ± SD) was normalized to
percentage of the blank control at time point 41.5 min.
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model should be either reoptimized or disregarded for future
screening programmes.
Using LS and DS software, the most active identified tubulin

polymerization inhibitors were aligned to their respective
pharmacophore models. The most potent inhibitor (com-
pound SC23) was found by means of model SB2 (Figure
12A). It possessed two HBA features necessary for polar
interaction with H2O676. This interaction resembles that of
the complex’s parent cocrystal ligand 2, but the interaction
replaces the TMP methoxy groups with the nitrogen atom of
the benzimidazole nucleus and a fluorine atom of the adjacent
trifluoromethyl group. Furthermore, the inhibitor’s benzodia-
zepine ring shared the Thr179-mediated HBD interaction.
Interestingly, this moiety also found a new HBD interaction
with Met257 through the other nitrogen atom. Inhibitor SC27
is a thiadiazol scaffold found by means of the LB8 model
(Figure 12B). It possesses a HBA feature derived from its
triazole ring. Furthermore, the aromatic and hydrogen bond
features are owed to its furan ring, while the inhibitor retained
one HBA feature of the methoxyphenyl group. The inhibitor

SC37 (Figure 12C) was found by means of model LB6, which
was generated based on the benzenesulfonamide-indol AS59.
The HBD originally due to the indole ring’s nitrogen atom is
substituted with the nitrogen atom of the acetamide group
linked to the benzodioxol ring. Further, the two HBA features
originally owed to AS59’s sulfonamide oxygen atoms were
substituted with SC37’s oxadiazol ring’s nitrogen and oxygen
atoms. This demonstrates the pharmacophore’s ability to
effectively scaffold hop and exchange functional groups while
retaining bioactivity.
The active inhibitor SC24 aligned to DS5 (Figure 12D)

retained the TMP moiety HBA features that are crucial for
interaction at the CBS. Found by multiple models, this virtual
hit was identified as a triple consensus hit, thus demonstrating
each model’s ability to select for known CBS inhibitor
scaffolds.
3.7. Scaffold Novelty Evaluation. To assess scaffold

novelty of the active tubulin inhibitors, their respective
SMILES codes were submitted to a SciFinder literature search
and to the online SwissTargetPrediction server (www.

Figure 10. 2D structures of the experimentally validated virtual hits identified in the screening assay. The purple box contains structures which had
<50% inhibition, and the red box contains structures which had >50% inhibition in the tubulin polymerization assay.
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swisstargetprediction.ch, accessed 10/05/2023). No tubulin
activity results were found for these compounds in the
SciFinder search. The SwissTargetPrediction server estimates
the probability for each query molecule to interact with known
protein targets. The prediction is founded on 2D or 3D
similarity of the molecule with a large library of known actives
on 3000 protein targets linked to the ChEMBL assay database.
The query for SC24 offered 3D structurally similar molecules
(n = 30) for the tubulin beta-1 chain target (CHEMBL1915)
with high probability scores (0.75−0.90), which is due to the
molecule’s well-known podophyllotoxin scaffold from which
two of its parent models were built (DS5/DS8). Meanwhile
SC14 also matched for molecule 2D similarity (n = 11) with
moderate probability scores (0.46−0.62) against the same
target (CHEMBL1915). Interestingly, the query proposed no
similarity results for the remaining actives (SC6, SC22, SC23,
SC25, SC27, SC32, SC34, SC37, and SC45) against tubulin.
This suggests some of these actives represent novel tubulin-
inhibiting scaffolds and could be considered for further
investigations as potential new lead candidates targeting the
CBS of beta-tubulin. Furthermore, with low probability scores
obtained for other targets, the actives identified might possess
high selectivity for tubulin with limited off-target interactions.

A tabular summary of the SwissTargetPrediction results for the
actives is shown in SI (Table S5).

■ DISCUSSION AND CONCLUSIONS
Out of the 16 pharmacophore models created in this study, 15
were used to retrieve virtual hits that were experimentally
tested for their inhibitory activity against tubulin polymer-
ization. In terms of individual model performance, the
theoretical evaluation of the models revealed model LB5 to
be the best performing, defined by the highest YoA (0.45) and
EF (23.57) values, respectively. Model LB10 showed the worst
performance considering YoA (0.08) and EF (4.17). Thus, the
diverse model set displayed varied abilities for the enrichment
of active compounds while rejecting decoys. Moreover, the
final combined LS and DS model collection yielded 93.7% of
the tubulin inhibitors from the actives data set, covering the
diverse range of the active chemical space responsible for
bioactivity. While both software solutions are based on the
same principle, the feature definitions and screening algorithms
vary, so that both programs have been shown to cover
complementary parts of the active space.44 However, six
tubulin inhibitors from the literature set were not identified by
the model library (i.e., AS1, AS14, AS24, AS44, AS47, and
AS82).62−67

Figure 11. Concentration−response curves and respective IC50 values of the most active tubulin polymerization inhibitors SC23, SC37, and
control 1a (n = 3). Expressed as % polymerization with log (inhibitor) vs normalized response function, error bars (mean ± SD). Respective IC50
values and 95% confidence intervals for SC23, SC37, and 1a are found in Table 3.

Table 4. Prospective Pharmacophore Model Performance Based on Bioactivity Results

Model (Found inhibitor) Tested virtual hits Active virtual hits Number of active hits Hit rate (%)

SB1 4 SC45 1 25
SB2 3 SC23 1 33.3
LB3 5 SC45 1 20
LB6 5 SC32, SC34, SC37 3 60
LB7 4 SC22 1 25
LB8 3 SC27 1 33.3
LB9 4 0 0 0
LB10 4 SC25 1 25
LB11 3 SC34 1 33.3
DS2 2 SC34 1 50
DS5 4 SC24 1 25
DS8 2 SC24 1 50
DS9 5 SC6, SC14, SC24, SC25 4 80
DS12 3 SC25 1 33.3
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Furthermore, model LB4 yielded no virtual hits during
virtual screening and thus was excluded from the model set
because it was considered too restrictive to retrieve hits for
experimental validation.
In terms of experimental substantiation, among the 13

experimental bioassay validated models, SB2, a SB model
representing the binding mode of ligand 2 in complex with
amino acids at the CBS, showed good performance. It led to
the highly active benzodiazepine/benzimidazole SC23, which
was the most potent hit with an IC50 of 2.9 μM, making it the
best performer of the two SB models. Alignment of this
inhibitor at the CBS of crystal structure tubulin complex
(PDB: 6O5M) revealed its pharmacophore interaction with
H2O676 substitutes the HBA features of the TMP group of
cocrystal ligand 2 reported by Wang et al.,39 with the nitrogen
atom of SC23’s benzimidazole nucleus and a fluorine atom of
its adjacent trifluoromethyl group. Furthermore, the new
inhibitor’s benzodiazepine ring possessed a HBD interaction
with Thr179 through its nitrogen atom, alike to the imidazol
nitrogen atom of ligand 2 previously described.39 Interestingly,
this moiety also found a new HBD interaction with Met257
mediated by the benzodiazepine ring’s other nitrogen atom,
replacing the former indole HBD with Asn347, on which the
feature was originally based on. Derivatives of both
benzodiazepine and benzimidazole scaffolds are known
independently to inhibit tubulin formation.68,69 However,
this acetamide-bridged merged scaffold has no previous
literature reports showing inhibitory potency against tubulin
polymerization and would represent a novel merged scaffold
for CBS tubulin inhibition. Furthermore, the scaffold novelty
evaluation retrieved no similarity results against tubulin.
Although some tubulin inhibitors from the actives set are
known to be bioactive in the nanomolar range (SI, Table S1),
the inhibition potency of SC23 (2.9 μM) should be considered
high, as it fell within range of the control 1a and was more
potent than the majority of micromolar range tubulin

inhibitors from which the models were built. Some 1,4-
benzodiazepine motifs coupled to the TMP moiety show
nanomolar antiproliferative activity.69,70 Thus, it would be
interesting to investigate how these merged structural features
replacing the TMP with the benzimidazole nucleus might
affect cell proliferation. This would support its consideration
for potential application as a lead compound.
The best performing LB models were LS LB6 and DS DS9.

The LB6 model had a hit rate of 60% finding three virtual hits
(SC32, SC34, and SC37) that were inhibitors in the bioassay.
Interestingly, actives SC32 (inhibition = 73.9 ± 0.2%) and
SC34 (inhibition = 37.8 ± 5.7%) were sulfonamide and
sulfonate derivatives resembling the parent scaffold of the
pharmacophore model. However, the moderately active SC32
had solubility constraints at 50 μM; therefore, it was not
determined if its potency would fall within range of the parent
ligands (IC50 = 1.1−2.9 μM).71−73 Despite the structural
feature resemblance of these actives to their parent
sulfonamide-indole ligands, the highly active and novel
inhibitor SC37 (inhibition = 100.3 ± 0.4%) was also yielded
from the LB6 model. The structural difference of 1,3,4-
oxadiazol-benzodioxol SC37 effectively demonstrated the
model’s ability to scaffold hop and exchange functional groups
while retaining bioactivity of the pharmacophore. It possessed
the acetamide-bridged benzodioxol and oxadiazol moieties
wherein the HBD feature of the parent indole moiety was
replaced with the acetamide group linked to the benzodioxol
ring. In addition, the HBA features originally owed to AS59’s
sulfonamide moiety were substituted with the oxadiazol ring in
the pharmacophore of SC37. Furthermore, the active ligand
demonstrated moderate potency (IC50 = 5.8 μM) within the
range of the control 1a. There were no previous literature
reports with tubulin activity found for this hybrid compound.
Despite SwissTarget prediction giving no similarity score for
this active against tubulin, there are hybrids of the 1,3,4-
oxadiazol and 1,3-benzodioxol moieties that have demon-

Figure 12. (A−D) Alignment of the most active tubulin inhibitors with their respective pharmacophore models generated in LS and DS. (A) SC23
aligned to model SB2, (B) SC27 aligned to model LB8, (C) SC37 aligned to model LB6, and (D) SC24 aligned to model DS5.
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strated both matrix metalloproteinase inhibition and in vitro
anticancer activities.74 Furthermore, another study reported
compounds with the oxadiazol moiety displaying tubulin
inhibition (IC50 = 2.2−2.8 μM).75 Therefore, like SC23, this
novel tubulin inhibition activity with an acetamide linkage of
the moieties could also be considered further in CBS lead
development.
Meanwhile the most successful DS model, DS9, led to four

inhibitors (SC6, SC14, SC24, SC25), having an 80%
experimental hit rate. Among these, the highly active SC24
showed strong inhibition at 20 μM (95.5 ± 2.5%). This was
unsurprising, as the compound is a podophyllotoxin derivative
possessing the TMP moiety responsible for the antitubulin
activity of this NP compound class. Furthermore, it showed
high tubulin activity similarity to its analogous structures in the
SwissTarget search. Due to solubility constraints, it was not
possible to determine if this compound’s chlorobenzamide
moiety is influential in terms of potency compared to other
podophyllotoxin derivatives.
However, this activity was also found by means of two other

DS models (DS5/DS9). Thus, as a triple consensus hit, it
effectively advocates for the utility of pharmacophore modeling
for identifying previously known CBS tubulin-inhibiting
scaffolds. All remaining actives found by means of the models
displayed weak to moderate tubulin inhibition.
Within LS, the weakly active SC45 was matched with the

models SB1/LB3. Furthermore, the weak active SC34 matched
with LB6/LB11/DS2 and the weak active SC25 matched with
LB10/DS9/DS12 were triple consensus hits. Despite being
weakly active, these hits convey the benefit of a hyphenated LB
and SB modeling approach alongside combining different
software for discovering active tubulin inhibitors (Figure 13).

The active inhibitors SC27 (LB8) and SC25 (LB10/DS9/
DS12) are triazolo-thiadiazol derivatives with the known
tubulin-inhibiting thiadiazol scaffold. Although there was no
tubulin activity similarity for these derivatives from the
SwissTarget search, they were both previously screened in a
HeLa cell-based HCS assay for microtubule stabilizers and
were reported to be inactive at 10 μM in the bioassay report.76

Considering these derivatives were not cytotoxic for the
endpoint measurement of cellular microtubule stabilization,
our results suggest that alternative derivatives of these tubulin

polymerization inhibitors could be considered further for
tubulin destabilization and antiproliferative screening inves-
tigations wherein a CBS tubulin destabilization mechanism of
action is exerted. These actives differ only by the 2-
methoxyphenyl and 4-methoxyphenoxy groups linked to the
triazol ring and presented comparable tubulin inhibition
capacities in the assay.
The models indicated that they possess a HBA feature

derived from the triazole ring. Furthermore, the aromatic and
hydrogen bond features belonging to the furan ring are
present; meanwhile, these inhibitors retained one HBA feature
of their respective methoxyphenyl and methoxyphenoxy
groups. Interestingly, the structurally analogous triazolo-
thiadiazol SC26 (LB3/LB5) was an inactive test compound.
It has a phenoxypropyl group instead of a methoyphenyl/
methoxyphenoxy group, emphasizing the importance of these
additional moieties for establishing a bioactive pharmacophore
among this structural class.
To conclude, a pharmacophore-based virtual screening

workflow was designed and subsequently led to the
identification of 11 novel tubulin polymerization inhibitors
with a combined experimental hit rate of 26.8%. The 13
optimized and experimentally validated pharmacophore
models can be considered as efficient tools for the
prioritization of compounds for future bioassay screening.
The two most potent tubulin inhibitors identified demonstrate
the effectiveness of acetamide linkages of tubulin-inhibiting
warheads, and these merged scaffolds could potentially
contribute to further development of lead structures targeting
the CBS of tubulin for cancer treatment. Next, future
investigations will be considered to assess the pharmacological
potential of the most active compounds against cancer cell
lines or parasitic embryo development. Furthermore, the
collated CBS model library will be cross-functionally utilized
for virtual screening of additional natural product databases to
prospect for novel CBS tubulin inhibitors for numerous
therapeutic areas (inflammation, anti-infectives, cancer).
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1. List of ligands active against tubulin used to generate
the actives data set for pharmacophore model training. 2.

Figure 13. Venn diagram visually displaying the bioassay active virtual
hits matched in each modeling program (LS, blue), (DS, Purple). The
dark overlapping region shows the bioassay consensus actives
matched in both programs.
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Ferrer, J.; Sánchez-Lamar, Á. Microtubules destabilizing agents
binding sites in tubulin. J. Mol. Struct. 2022, 1259, No. 132723.
(9) Löwe, J.; Li, H.; Downing, K. H.; Nogales, E. Refined structure
of αβ-tubulin at 3.5 Å resolution11Edited by I. A. Wilson. J. Mol. Biol.
2001, 313, 1045−1057.
(10) Gigant, B.; Wang, C.; Ravelli, R. B. G.; Roussi, F.; Steinmetz,
M. O.; Curmi, P. A.; Sobel, A.; Knossow, M. Structural basis for the
regulation of tubulin by vinblastine. Nature 2005, 435, 519−522.
(11) Ravelli, R. B.; Gigant, B.; Curmi, P. A.; Jourdain, I.; Lachkar, S.;
Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex
with colchicine and a stathmin-like domain. Nature 2004, 428, 198−
202.
(12) PyMOL Molecular Graphics System, Version 0.99rc6. Schrö-
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